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Abstract  Öz 

We present a real-time monocular camera pose estimation algorithm 
for augmented reality applications. Proposed model is a small 
convolutional neural network that is trained to directly estimate  
6 Degree of Freedom (6-DOF) camera pose from an RGB image. Our 
model is designed to run on real-time devices with low memory and 
computation power. Our model can estimate the camera pose in less 
than 1ms while keeping accuracy comparable to the state-of-the art. 
This was made possible by employing geometrically sound loss functions 
and algebraic constraints. Furthermore, we introduce a new synthetic 
dataset for demonstrating the proposed methods capabilities. 

 Artırılmış gerçeklik uygulamalarında kullanılmak üzere tek bir 
kameradan bir nesnenin yön ve konum kestirimini yapan bir algoritma 
sunulmaktadır. Küçük bir konvolüsyon ağından oluşan bu model  
6 serbestlik dereceli konum ve yön bilgisini tek bir KYM  
(kırmızı-mavi-yeşil) imgeden elde etmektedir. Önerilen model yüksek 
başarım ve hafıza içermeyen mobil cihazlar için idealdir. Algoritma 
verilen bir imgeyi 1ms içinde işlemekte ve güncel algoritmaların 
performansına yakın performans sergilemektedir. Önerilen geometrik 
kayıp fonksiyonu ve kullanılan cebirsel kısıtlamaları modelin 
performansını sağlamaktadır. Aynı zamanda sentetik bir veri kümesi de 
bu tür modellerin performansını ölçmek için önerilmiştir. 

Keywords: Augmented reality, Pose estimation, Deep learning.  Anahtar kelimeler: Arttırılmış Gerçeklik, Poz kestirimi, Derin 
öğrenme. 

1 Introduction 

6D accurate pose estimation is an essential part of the computer 
vision research since it has important applications in robotics, 
navigation an augmented reality. This problem is not trivial; 
many problems like occlusion, illumination and dynamic 
background can interfere with the estimation. Like many other 
fields in computer vision, pose estimation also received its fair 
share of deep learning-based attention. Recent deep learning 
methods SSD-6D [9] and BB8 [15] is built upon well-known 
object detector SSD [16][28] and YOLO [17]. These models 
focus on estimating the 6D pose of an object, depending on 
success of 2D counterparts on bounding box estimation of given 
objects.  However, estimating 6DOF pose is a much harder 
problem in RGB images. Variations in appearance, ambiguities 
and the lack of geometric information and depth [12] may 
complicate robust estimation. This manuscript addresses 
recovering camera pose relative to a particular object from a 
monocular RGB image.  This approach is analogous to object 
pose estimation since our research is focused on augmented 
reality (AR) perspective. In AR applications, estimating 
egocentric motion and pose relative to the scene is important 
as objects in the scene usually stay stationary. Camera pose 
estimation is an important part of Structure-from-Motion and 
image-based localization. This problem is traditionally well-
studied [19],[20],[22]. Algebraically, given a set of 
correspondences between an image and its 3D model, the 
camera pose can be calculated by solving a six-degree 
polynomial. However, in practice, there are several problems 
with algebraic approaches. The first problem is finding reliable 
matching. SIFT [21] and other gradient-based variants are good 
at finding such informative regions between the images. 

                                                           
*Corresponding author/Yazışılan Yazar 

However, the output of such methods is usually noisy and 
requires robust methods like RANSAC. The second problem is 
with these methods is that they try to understand very low 
level-features (corners and edges) without attending to global 
structures in the image. To address such problems Deep 
Learning Based camera pose estimators such as PoseNet [1], 
are usually applied onto large scale localization. Following 
these works, new models are used to learn relative ego-motion 
[12] and compute pair-wise camera pose [25], improve the 
context of features [26] and Bayesian Neural Networks 
[27],[29]. Main advantage of such probabilistic learning, they 
do not suffer from the curse of dimensionality since they can 
learn to represent many important and complicated features in 
the image context. Furthermore, given enough diverse samples, 
they cope with changing environmental factors well. However, 
deep learning-based approaches poses some drawbacks. First, 
they require immense amounts of labeled training data. 
Gathering and annotating such data requires lots of human 
effort and it is expensive. Moreover, this process is usually error 
prone and it results in contaminated training data that can 
impair the performance of the model. Secondly, neural 
networks require lots of computation power and memory. This 
is especially a drawback from AR perspective, since 
contemporary AR devices are mobile phones, which have 
limited computational and energy resources. Our work tries to 
address such problems with following contributions. 

