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Abstract  Öz 

Job-shop scheduling is a difficult issue for 'labor-intensive project type 
manufacturing'. Because in this type of production, the actual 
processing times are not exactly known until the production is finished 
and these processing times vary depending on the order’s technical 
specifications. It is an appropriate method to use probability 
distributions to forecast the processing times. This paper provides an 
industrial application for the scheduling of a labor-intensive project 
type working welding job-shop under variable workstation constraints. 
This constraint is consequence of a special production type that is 
depending on the length of the products. The aim is minimizing the 
makespan of a group of waiting orders. Genetic algorithm (GA) is used 
for this purpose to establish the entry sequence of the job-shop's waiting 
orders and dispatching them to the 6 identical welding stations. The 
dynamic conditions of the job-shop are simulated by the Arena 
simulation program. Stochastic processing times are used as the input 
data of the algorithm. Using stochastic processing times under variable 
workstation constraint for welding job-shop scheduling is not 
investigated previously. According to the experimental results, GA and 
Arena simulation together effectively reduces the makespan in this type 
of problem under variable workstation constraint. The GA aided Arena 
schedule outperforms the schedules proposed without using GA for this 
problem. Simulation results indicate that the total manufacturing time 
of pending orders is nearly 9.25% reduced when compared with the 
schedules proposed without using GA. 

 İş atölyesi planlaması, 'emek yoğun proje tipi üretim' için zor bir 
konudur. Çünkü bu tür bir üretimde, gerçek işlem süreleri üretim bitene 
kadar tam olarak bilinmez ve bu işlem süreleri siparişin teknik 
özelliklerine göre değişir. İşlem sürelerini tahmin etmek için olasılık 
dağılımlarını kullanmak uygun bir yöntemdir. Bu makale, emek-yoğun 
proje tipi çalışan kaynak atölyesinin değişken iş istasyonu kısıtlamaları 
altında planlanması için endüstriyel bir uygulama sunmaktadır. Bu 
kısıt, ürünlerin boyuna bağlı olarak ortaya çıkan özel bir üretim şeklinin 
sonucudur. Amaç, bir grup bekleyen iş emrinin tamamlanma süresini en 
aza indirmektir. Genetik algoritma (GA) bu amaçla, atölyeye girmeyi 
bekleyen iş emirlerinin atölyeye giriş sırasını oluşturmak ve bunları 6 
özdeş kaynak istasyonuna göndermek için kullanılır. Atölyenin dinamik 
koşulları, Arena simülasyon programı ile simüle edilir. Algoritmanın 
girdi verileri olarak stokastik işlem süreleri kullanılır. Kaynak iş 
istasyonu çizelgeleme için değişken iş istasyonu kısıtlaması altında 
stokastik işleme sürelerinin kullanılması daha önce araştırılmamıştır. 
Deneysel sonuçlara göre, GA ve Arena simülasyonu birlikte, değişken iş 
istasyonu kısıtlaması altında bu tür problemlerde bir grup işin toplam 
tamamlanma zamanını etkili bir şekilde azaltmaktadır. GA destekli 
Arena çizelgesi, bu sorun için GA kullanmadan önerilen çizelgeden daha 
iyi performans gösterir. Simülasyon sonuçları, bekleyen siparişlerin 
toplam üretim süresinin, GA kullanılmadan önerilen çizelgelerle 
karşılaştırıldığında yaklaşık % 9,25 oranında azaldığını 
göstermektedir. 

Keywords: Arena simulation, Genetic algorithm, Labor-intensive 
project type production, Makespan minimization, Variable 
workstation constraint, Welding shop scheduling problem. 

 Anahtar kelimeler: Arena simülasyonu, Genetik algoritma, Emek-
yoğun proje tipi üretim, Tamamlanma zamanı minimizasyonu, 
Değişken iş istasyonu kısıtı, Kaynak atölyesi çizelgeleme problemi. 

1 Introduction 

It is critical for enterprises to supply customer requirements 
within due date and to reduce the labor cost for each customer 
order. Order scheduling is required for various purposes, for 
example makespan minimization, optimizing the use of 
resources, etc. Before starting the production, processing times 
for each job are known in deterministic scheduling and there 
are no process disruptions, except for a few production 
adjustments. These production systems can be widely 
computer-controlled, and the problem can be analytically 
solved by using linear programming. However, such types of 
solutions are far from actual production environments. Since so 

                                                           
*Corresponding author/Yazışılan Yazar 

many assumptions are needed to be made to mathematically 
model the real-life problem, this causes the problem to diverge 
from real life. Stochastic scheduling on dynamic shop floors is 
more appropriate for scheduling real life problems. There are 
many factors that trigger stochastic operating times, such as 
technical order requirements, operator skills, job-shop 
bottlenecks, transporters, and so on. The appropriate 
operations are known but processing times are not exactly 
known in stochastic scheduling. Stochastic processing times 
make it harder for order scheduling. In addition to using 
stochastic operation times, because of the dynamic job-shop 
environment, the use of simulation provides more important 
results for real industrial plants. 
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The labor intensive project type job-shop has a dynamic 
production environment. Stochastic operation times and 
stochastic scheduling are triggered by a dynamic production 
environment. Heuristics are used to address that issue because 
of these problems are known as the NP-hard problem. Particle 
swarm, genetic algorithm, ant colony and so on have been 
commonly used meta-heuristics in the last decade to solve 
problems with job-shop scheduling.  

