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Abstract  Öz 

In this study, the free vibration analysis of cantilever isotropic thin plate, 
which is a large deflected, is investigated. The large deflection is 
obtained by applying an external distributed vertical load on the 
cantilever plate then fixing from the other end as the deflection is large. 
The non - linear deflection curve of the largely deflected flexible plate is 
obtained from the large deflection equation of the beams. The curved 
thin plate is modeled by using the finite element method considering a 
four-node quadrilateral flat shell element. The effects of the load 
parameter on the natural frequency parameters and mode shapes are 
investigated. The results are given in tables and graphics. In addition, 
the natural frequency parameters obtained from the present model are 
compared with those of ANSYS software to verify the reliability and 
validity of the present model. The load parameter that forms the curved 
thin plate changes mode shapes of the plate structure. 

 Bu çalışmada, büyük çökmeli izotropik ince plakanın serbest titreşim 
analizi incelenmiştir. Büyük çökme, tek tarafı sabitlenmiş plakaya 
harici bir dağıtılmış dikey yük uygulanarak ve ardından diğer uçtan 
sabitlenerek elde edilir. Bükülmüş esnek levhanın doğrusal olmayan 
çökme eğrisi, kirişlerin büyük çökme denkleminden elde edilir. Eğri ince 
levha, dört düğümlü dörtgen yassı kabuk eleman dikkate alınarak sonlu 
elemanlar yöntemi kullanılarak modellenmiştir. Yük parametresinin 
doğal frekans parametreleri ve mod şekilleri üzerindeki etkileri 
incelenmiştir. Sonuçlar, tablolar ve grafikler halinde verilmiştir. Ek 
olarak, mevcut modelden elde edilen doğal frekans parametreleri, 
mevcut modelin güvenilirliğini ve geçerliliğini doğrulamak için ANSYS 
yazılımı ile karşılaştırılır. Eğri ince levhayı oluşturan yük parametresi, 
levha yapısının mod şekillerini değiştirir. 

Keywords: Large deflection, Curved thin plate, Vibration,  
Pre-stressed, Finite element analysis. 

 Anahtar kelimeler: Büyük çökme, Eğri ince plaka, Titreşim, 
Öngerilme, Sonlu elemanlar analizi. 

1 Introduction 

Thin plates have been used in many applications like aircraft, 
lightweight engineering structures, ship industry, aerospace 
vehicles, etc. In a few cases, plates can be brought together 
beneath introductory conditions of displacement without 
surpassing their flexible limits for different reasons such as 
optimal design and stronger solidness. Within the previously 
mentioned ranges, a large deflection issue of plates shows itself 
and it is vital and essential to decide their static and dynamic 
characteristics. Therefore, the natural frequency values and 
mode shapes of the curvilinear plates should be known at the 
design stage.  