 We present a new dataset with a class of objects(cars) 
and a fast and efficient pipeline that can produce 
realistic synthetic images with varying illumination 
and natural occlusion, unlike real-time data 
augmentation in which any image manipulation 
causes distortions in the scene. We constructed a 
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small CNN architecture, which is designed to run on 
with computationally limited capabilities that runs 
on Realtime, 

 We introduced an algebraic constraint into loss 
function as a regularizer.  Experimental study shows 
that our constraint reduces training time and slightly 
increases performance of our proposal on our 
dataset. Following the literature, we have also tested 
capabilities of our method on competitive benchmark 
datasets and achieved comparable results while 
estimating the camera pose in less than a few 
milliseconds. 

2 Related work 

Direct of pose estimation is to train network for estimating 3D 
translation and 3D rotation of an object of interest in a scene or 
to infer camera pose relative to a canonical frame. Current pose 
estimation methods can be split into two categories. Methods in 
the first category infer the object pose using local features 
extracted from the target image and matched to the 3D model. 
Using these 2D-3D correspondences 6DoF pose can be 
recovered [12],[14],[15],[32],[33]. These methods usually 
show high robustness against partial occlusion. However, they 
require robust visual features to operate and fail when the 
objects are texture-less. Additionally, these features unable to 
corporate global structure of the scene or the target object to 
the estimation process. Contemporary pose estimation 
approaches heavily employ deep learning methods either by 
directly estimating the pose or use it as part of a multi-stage 
pipeline [8],[15],[24]. In the seminal work of Xiang [30], 
PoseCNN uses a CNN architecture to directly regress the 6DoF 
pose. However, this method heavily suffers when the object is 
occluded. Obwerger et al [13] show that occluders have a 
corrupting effect on CNN activations far beyond the receptive 
field. Another approach is to turn this problem into a 
classification problem [15] by discretizing the poses. In 
response to those failures, many researchers adopt a multi-
stage pipeline similar to the traditional methods. In the first 
stage, they predict the2D key-points and then compute the pose 
with PnP algorithm. These methods train CNNs to detect 
semantic key-points. Lepetit et al [24] uses segmentation and 
sparse correspondences for detecting the 3D bounding box. 
Tekin et al [9] use YOLO [17] architecture to estimate object 
key-points on a multi-resolution feature map. An alternative to 
sparse approaches where a few selected key-points are 
estimated, in a dense-approach every object pixel has a 
contribution to the pose estimation. Similar to a Hough voting 
scheme, all pixels cast a vote to a set of hypotheses. The 
hypothesis with the most votes is selected to be the proposal. 
Doumanoglou [34] and Kehl [35] use CNN to sample RGB-D 
image patches and extract features for the voting. Peng et al 
[15] uses the Farthest Point Sampling algorithm (FPS) to select 
key-points on the target object. Then they use a heavy-weight 
pre-trained CNN [36] to predict the key-points and a 
segmentation map. Furthermore, they notice that the quality of 
predicted key-points may vary. Thus, they introduced 
Uncertainty-driven PnP that minimizes the Mahalanobis 
distance between each predicted spatial key-point distribution 
and the 3D correspondence. The main advantage of multi-stage 
and key-point-based networks is the improved accuracy and 
their resilience to the weak occlusion. Especially with the help 
of RANSAC these methods, outperform direct estimation 
methods and single-stage methods. On the other hand, cost of 

robustness is large neural models and computational time 
spent on post-refinement and solving PnP-RANSAC. This cost 
makes modern approaches inapplicable to real-time pose 
estimation on cheaper industrial devices.   

3 Direct estimation of camera or object pose 

Given a monocular input image, we aim to estimate the location 
and orientation of the camera with respect to the single object 
(see Figure 1). This is the same as estimating the object pose 
with respect to the camera. Algebraically, the imaging process 
is captured by Equation (1) where K is a 3×4 matrix capturing 
the camera internal parameters, [x, y, z] is a point in object 
coordinate system and [u, v] is corresponding location on the 
image plane and ρ is the projective depth. 