Some of the papers selected - those closely relevant to the 
subject matter of this paper - are as follows: Jia et al. [1] 
proposed decode select string (DSS) decoding genetic 
algorithm (GA) for job-shop scheduling problem (JSSP). Azadeh 
et al. [2] studied on makespan minimization in stochastic JSSP. 
They used artificial neural networks (ANN) and computer 
simulation together to select the optimum dispatching rule for 
each machine under a set of different constraints and rules. 
Huang et al. [3] studied on process sequence flexibility problem 
for JSS. They used GA to minimize the makespan. Aydemir and 
Koruca [4] developed a priority rule-based GA (PRGA) 
scheduling module to minimize the total completion time. 
Flexible job-shop scheduling (FJSS) is also a NP hard problem. 
Ba et al. [5] presented a novel mathematical model for a multi-
resource FJSS (MR-FJSS). They used GA to minimize the 
makespan. Deng et al. [6] studied on bee evolutionary guiding 
non-dominated sorting GA (NSGA) for multi-objective FJSSP 
(MO-FJSSP). Ocaktan et al. [7] used GA and Arena simulation 
together to minimize the makespan of customized orders of a 
job-shop. Zhang et al. [8] also used GA for MO-FJSSP to minimize 
the longest makespan of the workpieces and machine loads (for 
each machine and total machine). The shortest processing time 
(SPT) and balanced use of machines is considered by them. Hu 
et al. [9] used improved cuckoo search algorithm (CSA) for JSSP. 
This algorithm is a hybrid of CSA and particle swarm 
optimization (PSO) algorithm. The results are compared with 
PSO and GA. The simulations are performed by using Matlab 
program. Jiang et al. [10] studied on energy-efficient JSS instead 
of conventional performance criteria such as production 
efficiency, makespan etc. To optimize this environmental 
metric, they used grey wolf optimization (GWO) algorithm. Also 
they proposed a double-searching mode for GWO to solve this 
problem. Jiang et al. [11] studied on the same subject by using 
whale optimization algorithm (WOA). Seng et al. [12] proposed 
a low-carbon scheduling model for MO and multi-speed (MS) 
FJSS and used NSGA for optimization. They considered energy 
consumption, low carbon emissions, and makespan as the 
performance criteria. Karaoglan et al. [13] studied on JSSP by 
considering the ergonomic constraints. They used combined GA 
and Arena simulation to minimize the makespan. Zhang et al. 
[14] used binary PSO to optimize the multi-technique, multi-
response FJSSP. Zhong et al. [15] optimized dual resource 
constraint JSSP to optimize the makespan and total processing 
cost. They proposed branch population GA for optimization. Sel 
and Hamzadayi [16] used simulated annealing (SA) for JSSP and 
used Arena for simulations. Fu et al. [17] established a multi-
objective optimization model for a JSSP and used NSGA to 
minimize some performance measurements such as the total 
cost and the total completion time. Tang et al. [18] considered 
limited starting time interval and tolerated time interval to 
conduct a MO-FJSSP. They also presented hybrid discrete PSO 
with simulated annealing (HDPSO-SA) for the optimization of 
this problem. Liao and Lin [19] studied on optimization of job-
shop supply chain scheduling problem using PSO. Wang et al. 
[20] used hybrid GA-PSO for inverse JSSP and performed 

discrete event simulation. Zhang et al. [21] used PSO and ANN 
together for JSSP. They treated each particle in the swarm as a 
connection in the ANN to minimize the maximum makespan. 
Zhu et al. [22] used improved WOA for JSSP based on the 
quantum computing. They optimized maximum makespan, 
maximum machine load and total machine load. Karaoglan et al. 
[23] used artificial bee colony (ABC) algorithm to optimize the 
welding shop scheduling problem (WSSP) to minimize the 
makespan. They used deterministic processing times. Shi et al. 
[24] used fuzzy and immune GA for optimizing MO-FJSSP. They 
considered on minimizing energy consumption, maximum 
makespan and consumer dissatisfaction. Gu et al. [25] proposed 
a discrete genetic-grey wolf optimization (GA-GWO) algorithm 
to solve low-carbon JSSP. Vital-Soto [26] used hybridized 
bacterial foraging optimization (BFO) algorithm for the FJSSP. 
To minimize weighted lateness for the FJSSP with sequencing 
flexibility, they modeled the problem with mixed integer linear 
programming (MILP). The summary of the related literature is 
given in Table 1. 