In many researches, different mathematical models for curved 
plates have been considered and investigated for under 
different boundary and load conditions. Iyengar and Naqvit 
presented approximate solutions for the non-linear bending of 
thin rectangular plates considering large deflections for various 
boundary conditions and numerical results for square plates 
with uniform lateral load are given [1]. Olson have studied 
cylindrical shells both for understanding the fundamental shell 
behaviour and designing shell structures for industrial 
applications [2]. Petyt and Nath performed the free vibration 
characteristics of singly curved rectangular plates. The 
Kantorovich method is employed to diminish the partial 
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differential equations of motion [3]. A new finite difference 
approach is presented by Bhattacharya for the solution of static 
and dynamic deflections of plates. The approach can be applied 
to finite elements with different geometries without any 
constraints [4]. Wang and El-Sheikh presented a large-
deflection mathematical investigation of rectangular plates 
under uniform lateral loading and the study provides a 
mathematical procedure that benefits from the software 
computing capabilities [5]. A complete analysis is provided for 
plate in-plane vibration with pairs of clamped or free edge 
conditions imposed on the non-simply supported boundaries 
and exact solutions are tabulated for a large range of plate 
aspect ratios by Gorman [6]. Kim et al. performed a series of 
elastic and elastoplastic large deflection analyses to show how 
the curvature effects the strength of the plates [7] Senjanovic et 
al. studied an analytical process for the forecast dynamic 
characteristics of the thin rectangular plates. Based on finite 
element analysis, some extra modes were identified, which are 
defined as the sum and difference of the cross products of beam 
modes. These natural mode shapes of beam form a complete 
natural frequency spectrum of a free rectangular plate as a 
novelty. In their paper, application of the developed procedure 
was illustrated in the case of a free thin square and rectangular 
plate [8]. Rawat et al. investigated the thin circular cylindrical 
shell can vibrate in different modes [9]. The static deflection of 
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a thin hyperelastic plate is studied by Amabili et al., and 
geometrical nonlinearities are modelled according to the 
Novozhilov nonlinear shell theory [10]. Demir et al. examined 
the vibration analysis of graphene sheets by modeling as 
mebrane model, which is thin plates without stiffness against 
bending and buckling [11]. Qin et al. studied the isogeometric 
analysis approach for analyse the static deformation, the free 
vibration and the vibration behaviour of curvilinearly stiffened 
plates. Also some numerical examples are given to validate the 
correctness and superiority of their present method [12]. 
Dogan investigated the effect of curvature ratio on vibration of 
laminated composite curved shells [13]. Rezaiefar and Galal 
investigated first three vibration modes for rectangular plates 
with and without lateral pressure. The vibration frequency 
increases with increasing the applied lateral pressure [14]. 
Park et al. studied the structural behaviour of curved plate 
under axial compression and on the basis of their results, the 
effects of curvature, initial deflection and boundary conditions 
are discussed [15]. Eisenberger and Deutsch suggested a new 
high accuracy mathematical solution that covers all the possible 
combinations for thin rectangular plate that solve the partial 
differential equations of motion. Their study also gives 
examples of their new solution and compared with other 
approximate solutions [16]. Spagnoli et al. presented an 
experimental test under static loading on the geometrically 
non-linear bending of plates. The study shows the critical plate 
displacement almost independent on the plate size, but linearly 
depends on the plate thickness [17]. Theoretical and 
experimental investigation is performed for the Z-shaped 
folded plates. The nonlinear model of the plate is created 
depend on the Hamilton standard, von Kármán equations, and 
the classical plate theory, and ANSYS is employed for the 
calculation of the vibration mode shape functions [18]. A 
numerical manifold method, considered to be a generalization 
of the finite element method, is presented by Guo et al. for 
vibration analysis of Kirchhoff’s plates [19]. Wave based 
method to predict flexural vibration of thin plate with general 
elastically restrained edges is subjected by Liu et al [20]. Xue et 
al. used in-plane preload on nonlinear vibration of cracked 
rectangular Mindlin plate. The Ritz method is employed to 
determine the initial in-plane stress resultants [21]. He et al. 
performed analysis of vibration characteristics of joined 
cylindrical-spherical shells with using Donnell shell theory to 
formulate the theoretical model [22]. 

As the curvature of the plate changes, its stiffness also changes, 
and this situation causes the plate to show different mode 
shapes. Especially in curvature values where mode shapes 
change, transition of those mode shapes can cause 
unpredictable physical damage under operating conditions. 
This study presents the free vibration examination of  
pre-stressed isotropic curved thin plate. The consequence of 
the load parameter on the primary five modes is examined. In 
order to get pre-stressed isotropic curved thin plate, an 
external vertical distributed load is applied to the free end of a 
cantilever plate, and after that the free edge where the load is 
applied, is fixed. It is ensured that the maximum load is equal to 
85% of the yield stress. This value has been previously included 
in the literature as 75% by Ozturk [23] for the pre-stressed 
curved beams. In this study, a close value is chosen, provided 
that it is above 75%. To confirm the efficiency and validity of 
the theoretical analysis, the natural frequency parameters are 
compared with ANSYS for same load parameters as used in 
theoretical analysis. According to the literature review, there 

are no published studies on this particular topic, and a feasible 
and reliable method is presented for modeling pre-stressed 
curved plates. 

2 Theoretical analysis 

In many such applications, the deformation can be analysed by 
using a thin plate (or beam) theories [24]. The curvature of the 
deflection of a thin plate under loading at any point depends on 
the magnitude of the bending moment under the assumption 
that the thin plate is linearly elastic. The deflected form of the 
plate structure is shown in Figure 1. 

 

(a) 

 

(b) 

Figure 1. The curvilinear form of the thin plate.  
(a): Perspective view. (b): Exact length (𝑎) and projected 

length (𝑙) of the plate. 