𝜌 [
𝑢
𝑣
1
] = 𝐊 [

𝐑 𝐓
𝟎𝑇 1

] [

𝑥
𝑦
𝑧
1

] (1) 

Camera pose and orientation can be represented as a 
7dimensional vector θ= [T, R] where T is a three-dimensional 
vector representing the pose or the translation of the camera.  
And R is a four-dimensional vector representing camera 
rotation as quaternions. As in [1] we choose quaternions for 
representing rotations since they lie on a unit hypersphere, any 
arbitrary four-dimensional vector represents a rotation 
provided they are normalized. Another advantage of this 
property is that, we can use this term as a constraint to help to 
train the network Unlike Euler angles, which require a complex 
and expensive orthonormalization process and suffer from 
singularities, quaternion representations are easy to 
manipulate algebraically thus enabling a simple normalization 
process that allows us to calculate gradients easily. Direct 
estimation of camera pose from an image is done by a neural 
model (see Figure 1). A custom neural model optimized for 
speed and small memory footprint is designed in order to run 
the model on devices that have limited computational 
capabilities.  Proposed architecture (see Table 1), down-scales 
the given image by three consecutive 5x5 convolutions with 
strides of 2 and applies a normalization. Then, we construct a 
convolution block that consists of 3 densely connected [4] 
traditional 3x3 convolutions with a bottleneck 1x1convolutions 
which is followed by an average pooling and a normalization 
layer.  This is applied three times. The model is continued with 
two fully connected layers each 1024 neurons.  Model output is 
a 7-dimensional vector in which the first three represent the 
location and the remaining four represents the rotation. 

The model is trained through an optimization on a specially 
designed loss function.  The proposed loss function is an 
amalgamation of different losses penalizing various 
estimations. The first part of the loss penalizes the difference 
between estimated position and the ground truth: 

𝐿𝑡 = ∥∥𝑡𝑔 − 𝑡𝑒∥∥2
 (2) 

This loss treats all three components of the position equally 
including the distance to the object. Our datasets have 
comparable values for lateral motion of the camera as well as 
the distance to the object. The second loss is the simple 
difference between estimated rotation and actual rotations: 

𝐿𝑟 = ∥∥𝑟𝑔 − 𝑟𝑒∥∥2
 (3) 
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Figure 1. Direct estimation of camera poses with neural models using synthesized images. (a): Given a 3D model we generate random 
texture maps and distinct shapes and material properties. (b): We render images on dynamic and transparent backgrounds with 

varying illumination.  Random 3D shapes and objects are placed between camera and the target object. (c): We train a custom 
densely connected custom neural architecture to directly estimate either camera or target object pose. 

Table 1. Layer by layer details of the proposed architecture. We highlight the repeating dense block by drawing a border. We use 
highlighted block two more times before fully connected layers. 

Layer No Type Kernel Size Stride Filter Count 
1 Batch Norm - - - 
2 2DConvolution 5x5 2x2 48 
3 2DConvolution 5x5 2x2 48 
4 2DConvolution 5x5 1x1 48 
5 Batch Norm - - - 
6 2DConvolution 3x3 1x1 24 
7 2DConvolution 3x3 1x1 48 
8 2DConvolution 3x3 1x1 96 
9 2DConvolution 1x1 1x1 48 

10 Average Pooling 2x2 2x2 - 
11 Fully Connected Global - 1024 
12 Fully Connected Global - 1024 

 

Although not all the ranges of the rotation are covered in our 
training and test data due to limited access to a real-world 
object, our loss yields again comparable values for the four 
components of the rotation in quaternion representation. The 
final loss is the projection error. Projection error is calculated 
by the Euclidean distance between the actual image 
coordinates [ug,vg] of a random set of points in the world and 
their estimated image coordinates[ue_ve](as given in 
Equation 4). During training we choose four random points to 
calculate a mean of the projection as the final projection loss.  