The WSSP for JSSP using GA is considered in the current paper. 
In several industrial fields, including the production of 
mechanical manufacturing, WSSP can be applied. There are 
however, just a few studies based on WSSP that include the use 
of several machines. Rao et al. [27] studied on bi-objective 
WSSP (BWSSP) to minimize the machine interaction effects and 
the total tardiness. BWSSP is a concern with special flow-shop 
scheduling problem (FSSP). In this problem, on a certain stage, 
more than one machine (or workstation) can process one job. 
They modeled the problem as mixed integer programming 
model (MIPM) and then solve the model by NSGA with a 
restarted strategy. However WSSP for JSSP (which is the subject 
of the current study) is studied by Karaoglan et al. [23] and a 
novel problem is established with variable workstation 
constraint. They solved the problem using ABC algorithm coded 
by Matlab. Although they assumed that the processing times of 
the operations are known before starting the operation. This 
assumption results not able to fully reflect dynamic job-shop 
conditions.  

In the present paper, WSSP is considered for JSSP for 
probabilistic (stochastic) processing times. This is the first 
novelty of this research. The optimization is performed by 
using GA combined with Arena simulation. Using probabilistic 
processing times and Arena simulation provide to consider the 
dynamic job-shop conditions and get more applicable solutions. 
The contributions of this study to the literature are: (i) using 
variable workstation constraint, (ii) solving welding shop 
scheduling problem (WSSP) - which is studied by Rao et al. [27] 
and Karaoglan et al. [23]-under the stochastic processing times. 
They used mixed-integer programming model (MIPM). 
However, if the production line is labor-intensive then using 
integer programming causes not discussing the dynamic shop 
conditions. Because in the labor-intensive jobs, there are so 
many factors those have effect on the processing times of the 
same jobs processed in different shifts (such as the tempo 
factor of the workers, material searching, waiting for crane or 
forklift, and etc.). This is also the motivation of this research. 
Using stochastic processing times under variable workstation 
constraint for welding job-shop scheduling is not investigated 
previously and this is the novelty aspect of this research. Some 
researchers [24] used fuzzy processing times, however in this 
study GA aided Arena simulation is used and probability 
distributions of processing times are suitable for this software. 
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Table 1. Summary of the literature review. 

Author Method Problem/Model (or constraints) Objective  
Jia et al. [1] DSS GA JSSP Makespan 

Azadeh et al. [2] ANN Stochastic JSSP Makespan 
Huang et al. [3] GA JSSP with process sequence 

flexibility 
Makespan 

Aydemir and Koruca [4] PRGA, Faborg-Sim  JSSP Total completion time 
Ba et al. [5] GA MR-FJSSP  Makespan 

Deng et al. [6] Bee evolutionary guiding -
NSGA 

MO-FJSSP Total workload of all machines, 
makespan, workload of the most 

loaded machine  
Ocaktan et al. [7] GA, Arena simulation Stochastic JSSP Makespan 
Zhang et al. [8] Multi-population GA FJSSP Makespan, load of each machine, load 

of all machines 
Hu et al. [9] Improved CSA  JSSP Makespan,  

Jiang et al. [10] GWO with double-searching 
mode 

JSSP Energy efficiency 

Jiang et al. [11] WOA JSSP Energy efficiency 
Seng et al. [12] NSGA Low-carbon scheduling model for 

MO and MS-FJSS 
Makespan, energy consumption 

Karaoglan et al. [13] GA, Arena simulation JSSP with ergonomic constraints Makespan 
Zhang et al. [14] Binary PSO Multi-technique, multi-response 

FJSSP 
Makespan, cost 

Zhong et al. [15] Branch population GA Dual resource constraint JSSP Makespan, total processing cost  
Sel and Hamzadayi [16] SA, Arena simulation Stochastic JSSP Flowtime, Tardiness 

Fu et al. [17] NSGA JSSP Total cost, total completion time  
Tang et al. [18] HDPSO-SA FJSSP, limited starting time 

interval and tolerated time 
interval (TTI) 

Total overtime of TTI, total tardiness, 
completion time 

Liao and Lin [19] PSO Job-shop supply chain scheduling  Completion time 
Wang et al. [20] Hybrid GA-PSO, discrete 

event simulation 
Inverse JSSP Total weighted makespan 

Zhang et al. [21] PSO, ANN JSSP Makespan 
Zhu et al. [22] Improved WOA, quantum 

computing 
JSSP Makespan, maximum machine load, 

total machine load 
Karaoglan et al. [23] ABC WSSP with deterministic times Makespan 

Shi et al. [24] Fuzzy and immune GA MO-FJSSP Makespan, energy consumption, 
consumer dissatisfaction 

Gu et al. [25] GA-GWO Low-carbon JSSP Sum of energy consumption cost, 
completion time cost 

Vital-Soto [26] BFO FJSSP with sequencing flexibility Weighted lateness 
Rao et al. [27] NSGA BWSSP with deterministic times Total tardiness, total penalty 

 

The aim is to minimize the average makespan of a group of 
waiting orders by using GA aided Arena simulation. The second 
motivation is presenting the results of GA aided simulation 
based scheduling of the WSSP under the variable workstation 
constraint to the readers. 