𝑄 represents uniformly distributed load. As mentioned above, 
it is assumed that the deflection of the plate is similar to beam. 
Ozturk [23] has used beam deflection equation (1) in his study. 

𝑧(𝑥) =
𝑃

2𝐸𝐼
(−
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+ 𝑙𝑥2)

+
1
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(
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2𝐸𝐼
)
3
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+ 2𝑙3𝑥4)

+
3

8
(
𝑃

2𝐸𝐼
)
5
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𝑥11
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+ 𝑙𝑥10 −
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9
𝑙2𝑥9

+ 10𝑙3𝑥8 −
80

7
𝑙4𝑥7 +

16

3
𝑙5𝑥6) +⋯ 

(1) 

𝐸 represents young modulus, 𝑃 is the force, 𝐼 denotes the 
moment of inertia for the plate and 𝑙 stands for projected length 
of the plate after the force have been applied. 𝑃 has been 
obtained from equation (2). 

𝑃 = 𝑄𝑏 (2) 

Where 𝑏 represents the width of the plate. The formula given in 
equation (3) is used to obtain the unknown projected plate 
length, 𝑙.  
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𝑎 =∫√1 + (
dz

dx
)
2

dx

𝑙

0

 (3) 

By using equation (1), 𝑑𝑧/𝑑𝑥 and rotation angles are found. 

2.1 The finite element model  

In order to model curvilinear thin plate, out-of-plane and in-
plane vibration theories are combined together and utilized 
with finite element method. The four-node quadrilateral 
element considered in this study, has twenty-four degrees of 
freedom where each node contains six generalized coordinates. 

2.1.1 Out-of-plane vibration 

The out-of-plane vibration theory is based on the bending 
vibration of the plate. The finite element model type for the 
bending vibration is quadrilateral. The strain 𝑈1 and kinetic 
𝑇1 energy expressions for a thin plate bending element are: 

𝑈1 =
1

2
∫
ℎ3

12
{𝜒}𝑇

𝐴

[𝐷]{𝜒}𝑑𝐴 

𝑇1 =
1

2
∫𝜌

 

𝐴

ℎ�̇�2𝑑𝐴 

(4) 

where 𝜌 is the density of the material, ℎ is the thickness, and 𝐷 
is a material matrix and given in equation (5). 

[𝐷] =
𝐸ℎ3

12(1 − 𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] (5) 

𝐸 and 𝜈 represent modulus of elasticity and Poisson Ratio, 
respectively. The matrix 𝜒 given in equation (6) is called the 
strain-displacement relationship. 

{𝜒} = [

𝜕2𝑤/𝜕𝑥2

𝜕2𝑤/𝜕𝑦2

2𝜕2𝑤/𝜕𝑥𝜕𝑦

] (6) 

The four-node quadrilateral finite element, shown in Figure 2 is 
utilized in this study. Since the out-of-plane theory is 
considered, three generalized coordinates namely, 𝑤, 𝑑𝑤/𝑑𝑦, 
𝑑𝑤/𝑑𝑥 are taken into account to represent the flexural 
displacement and rotation in 𝑥 and 𝑦 axis, respectively [25]. 

 

Figure 2. Degrees of freedom for the quadrilateral rectangular 
plate model for out-of-plane vibration. 

The displacement function is given in equation (7). 

𝑤(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥
2 + 𝑎5𝑥𝑦 + 𝑎6𝑦

2 +
𝑎7𝑥

3 + 𝑎8𝑥
2𝑦 + 𝑎9𝑥𝑦

2 + 𝑎10𝑦
3 + 𝑎11𝑥

3𝑦 + 𝑎12𝑥𝑦
3 

(7) 

The flexural displacement, 𝑤, is written in terms of natural 
coordinates (𝜉, 𝜂) instead of Cartesian coordinates (𝑥, 𝑦). 
Hence, 𝑑𝑤/𝑑𝑦 and 𝑑𝑤/𝑑𝑥 become: 

𝜕𝑤

𝜕𝑦
=
2

𝑏

𝜕𝑤

𝜕𝜂
 

𝜕𝑤

𝜕𝑥
= −

2

𝑎

𝜕𝑤

𝜕𝜉
 

(8) 

The matrix form of displacement function is: 

{w} = [𝐴1]{q1} (9) 

Substituting equations (7) and (8) into equation (9) gives the 
quadratic shape function. 