𝐿𝑝 =
1

𝑛
∑  

𝑛

𝑖=1
∥
∥
∥
[
𝑢𝑔
𝑣𝑔
] − [

𝑢𝑒
𝑣𝑒
]
∥
∥
∥

2

 (4) 

Once again, we do not distinguish between the locations of the 
points on image or object.  Randomly choosing these points 
gives us enough variety, as their placement on the object as well 
as their distribution in the image.  Fixed set of points may create 
biases in this loss as they may lie on a singular setup (e.g., along 
a line)or they may map on the boundary of some images 
(effecting the range of values as well as being subjected to 
different camera distortions).We also introduced the unit 
hyper-sphere constraint of the quaternions as a regularizer on 
the network. Kendall et al. [6] mentioned about this fact and 
they decided not to use as part of optimization, believing that 
such constraints can impair model training. Furthermore, they 
observed that as the training advances, estimated pose comes 
very close to the ground truth and renders such additions 
unnecessary. However, our experiments show that such a 
constraint can be beneficiary to the overall training process.  
This will be discussed in detail in Section 4.  We note that [6] 

argues that as the training progresses, the estimated values of 
the camera rotation come close to the unit sphere of a 
quaternion. Instead of leaving relaxing the rotation outputs, we 
supply the unit norm constraint directly with a continuous 
surrogate. 

�̂� = 𝑒(𝑄−1)
2
 (5) 

Where 𝑄 represents the quaternion norm �̂� denotes the 
surrogate regularization term. We finally combine all four 
losses given in equations (2),(3),(4) and (5) into a single loss: 

𝐽 = 𝛼𝐿𝑡 + 𝛽𝐿𝑟 + 𝛾𝐿𝑝 + 𝜆�̂� (6) 

Where α, β, γ and λ are hyper-parameters which are used to 
fine-tune and balance the overall training process. This 
combined loss function is differentiable and can easily be 
optimized by modern deep learning optimizers. It should be 
noted that some portions of the loss may seem redundant. For 
example, the re-projection loss can represent both the 
translation and the rotation losses together. However, stating 
these losses separately may allow the optimization process to 
remove biases due to imperfections in the projection models, 
noises, and other possible biases. And our experiments show 
that this improves the estimation accuracy significantly. 

4 Datasets used in experimental evaluation  

It is well known that deep learning performs well on large 
datasets. However, producing such datasets are usually 
expensive or requires hand-annotated labels. We solved this 
problem by using generated 3D models. Given a 3D model, we 
have rendered an image with random object colors under 
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different lighting conditions with random backgrounds. We 
used 6 different free 3D models from open source communities.  
For each model, we have generated 600 images for training, 
300 images for validation and final 1000 images with 
transparent backgrounds for testing.  Rendered images have 
size of 640x640 pixels.  They are scaled down to 224x224 pixels 
during training. Rendering camera is randomly placed between 
two hemispheres with radius of r1 and r2 and oriented such that 
the target object is always visible within the image.  For initial 
experiments these values are assigned 5and 15 respectively.  
Additionally, we placed random 3D models between camera 
and the rendered object to simulate occlusion. During dataset 
generation, camera hemisphere is divided into four quadrants 
along the x-axis and y-axis. 540 of the rendered training images 
come from three quadrants and 60 of them comes from the last 
one. We employed this strategy to test the interpolating 
capabilities of the neural network.  Validation and test images 
are equally distributed among the quadrants. We have also 
rendered pure silhouette of the object from the same camera 
perspective so that we can use IoU (Intersection over Union) 
score.  This score choice is further discussed in the experiments 
section. We have also demonstrated the performance of our 
method on Cambridge Landmarks dataset [1]. This dataset 
(Sample images is presented in the Figure 2) includes 5 large 
scale urban scenery with challenging conditions like 
pedestrians, vehicles and confusing environmental conditions 
like different lightning and weather conditions. For indoor 
comparison, we used 7Scenes Dataset [2]. This dataset contains 
7 in-door scenes with various numbers of RGB-D images for 
each category. Although this dataset is designed for RGB-D 
re-localization, we use it to demonstrate the performance our 
proposed method. With the use of depth data, some of the 
difficulties can be alleviated. Our method will not make use of 
the depth data in our experiments. Additionally, this dataset is 
also challenging for methods using image level features like 
SIFT, as it contains many ambiguous texture-less areas. 