A brief overview of GA aided Arena simulation and the real 
industrial problem is given in the next section. Then in Section 
3, the results and discussions are discussed. Finally, in Section 
4, the conclusions are given.  

2 Materials and methods 

2.1 Problem definition 

The case study is being carried out in the mechanical workshop 
of a transformer manufacturer. The company's manufacturing 
operations for power transformers consist of five main phases. 
They are: 1) magnetic core manufacturing, 2) winding, 3) 
assembly of active parts, 4) mechanical manufacturing 
(welding shop), and 5) final assembly.  

This study is carried out in mechanical manufacturing (welding 
shop) section. In the welding shop the primary purpose is to 

perform the production of transformers' vessels. In 
transformer vessel manufacturing, vessel bottom pan, side 
walls and top cover are manufactured using st37 black sheet 
metal. Then, these parts are assembled by welding operation. 
The welding operations at the shop floor are performed under 
4-tasks (task names are not specified for commercial 
confidentiality). The aim of this study is scheduling the orders 
at welding shop for makespan minimization. GA specifies the 
entry sequence of the waiting orders to the mechanical 
manufacturing (welding shop). ARENA has been used to bring 
the problem under consideration closer to the dynamic 
workshop conditions and provide fitness value calculations for 
GA.  

The workshop is a labor-intensive project-type manufacturing 
process consisting of sequential processes including CNC sheet 
metal cutting, other semi-product preparation processes, lathe 
leveling, welding, etc. These operations are presented under 
the “Task” headings in Table 2. In companies that operate on 
the basis of project type labor-intensive production, the 
dynamic production environment causes stochastic times for 
operations.  
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Stochastic operation times make it harder for order scheduling. 
There are several explanations why running times are 
stochastic, such as technical order requirements, operator 
expertise, job-shop bottlenecks, and so on. Production times 
differ according to the characteristics of the materials that will 
be processed. To determine the distribution of the processing 
times, random samples were taken, then the probability 
distributions were fitted by using Arena input analyzer and chi-
square goodness-of-fit test was performed to test the 
significance of these fitted probability distributions. Table 2 
gives the determined probability distributions (which are fitted 

to the processing times observed from the workshop) those can 
be used for simulation. The chi-square goodness-of-fit test 
results under 95% confidence level are significant for the 
distributions given in the Table 2. In Table 2, 8 meters is cut-
point for classifying the vessel length (1: vessel length≥8 
meters, and 2: vessel length<8 meters). The values are in terms 
of hours. 

For a total of 20 orders, the data was collected from the 
company's current pending list (list of waiting orders), and 
provided in Table 3.  

 

Table 2. Task-based probability distributions for orders discussed in the example (hours). 
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Task    

1 2 3 4 

1 1 1 1 Uniform (130, 140) Triangular (80, 90, 100) Normal (23.8, 5.2) Normal (811.9, 30.8) 
2 1 2 1 Uniform (85, 95) Triangular (40, 50, 60) Normal (42.4, 7.2) Normal (542.8, 22.9) 
3 1 3 1 Uniform (110, 120) Triangular (110, 120, 130) Normal (26.6, 5.4) Normal (960.2, 42.8) 
4 1 4 1 Uniform (140, 150) Triangular (30, 40, 50) Normal (63.6, 8.6) Normal (371.4, 12.9) 
5 1 5 1 Uniform (200, 210) Triangular (120, 130, 140) Normal (41.8, 6.3) Normal (1014.4, 50.7) 
6 1 6 1 Uniform (120, 130) Triangular (110, 120, 130) Normal (50.8, 7.2) Normal (606.7, 25.8) 
7 2 1 1 Uniform (125, 135) Triangular (40, 50, 60) Normal (16.3, 4.1) Normal (402.5, 18.3) 
8 2 2 1 Uniform (230, 240) Triangular (10, 20, 30) Normal (24.5, 5.4) Normal (1667.7, 63.5) 
9 3 1 1 Uniform (130, 140) Triangular (90, 100, 110) Normal (47.1, 6.2) Normal (1611.3, 59.4) 