𝑁1𝑗
𝑇 (𝜉, 𝜂)

=

[
 
 
 
 
 
1

8
(1 + 𝜉𝑗𝜉)(1 + 𝜂𝑗𝜂)(2 + 𝜉𝑗𝜉 + 𝜂𝑗𝜂 − 𝜉

2 − 𝜂2)

𝑏

2
(1 + 𝜉𝑗𝜉)(𝜂𝑗 + 𝜂)(𝜂

2 − 1)

−
𝑎

2
(𝜉𝑗 + 𝜉)(𝜉

2 − 1)(1 + 𝜂𝑗𝜂) ]
 
 
 
 
 

 
(10) 

(𝜉𝑗 , 𝜂𝑗) are the coordinates of node 𝑗. The strain displacement 

matrix 𝐵1 is obtained by equation (11). 

𝐵1 =

[
 
 
 
 
 
 

4

(𝑎)2
 
𝜕2

𝜕𝜉2

4

(𝑏)2
 
𝜕2

𝜕𝜂2

8

(𝑎)(𝑏)
 
𝜕2

𝜕𝜉𝜕𝜂]
 
 
 
 
 
 

𝑁1(𝜉, 𝜂) (11) 

The element stiffness and mass matrix are calculated using 
equations (12). 

[𝐾1] = ∫ ∫[𝐵1]
𝑇[𝐷][𝐵1]dξdη

1

−1

1

−1

 

[𝑀1] = 𝜌ℎ ∫ ∫[𝑁1]
𝑇[𝑁1]dξdη

1

−1

1

−1

 

(12) 

2.1.2 In-Plane vibration 

The finite element model to be used for in-plane vibration must 
have a total eight corner displacements, including 𝑢 and 𝑣, at 
each node, and this finite element model is given in Figure 3. 

 

Figure 3. Degrees of freedom for the quadrilateral rectangular 
plate model for in-plane vibration. 
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The shape function of in-plate theory is given in equation (13) 
where 𝜉𝑗 ,  𝜂𝑗 are the coordinates of node 𝑗 [25, 26]. 

𝑁2𝑗 =
1

4
(1 + 𝜉𝑗𝜉)(1 + 𝜂𝑗𝜂) (13) 

The element displacement components 𝑢 and 𝑣 are given in 
equation (14). 

𝑢 = 𝑁21𝑞21 + 𝑁22𝑞23 +𝑁23𝑞25 + 𝑁24𝑞27 

𝑣 = 𝑁21𝑞22 + 𝑁22𝑞24 +𝑁23𝑞26 + 𝑁24𝑞28 
(14) 

where 𝑞 represents the denotes the element displacement 
vector and can be written in matrix form as, 

𝜐 = 𝑁2𝑞2 (15) 

where, 

𝑁2 = [
𝑁21 0 𝑁22 0 𝑁23 0 𝑁24 0
0 𝑁21 0 𝑁22 0 𝑁23 0 𝑁24

] (16) 

The strain-displacement relations are: 

𝜀 = {

𝜀𝑥
𝜀𝑦
ϒ𝑥𝑦

} =

{
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥}
  
 

  
 

 (17) 

Subsequently, it is needed to express the derivatives of the 
displacement functions, which are in 𝑥 and 𝑦 coordinates, in 
terms of its derivatives in 𝜉, 𝜂 coordinates. 

{
 

 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂}
 

 

= 𝐽

{
 

 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦}
 

 
 

{
 

 
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂}
 

 

= 𝐽

{
 

 
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦}
 

 
 

(18) 

These equations can be inverted as: 

{
 

 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦}
 

 
= 𝐽−1

{
 

 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂}
 

 

 

{
 

 
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦}
 

 
= 𝐽−1

{
 

 
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂}
 

 

 

(19) 

where 𝐽 is the Jacobian matrix. 