 

Figure 2. Sample images from cambridge dataset.  

5 Experimental evaluation 

5.1 Setup 

We have pre-trained our model using PlacesNet [5] aiming 
multi-label scene classification. This dataset contains 1,803,460 
training images with 365 categories. Each category has varying 
number of images from 3,068 to 5,000. PlacesNet dataset 
focuses on indoor and outdoor scenes.  Alternatively, ImageNet 
is used for pre-training networks in many applications. 
However, objects in ImageNet does not have the depth 
variations that we would like to see. The scene categories in 
PlacesNet has better depth variation which might be useful in 
our pose estimation problem. Our model was implemented in 
TensorFlow [6]. We used Adam [7] optimizer with a learning 
rate 5x10−4, which is halved for every 40 epochs. Overall 
training took 170 epochs and we employed early stopping to 
counter overfitting. Because of the limited GPU resources, batch 

size is selected to be 8. We also applied random geometric crops 
onto training images for data augmentation (See Figure1). 

5.2 Hyper-parameter selection 

In the experiments with our synthetic datasets, we selected α, 
β, γ, and λ as 3, 10, 20 and 8 respectively. α, β, and γ values are 
found using a grid search in the range [0,20] with 1 step 
increments. Finding a healthy λ value is essential since selected 
loss approaches its minimum very slowly and many different 
conFigureurations of quaternion may result in a similar 
regularization loss. In our experiments, we have hand tuned λ 
with less than 10 different tries. Obviously that the introduction 
of multiple hyper-parameters complicates the training process.  
Since the weight of each loss partition will introduce a bias that 
may drag the network to a point that is numerically favorable 
from an optimization perspective while the estimator showing 
relatively poor performance. On the other hand, Scene 
geometry and the priorities of the estimator can vary 
depending on the problem. In some cases, we could estimate 
the camera position in large-scale outdoor scene while in 
others, we could be estimating the precise pose of a hand-held 
object for augmented reality. Additionally, there could be large 
numerical variations between different parts of the loss which 
can also hinder the training process. Such partitioning allows 
us to adjust the contribution of each source and stabilizes the 
training process. This problem is visited in a follow up article 
by Kendall et al. [6] and they used a geometric loss like our re-
projection error again based on the fundamentals of multi-view 
computer vision geometry. They managed to improve their 
original performance [1] while simplifying the training process. 
However, in our experiments with synthetic dataset, we 
observed that, merging different losses with coefficients have a 
slight improvement on validation results. 

5.3 Training pipeline 

During training, for each image batch we have selected random 
images from MS-COCO [3] dataset as back-ground for images.  
Each synthetic image is overlayed on top of the chosen image.  
Thus, neural model almost sees a unique background for every 
rendered image. We have also employed a different occlusion 
strategy in training batches.  We have applied random shaped 
crops in 20 percent of the images. While crop size depends on 
the shape that is assigned, for rectangular shapes, we randomly 
choose width and height between 10 and 40 pixels. For 
spherical crops, radius was again between 10 and 40 pixels.  
The cropped area is either filled with random uniform colors or 
we have cropped the area with same coordinates from the 
background and applied on top of the cropped region. 

5.4 Experiments and results 

During inference we normalize the estimated rotation by its 
length so that quaternion constraint is applied using Q/‖Q‖.  
We conduct experiments and make comparisons with the 
normalized estimations. We show that proposed model can 
estimate camera pose effectively using only a fraction of the 
number of parameters used by PoseNet. In fact, the number of 
parameters is reduced from 22M to 2.4M as shown in Table 1. 
Following [8], we calculate median translation and rotation 
errors for all datasets and categories in Table 3. Additionally, 
we used IoU (see Figure 3 for an archetypal representation) 
score for demonstrating the accuracy of tested models.  
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Figure 3. Archetypal representations for each IOU threshold. Top row represents the ground truth. Middle row is the view of the 
estimated camera location and orientation. Bottom row is the composite image of estimation and ground truth. Axis labels shows the 

IoU and the translation and the rotation error. 
 