10 4 1 2 Uniform (315, 325) Triangular (200, 210, 220) Normal (89.8, 10.2) Normal (2016.4, 70.5) 
11 4 2 1 Uniform (360, 370) Triangular (300, 310, 320) Normal (73.5, 5.4) Normal (1017.7, 48.2) 
12 4 3 2 Uniform (330, 340) Triangular (110, 120, 130) Normal (65.3, 6.2) Normal (2312.9, 75.2) 
13 5 1 1 Uniform (170, 180) Triangular (60, 70, 80) Normal (46.1, 4.3) Normal (676.1, 35.8) 
14 6 1 1 Uniform (140, 150) Triangular (30, 40, 50) Normal (24.1, 3.2) Normal (269.7, 12.8) 
15 6 2 1 Uniform (210, 220) Triangular (90, 100, 110) Normal (96.1, 8.4) Normal (1157.9, 55.7) 
16 6 3 1 Uniform (100, 110) Triangular (40, 50, 60) Normal (51.2, 5.4) Normal (365.4, 9.8) 
17 6 4 2 Uniform (330, 340) Triangular (70, 80, 90) Normal (73.9, 5.9) Normal (1230.1, 51.5) 
18 6 5 1 Uniform (110, 120) Triangular (5, 8, 10) Normal (32.2, 3,5) Normal (210.9, 6.7) 
19 6 6 1 Uniform (90, 100) Triangular (60, 70, 80) Normal (64.6, 4.9) Normal (495.1, 9.8) 
20 6 7 1 Uniform (170, 180) Triangular (50, 60, 70) Normal (49.1, 5.1) Normal (510.2, 11.3) 

Table 3. Current waiting orders list. 

Welding Order 
Number (WON) 

Product 
Type 

Model Number of 
Vessels in the 

Order 

Vessel ID 
(VID) 

Length of 
the Vessel 
(meters) 

Number of 
Welding Stations 

Needed (S) 

Processing time (Arena 
Results: Mean of 10 

Runs-Rounded) 
1 1 1 1 1 4 1 1063 
2 1 2 4 2, 3, 4, 5 2 1 709, 720, 729, 718 
3 1 3 1 6 7 1 1207 
4 1 4 1 7 3 1 625 
5 1 5 1 8 7 1 1384 
6 1 6 1 9 4 1 913 
7 2 1 1 10 4 1 602 
8 2 2 2 11, 12 7 1 1945, 2026 
9 3 1 1 13 5 1 1980 

10 4 1 3 14, 15, 16 11 2 2631, 2579, 2446 
11 4 2 1 17 7 1 1762 
12 4 3 2 18, 19 13 2 2828, 2829 
13 5 1 2 20, 21 4 1 988, 969 
14 6 1 1 22 2 1 467 
15 6 2 2 23, 24 7 1 1575, 1608 
16 6 3 2 25, 26 3 1 546, 539 
17 6 4 2 27, 28 11 2 1736, 1724 
18 6 5 1 29 2 1 377 
19 6 6 2 30, 31 4 1 719, 721 
20 6 7 2 32, 33 6 1 798, 731 
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The given 20 orders in this table is lead to manufacture of a total 
of 33 vessels (in other words, 20 separate customers demand 
33 vessels) and in this case we used 6 identical welding stations 
for scheduling. Input data is the stochastic order processing 
times that differ in compliance with the design requirements 
requested by the customers. In Table 3, also the rounded 
measured average processing times of 10 simulation runs for 
each order (that is generated in the simulations given in Section 
3) is presented. This study's assumptions and constraints are 
listed below. General assumptions related with simulation 
based scheduling: 

- It is assumed that production is not interrupted until all 
scheduled jobs are produced, 

- It is assumed that the workers in the workshop are 
identical, 

- Just one task can be processed on a workstation at the 
same time, 

- Since each vessel is quite large and heavy, after placing 
the vessel once at the welding stations, even if a more 
urgent job comes, the urgent job is not queued before the 
current job list is completed. In other words, in order to 
perform another task, the process cannot be disrupted, 

- The factory operates in 3 shifts, each consisting of 8 
hours. Each shift is assumed to have 1 hour lunch break 
and 2 rest breaks (30 minute each), 

- Task 1, Task 2, Task 3 and Task 4 should be performed in 
successive order and one after the other, 

- The processing times are probabilistic (as presented in 
Table 2), 

- The number of the orders at the ‘pending order list’ is 
fixed at the beginning of the simulation, 

Variable workstation constraint (newly added novel 
constraint for WSSP): 

- The number of welding stations varies in compliance 
with the order's technical requirements. If the length of 
the transformer vessel is 8 meters or more, two 
horizontally neighbor stations are combined by 
removing the mobile sound barrier between these 
stations and this vessel is assigned to both stations. In 
addition, the successive stations are merged to match the 
vessel to the station if the widths of the jobs are 8 meters 
and over. One order occupies two welding stations at the 
same time in this situation. Welding stations 1-2, 2-3, 4-
5, and 5-6 can be merged. This means, at the same time 6 
small or 2 small and 2 large vessels can be operated at the 
same time. However 3 large vessels cannot be operated 
at the same time. Figure 1 represents the layout of the 
welding shop. 

 

Figure 1. Welding shop layout. 

According to Table 3, only one vessel has to be manufactured in 
the first order, while 4 transformers have to be manufactured 
in the second order. This implies that there are 4 identical 
vessels that have to be manufactured. Similarly, the 8th order 
has 2 identical transformers, which means that this order has 2 
identical vessels and so on. To minimize the makespan, GA 
aided Arena simulation was carried out to dispatch the orders 
to the welding stations. The problem can also be 
mathematically represented. The related equations are given 
below to give an idea to the readers; however the problem is 
modeled with Arena simulation instead of integer 
programming (for details see Rao et al. [27]):   

Objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = 𝐶𝑚𝑎𝑥𝑎𝑣𝑔 (1) 

Constraints: 

∑ 𝑍𝑖𝑗ℎℎ = 𝑁𝑖𝑗 & 𝑁𝑖𝑗 ≥ 1; 𝑁𝑖𝑗 ≤ 𝑝𝑁𝑗;  i = 1, … , n;  j =

1, … , m     
(2) 

∑ 𝑦𝑖𝑖′𝑗 = 1;  i’ = 1, … , n;  j = 1, … , m
𝑛

𝑖=0
 (3) 

∑ 𝑦𝑖𝑖′𝑗 = 1;  i = 1, … , n;  j = 1, … , m
𝑛+1

𝑖′=1
 (4) 

Where i and 𝑖′are the index of the jobs, j is the index of stages, h 
is the index of the machines used for processing during stage j, 
and 𝑁𝑖𝑗 is the number of processing machines for ith job at stage 

j. If the machine h processed ith job at stage j then the 𝑍𝑖𝑗ℎ=1; 

and otherwise 𝑍𝑖𝑗ℎ=0. Similarly, 𝑦𝑖𝑖′𝑗 = 1 if job i is processed 

before  𝑖′ at stage j, and 𝑦𝑖𝑖′𝑗 = 0 otherwise. Equation (1) is the 

objective and represents the minimizing the average makespan, 
Equation (2) means that a job is processes by at least one 
machine and also it ensures that the number of processing 
machines cannot exceed the number of available machines. 
Equation (3) satisfies that at per stage, each job has just one 
pre-order job. And finally at each stage, Equation (4) ensures 
that just one follow-up job can be processed after each job. 
According to the sample problem given in Figure 1, the 
constraint for variable workstation can be defined as: 

if 𝑙 ≥ 8 meters than 𝑍𝑖𝑗ℎ + 𝑍𝑖𝑗ℎ+1 = 1; h = 1,2 or h = 4,5 (5) 

Note that the l is the length of the transformer vessel. Which 
means 1 & 2, 2 & 3 welding stations, and 4 & 5, 5 & 6 welding 
stations can be merged to perform the welding operation of the 
vessels with those have  more than 8 meters length. 

2.2 Simulation-based GA 

GA is run through the data to find the best customer order 
sequence that minimizes average makespan. Arena is run to 
measure processing times of the orders and also to calculate the 
makespan of operations depend on GA-generated order 
sequences. Please refer to [28],[29] for a detailed discussion on 
GA and also refer to [7],[13] for a detailed discussion on 
simulation based GA. JSSP is well-known as NP hard problem. 
In this very complex problem type; we search for the best 
solution because there is no known way to arrive at a final 
answer. Heuristic algorithms are frequently used in JSSP to find 
the best solution. However, performances of the heuristics are 
decreased when the inputs become more complex and varied. 
GA is well suited to solving JSSP because, unlike heuristic 
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methods, they work on a population of solutions instead of a 
single solution. This population of solutions in production 
scheduling consists of several responses with varying and often 
conflicting goals. For the special types of problems (such 
presented in WSSP) where the search space is huge but the 
feasible solutions are limited and also if the discrete 
optimization is needed, GA is ideal (PSO, GWO, WOA and some 
other popular algorithms given in the literature review of this 
study are more suitable for continuous optimization). Also the 
variable workstation constraint causes additional complexity 
on the problem. Because of these reasons, GA has been used in 
this study instead of other population-based algorithms in the 
solution of this new type of WSSP problem [30],[31],[32]. 

Simulating the complex systems allows the researchers to 
analyze and experiment the internal interactions. Numerical 
experiments are performed on a digital computer in a 
simulation job, and a general programming language or a 
special programming language for simulation may be used [33]. 
There are several simulation-purposed languages for 
performing a simulation experiment, such as Arena, Promodel, 
and etc. In order to integrate directly with other systems such 
as Microsoft Office, Arena uses ‘Visual Basic for Applications’ 
(VBA) editor. Arena 14 is used as the simulation software in 

this paper for the simulation [7],[13],[33].  