There are multiple ways of measuring estimator’s performance. 
Although using such a score is non-traditional, we propose 
using a simple intersection over a union of silhouette images 
can give both quantitative and qualitative nature of the 
comparison.  It can be argued that our method has an inherent 
weakness, that different pose estimation can result in similar 
IoU scores.  However, during our evaluation of predictions, we 
observed that even if the prediction is very close to the truth 
value, IoU may vary noticeably, since our objects have complex 
surfaces and cover a large area in the image. To calculate IoU 
score we rendered silhouette images of from both prediction 
and original pose. Table 2 also shows that how well model 
performed on the task and the number of worst-case scenarios 
across different models. 

A significant number is the estimated angles are much closer to 
the ground truth labels.  We believe this result is due to the 
application of a quaternion constraint in Equation (4).  We have 
also observed that application of such constraint on both 
models improves the average IoU by decreasing the number of 
worst-case predictions despite it has a negligible detrimental 
effect on high accuracy predictions. Following the tradition, we 
have also tested our model’s performance on Cambridge 
Landmark dataset and 7 Scenes dataset. In Table 3, we 
demonstrate that our model performs comparably to the state-
of-the-art camera re-localization using other deep neural 
networks while having one tenth of trainable parameters. We 
have also tested our model’s generalization capabilities when 
the training is done with views obtained from a close by camera 
and test the performance on images obtained further away 
from the object.  

For this, we have generated 1000 test images rather distant 
from the target object. Camera radii r1 and r2 are selected as  
15 and 30 meters for this test dataset. Training images were 

obtained within 15 meters. Table 4 shows that our model 
performs well up to 20-meter radius and breaks down after 
that. This is expected as object details become indiscernible 
after certain distances. Another robustness test is conducted to 
calculate orientation variations.  In the training data we let only 
portion of orientations present for each car type.  We fix the tilt 
angle w.r.t.  the object while varying the pan angle freely. We 
make sure that the entire range of orientation is covered by the 
two different cars.  When the first car covers the angle range 
0°−45°, the second car covers the next range 30°-60° and soon. 

The trained model is then tested on a car that was imaged for 
the remaining range of pan angles (not used in the training data 
for that car). As the results show in Table 5, the model 
successfully learns the representation of the car for non-
existing poses.  This suggests that pose transfer from one car to 
the other is accomplished by the model.  Of course, we cannot 
conclude that the pose of a completely new can be estimated by 
the model as good as the existing cars that is used in test.  
Figure 4 shows the effect of the choice of regularization term on 
the validation performance during training. As discussed 
earlier, we expect ~Q to behave better than the direct loss or 
the quadratic regularization(Q−1)2. Even though exponential 
regularization starts slowly, it picks up and gives slightly better 
validation error. The positive effect of this regularization on 
other models can also be seen in Table 1.  When we apply this 
regularization on PoseNet, although higher accuracy levels did 
not change, for the lower accuracy levels, performance has seen 
a dramatic increase (columns under <0.2 and <0.1). We also 
used this regularizer on another model. When applied in 
training PoseNet, the number of iterations to get to the same 
performance are decreased by about 50% (see Figure 5). Our 
model shows good experimental performance on synthetic as 
well as real data. 
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Table 2. Comparison of intersection over union (IoU) for number of correct model predictions for various levels of accuracy is 
shown. Abbreviations Const., Pro. and Geo. correspond to constrained, re-projection loss and geometric loss respectively. 

Model Param Size Median IOU  Accuracy  
   >0.9 >0.8 >0.7 <0.2 <0.1 

PoseNet [1] 22M 0.547 47 269 426 202 157 
PoseNet [1] (Constrained) 22M 0.675 53 297 586 57 44 
PoseNet [6] (Const.,Geo.) 22M 0.857 363 792 908 35 28 

Our Model (Const.) 2.4M 0.739 139 508 722 36 30 
Our Model (Const., Pro.) 2.4M 0.845 345 790 912 15 12 

Table 3. Performance of the proposed model in comparison to the state-of-the art. Displayed numbers show median translation (in 
meters) and rotation (in degrees) estimation errors of the study in that scene. 