The suggested GA is coded in the VBA environment, making it 
hassle-free to link to the Arena simulation program. In VBA, all 
GA unique elements are implemented. Arena is used to 
measure, by simulating a complex system, each chromosome’s 
fitness value (FV). The FV is the average makespan calculated 
by the ARENA for the selected order sequence. The system here 
corresponds to the welding shop's complex labor-intensive 
project-type manufacturing structure including different 
queues, operations, and capacity constraints. The GA-based 
Arena simulation method proposed is to minimize the average 
makespan. Average makespan is total completion time for all 
pending orders. Here, we use GA to tune the sequence of 
waiting orders to import them into the system.  This algorithm 
starts with generating the initial population randomly, which 
includes the number of chromosomes in population size 
(PopSize). Each chromosome consists of a permutable sequence 
of orders ranging from 1 to the total number of orders, where 
the number of orders corresponds to each gene.  

The multiplication of PopSize and mutation rate determines the 
number of chromosomes to apply mutation. To maximize 
diversity, the mutation operator is applied to selected 
chromosomes in two ways: swap and insert. A random number 
(rnd) between 0 and 1 is generated for each selected 
chromosome, and if rnd > 0.5, insert is applied; otherwise, swap 
is applied. For the crossover strategy; two point crossover is 
used [7]. The pseudocode for this GA aided simulation method 
is given in Figure 2 [7],[13]. A sample result of this code is given 
in Figure 3. The flow chart for the proposed GA aided simulation 
is presented in Figure 4. In this figure, each gene (customer 
order) is seen on the chromosome only once and Arena 
dispatches them to the welding stations respectively. ARENA 
assigns these orders sequentially (according to the sequence at 
the chromosome) and primarily to the lowest numbered free 
welding station. This chromosome represents the entry 
sequence of the orders to the Arena simulation model and 
determined by using GA.  

When an order enters the arena simulation model, it is 
primarily assigned to a suitable welding station from 1 to 6 (if 

there is no other constraint such as the welding station is 
operating at that moment, the assignment order is from 1 to 6). 
In the simulation model if an order with vessel length≥8 meters 
is assigned to a welding station, then the available neighbor 
welding station is also merged to operate this order.  

 

Figure 2. Pseudo Code used for scheduling by GA aided Arena 
simulation. 

 

Figure 3. The representation of a sample chromosome. 

 

Figure 4. Flow chart of the proposed GA aided simulation. 

3 Results and discussions 

The input data for the 20 waiting orders was obtained from the 
company's current list of pending orders, and given in Table 3. 
The list of these 20 orders corresponds to the manufacture of 
33 vessels in total. In the method, six welding stations operate. 
Constraints relating to the parameters of the technological 
design of the orders, number of manufacturing resources, 
resource capability, etc. influence the average makespan of the 
waiting orders in the competitive manufacturing environment, 
as studied in previous literature studies. The objective here is 
to minimize the average makespan of the orders described 
under the variable workstation constraint in Table 3. 

The Gantt chart presents the pure Arena simulation results 
without using GA is given in Figure 5. The simulations are run 
on the “Intel Core i5-2430M CPU 2.40GHz with 4 GB RAM PC. 
The orders are scheduled primarily to their order number. The 
average makespan is calculated as 11368 hours. Notice that the 
2nd and 3rd welding stations are merged while orders 14, 16, 
19, and 28 are processed. Owing to the width limit (width of 
these transformers≥8 meters), the 5th and 6th workstations 
are also merged during the processing of orders 15, 18, and 27. 
In other words, the 14th, 16th, 19th, and 28th orders are 
assigned at the same time to the 2nd and 3rd welding stations. 
For orders with the numbers 15, 18, and 27, the same problem 
applies. The idle times of the stations 1st, 4th and 5th are very 
high, and there is no compliance with the workload balances 
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between the welding stations. The total CPU time is calculated 
as 56 seconds for this first scenario. 