Scene Bayesian PoseNet LSTM PoseNet PoseNet Reprojection Our Model 
College 1.74 m,4.06° 0.99 m,3.65° 0.88 m,1.04° 0.93 m, 2.64° 

Hospital 2.67 m,5.14° 1.41m,4.20° 3.20 m,3.29° 2.18 m, 3.67° 
Church 2.11 m,8.38° 1.18 m,7.44° 1.57 m,3.32 2.11 m, 6.8° 

Shop Facade 1.25 m,7.54° 1.52 m,6.84° 0.88 m,3.78° 1.16 m,5.43 
Chess 0.37 m, 7.24° 0.24 m,5.77° 0.14 m,4.48° 0.26 m, 4.24° 
Fire 0.43 m, 13.7° 0.34 m,11.9° 0.27 m,11.3° 0.43 m, 13.11 

Heads 0.31 m, 12.0° 0.21 m,13.7° 0.17 m,13.0° 0.21 m, 13.24° 
Office 0.48 m, 8.04° 0.33 m,8.08° 0.19 m,5.55° 0.21 m, 5.98° 

Pumpkin 0.61 m, 7.08° 0.37 m,7.00° 0.26 m,4.75° 0.53 m, 5.11° 
Kitchen 0.58 m, 7.54° 0.58 m,7.54° 0.24 m,5.52° 0.24 m, 5.35° 
Stairs 0.48 m, 13.1° 0.48 m,13.1° 0.37 m,12.4° 0.38 m, 12.1° 

Synthetic Cars(ours) Failed Failed 0.18,1.19° 0.21 m, 1.07° 

Table 4. Model performance when tested on images with larger ranges of motion. 

Motion Range IoU Score Translation Error (in meters) Rotation Error (in degrees) 
5-15m 0.845 0.21m 1.07° 

15-20m 0.842 0.22m 1.07° 
20-25m 0.46 0.54m 4.64° 
25-30m Failed Failed Failed 

Table 5. The model performance when tested on images with diverse orientation ranges. 

Motion Range IoU Score Translation Error (in meters) Rotation Error (in degrees) 

5-15m 0.845 0.21 m 1.07° 

Sparse data 0.812 0.45 m 1.64° 
 

 

Figure 4. Effect of quaternion norm regularization on the validation loss. In the beginning of the training cumulative loss is 
significantly higher compared to the vanilla loss due to the chaotic estimations of the network. However, as the networks becomes 

more stable, constraint helps, optimization to find a slightly better minimum and faster convergence. 
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Figure 5. Median validation errors of PoseNet. Constrained quaternion curve shows the effect of exponential regularizer. Both 
translation and rotation error approaches local minima at faster rate, typically about 50%. 

 

5.5 Ablation studies on LINEMOD dataset. 

In this section, we provide a detailed analysis of our approach 
to the LINEMOD [22] dataset. LINEMOD dataset is one of the 
standard pose estimation benchmark datasets used in 
academic and industrial applications. The dataset contains 13 
object classes with around 1200 images per class. This dataset 
is highly challenging due to background clutter, variations in 
illumination furthermore texture-less objects. Following the 
literature, we take 200 images from the original dataset for 
training, and the remaining are used in testing. Additionally, we 
synthetically generate 3000 images per class for training in 
which poses are sampled from a 3-meter radius Gaussian 
sphere. We adjust the hyper-parameters to 1, 1, 6, and 8 to 
accommodate the different scene compositions. We compare 
the proposed architecture in 4 different setups. The first setup 
is using a combination translation and rotation errors as the 
sole loss function. The second setup uses vanilla projection to 
estimate the object pose. The third setup incorporates 
reprojection error and translation and rotation errors. Finally, 
in the last setup, we introduce the constraint term on the 
rotation. In Table 6, we present our findings in the 2D 
Projection metric. This metric measures how close the 2D 
projected vertices are to the ground-truth, in pixel domain. 
Following the common practice in the recent papers, we 
consider the pose as correct if the mean 2D projection error is 
below 5 pixels. Our study suggests that neither reprojection 
error nor the translation and rotation error perform 
significantly better than each other on average.  However, when 
we merge the losses as discussed, we observe a significant 
performance increase.  We believe that this phenomenon is due 
to different priorities regarding the nature of the losses.  We 
suspect that while the projection errors attend to the 2D 
projection of the scene and translation and rotation infers some 
implicit information from the latent 3D geometry. 