In the second scenario, to reduce the idle times of the welding 
stations, some stations are reserved for the width vessels and 
the average makespan of given orders is calculated as 11732 
hours with Arena simulation. According to this scenario; as 
much as possible, the one with the lowest order number was 
processed first, but when it came time, idle machine time was 
tried not to be allowed. Therefore, in some cases, orders with 
larger order numbers are allowed to be processed first to 
prevent workstations from waiting idle. However, the order 
with the lowest order number in the queue continues to be 
assigned to welding stations (to the reserved stations) at the 
first opportunity. In the simulation the 1st and 2nd welding 
stations; and the 4th and 5th welding stations are reserved if 
the width vessels are in the queue. The 1st and 2nd welding 
stations are merged while orders 15, 18, and 27 are processed. 
The 4th and 5th welding stations are also merged during the 
processing of orders 14, 16, 19, and 28. The idle times of 
stations 1st, 4th and 5th are significantly decreased as compared 
to the results shown in Figure 5, but there are still idle times at 
stations 1st, 3rd and 4th. Also the workload balances between 
the welding stations still are not in accordance. The average 
makespan is calculated as 11732 hours. The total completion 
time is increased when it is compared with classical simulation 
presented in Figure 5. However the total idle times of the 
welding stations and the total tardiness for the orders are 
decreased. The Gantt chart for this schedule is given in Figure 
6. When the result presented in Figure 5 and Figure 6 are 
compared; the completion times for the orders (<8 meters) 
those have order numbers>17 are decreased seriously. 

However, the completion time of the 28th order is noticeably 
increased. The total CPU time is calculated as 68 seconds for 
this second scenario. 

Then GA aided Arena simulation is performed to reduce the 
makespan. The GA parameters are determined after some 
preliminary trials. Totally 105 trials are performed for this 
purpose. The levels of the parameters are determined as: 
population size (PopSize): [40:100] with 10 step size, crossover 
rate (cr): [0.4:0.6] with 0.1 step size, and mutation rate (mr): 
[0.1:0.5] with 0.1 step size. The best performing parameter 
combination between these trials is selected as the GA 
parameters. The GA run with maximum number of iterations = 
100000, PopSize = 80, crossover rate (cr) = 0.5, and mutation 
rate (mr) = 0.4 parameters. The average makespan of given 
order is calculated as 10317 hours. The chromosome which 
gives the best FV (10317 hours) is 1-2-3-4-5-6-14-15-7-9-8-10-
11-12-18-16-13-17-19-27-20-21-22-23-28-24-25-26-33-32-
29-30-31. The Gantt chart for this schedule is given in Figure 7. 
The total CPU time is calculated as 36 minutes 28 seconds for 
this third scenario. According to the results given in Figure 7, 
the results presented in Figure 5 are improved and by using GA, 
the balance between the welding stations is provided. Also the 
dispatching is acceptable when the order numbers are 
considered. The 95% confidence interval for order sequence 
generated by GA is calculated as [10270.55 ; 10363.45]. This is 
quite a narrow confidence interval for this type of production. 
For the 95% confidence interval the z-critical value is 1.96 
according to the statistical tables. This means standard error 
coefficient is 23.698. So it can be concluded that 10 runs may be 
enough to validate the results for the presented data for this 
problem. 

 

 

Figure 5. Gantt chart of the schedule with Arena without using GA (order number has priority). 

 

Figure 6. Gantt chart of the schedule with Arena without using GA (reserved stations). 
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Figure 7. Gantt chart of the schedule with GA aided Arena. 
 

The GA aided Arena schedule outperforms the other schedules, 
because in this schedule the manufacturing of pending order 
list is completed much earlier when compared with other 
schedules. The total completion time is nearly 9.25% and 
12.06% reduced when compared with the schedules presented 
in Figure 5 and Figure 6, respectively. Also total idle times of the 
welding stations are nearly zero (which is a very important 
managerial criterion) and unlike the other two approaches the 
workload of the workstations are balanced. This is very 
important for the manufacturing cost. Because the main cost 
items are the material cost, labor cost, and the overhead costs. 
The overhead costs are dispatched to the customer orders 
according to the labor times. So idle times and unbalanced 
workstations will lead to incorrect assignment of overhead cost 
to orders. 

4 Conclusion 

The focus of this study was to determine the best possible 
waiting order schedule to reduce the average makespan under 
the conditions of the job-shop and some design requirements 
constraints. The novelty of this study is using variable 
workstations constraint under stochastic processing times to 
minimize average makespan of the orders in a labor-intensive 
and project type manufacturing. GA is used for this purpose. 
The average makepan is minimized after 100000 iterations for 
this problem as a result of assignments made under some 
constraints. It is observed that the algorithm's computational 
effectiveness is strong. According to the experimental results, it 
is noted that for the given order set, the GA-based Arena 
simulation decreased the average makespan by almost 9.25% 
(from 11368 to 10317 hours). Also idle times of the welding 
stations are prevented and the balance between the 
workstations is provided. Total idle times are nearly zero 
according to the GA-based Arena schedule. The same problem 
can be addressed in future studies by taking into account 
additional vessel design constraints and ergonomic constraints 
that influence processing times. Also as a future research, under 
variable workstation constraint fuzzy processing times can be 
considered instead of using probabilistic distribution and 
solved by using integer linear programming. In addition, a 
performance comparison can be presented between the results 
of integer linear programming and Arena simulation. 
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