Similar to the original experiments, the proposed constraint on 
the quaternion seems to alter regression performance quite a 
little.  On the other hand, we observe the impact of the constrain 
on the training process. While the unconstrained network 
seems to settle around the 110th epoch. Constrained models 
settle around the 70th epochs. 

6 Discussion 

In experiments sections, we presented the effectiveness of our 
engineered model with a set of combined losses and 

constraints. Moreover, additional experiments on a different 
dataset clearly show the contribution of careful design choices, 
training regimes, and regularizing constraints. On the other 
hand, we see the shortcomings of the proposed method in the 
ablation studies.  The parameter size of the network, one of the 
strongest aspects of our architecture that provides almost real-
time pose estimation, does not have the expressive power to 
estimate the pose of the objects across categories. For each 
object class, we train the network from scratch. In LINEMOD 
experiments, we observe that the performance of the neural 
network is not competitive. Specifically, multi-stage pose 
estimation techniques perform much better due to their large 
number of parameters and combining traditional Computer 
Vision algorithms with neural networks. On the other hand, the 
proposed method is a fully convolutional architecture 
consequently we scale the parameter size effortlessly and 
observe that our network benefits from cardinality on the 
LINEMOD dataset.  Another shortcoming of our approach is to 
adjust hyper-parameters again for the dataset to adjust the new 
scene composition. It may be burdensome and expensive for 
some applications to perform a hyper-parameter search for 
each application.   Our final observation is the necessity of a 
quaternion constraint on larger models.  While we see the 
significance of the constraint in earlier experiments with small-
scale models, we observe that as the model gets larger, the 
accuracy contribution of the quaternion regularizer to the 
diminishes in contrast to our expectations. However, training 
duration still seems benefitting from the additional error signal 
since we re-observe the faster convergence in the latter 
experiments.  This behavior needs further investigation across 
multiple datasets. 

7 Conclusion 

In this manuscript, we have presented a method for direct 
estimation of the camera pose from a given image of known 
objects. Starting with a CAD model of the object for which the 
pose to be estimated, we first render synthetic images of the 
object under varying pose, occlusion, and illumination 
conditions.  Augmenting these synthetic images with natural 
background yields a training data. This data is then used to train 
a carefully designed neural network. Proposed model estimates 
the camera pose in our data better than any other direct 
method that we know. The same model performs comparable 
to the other methods on benchmark datasets such as 
Cambridge and 7 Scenes.  
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Table 6 .We show the effects of different loss terms on the regression process. L1 shows pure translation and rotation loss L2 loss 
shows the projection loss. Given numbers denote the accuracy in 2D projection metric. We consider an estimated pose correct if the 

distance between the ground truth pixels and the projected pixels lie between 5 pixels. 

Object L1 L2 L1 + L2 L1+L2+ Constraint 
ape 22.9 22.7 31.3 32.2 

benchwise 32.1 33.0 48.1 48.7 
cam 38.4 39.0 36.3 39.4 
can 40.2 39.8 66.2 66.3 
cat 41.6 41.2 42.7 43.2 

driller 34.8 34.8 63.5 64.1 
duck 30.2 30.6 32.4 30.8 

eggbox 36.7 36.9 61.4 62.0 
glue 22.4 23.4 63.2 56.7 

holepuncher 36.6 37.5 42.6 44.3 
iron 58.4 61.3 74.0 74.9 
lamp 41.0 44.1 68.4 68.5 

phone 34.7 36.2 43.6 47.3 

 

Proposed model is fine-tuned for this purpose with a specific 
architecture which is much smaller than many reported in the 
literature.  We also introduced the random projective loss 
function that helps the performance of the estimator, especially 
in the orientation estimation up to 1 degree.  The exponential 
regularizer we have used also helps in the performance of both 
our model as PoseNet [1]. Combined, these three 
improvements in our model leads to a fast and accurate direct 
pose estimation method. We are in the process of extending this 
method to include a refinement step [10],[23]. Our refinement 
process however will be incorporated into our existing model 
by making use of not only the 2D image structures as well as the 
silhouette of the object.  Such method has the potential to 
outperform feature-based pose estimation methods, as they 
can have difficulty around occluding contours. 
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