𝐽 =

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂]
 
 
 
 

 (20) 

Equations yield: 

𝜀 = 𝐴2

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂}
 
 
 
 

 
 
 
 

 (21) 

where 𝐴2 is given by: 

𝐴2 =
1

det 𝐽
[
  𝐽22 −𝐽12 0      0
0    0 −𝐽21    𝐽11    
−𝐽21 𝐽11 𝐽22 −𝐽12

] (22) 

From the interpolation equations, it can be written as: 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂}
 
 
 
 

 
 
 
 

= 𝐺𝑞2 (23) 

By substituting equation (23) into (21), we obtain, 

𝜀 = 𝐴2𝐺𝑞2 (24) 

where, 

𝐵2 = 𝐴2𝐺 (25) 

The stiffness matrix for the quadrilateral finite element is 
derived from the strain energy via equation (26): 

𝑈2 = ∫
1

2
𝜎𝑇𝜀𝑑𝑉

𝑉

 (26) 

where 𝜎 is given by: 

𝜎 = 𝐷𝐵2𝑞2 (27) 

𝐷 is a (3x3) material matrix, The strain energy becomes: 

𝑈2 =
1

2
𝑞2
𝑇 [ℎ∫ ∫ 𝐵2

𝑇𝐷𝐵2

1

−1

1

−1

det 𝐽 𝑑𝜉𝑑𝜂] 𝑞2 (28) 

where 𝐾2 is the stiffness matrix of dimension (8x8). 

[𝐾2] = ℎ∫ ∫ 𝐵2
𝑇𝐷𝐵2

1

−1

1

−1

det 𝐽 𝑑𝜉𝑑𝜂 (29) 

The element mass matrix 𝑀2 can be found from the kinetic 
energy. 

𝑇1 =
1

2
�̇�2

𝑇 [𝜌ℎ∫ ∫ 𝑁2
𝑇𝑁2

1

−1

1

−1

det 𝐽 𝑑𝜉𝑑𝜂] 𝑞2̇ (30) 

The element mass matrix is given in equation (31). 

[𝑀2] = 𝜌ℎ∫ ∫ 𝑁2
𝑇𝑁2

1

−1

1

−1

det 𝐽 𝑑𝜉𝑑𝜂 (31) 
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2.1.3 Finite element assembly 

The final stiffness and the mass matrices are obtained when 
out-of-plane and in-plane matrices are combined. The relation 
is given in equation (32). 

[𝑂𝑢𝑡 − 𝑜𝑓 − 𝑝𝑙𝑎𝑛𝑒,  𝐾1 & 𝑀1]12×12
+ [𝐼𝑛 − 𝑝𝑙𝑎𝑛𝑒,  𝐾2 & 𝑀2]8×8

= [
12 × 12 0

0 8 × 8
]
20×20

 
(32) 

This model has six degree-of-freedom (DOF), but the stiffness 
and mass matrices have (20x20) size matrices. Although these 
matrices are able to represent the effect of 𝜃𝑧, last value has to 
be added formally into those matrices for drilling effect. This 
relation is given in equation (33). 

𝐾𝑒 , 𝑀𝑒 = [
12 × 12 0

0 8 × 8
]
20×20

+ 𝜃𝑧

= [
12 × 12 0 0

0 8 × 8 0
0 0 4 × 4

]

24×24

 
(33) 

The value of 𝜃𝑧 is taken the absolute value that 1/1000 of the 
minimum value in (20x20) stiffness and mass matrices by 
Niyogi [27]. After addition, the finite element model with six 
DOF is mathematically obtained and is given in Figure 4. 

 

Figure 4. The quadrilateral rectangular straight plate element 
with six degrees of freedom. 

The curvilinear pattern of the plate structure is shaped by end 
to end addition of rotated strips obtained with finite elements. 
Hence, it is important to evaluate those rotation angles. These 
rotation angles are obtained by taking the first derivative of 
equation (1) with respect to 𝑥. Afterward, these values are 
placed into a transformation matrix which is given in equation 
(34). It should be noted that the curvilinear plate is modelled 
by the assembly of rotated element with respect to 𝑦-axis by 
using the transformation matrix. Rotation of the coordinate 
system is given in Figure 5. 

 
 

(a) (b) 

Figure 5. Rotation of the translation axes. (a): and rotation 
axes (b). 

𝑇 =

[
 
 
 
 
 
   cos(𝜃) 

0
0
0
0

    − sin(𝜃)  

  0 
  1 
  0 
  0 
  0 
  0 

0
0

   cos(𝜃) 
   sin(𝜃) 

0
0

0
0
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 (34) 

The stiffness and mass matrices can be obtained through the 
transformation matrix is given in equation (35). 

𝐾𝑟 = 𝑇
𝑇 × 𝐾𝑒 × 𝑇 

𝑀𝑟 = 𝑇
𝑇 ×𝑀𝑒 × 𝑇 

(35) 

where 𝐾𝑒 and 𝑀𝑒 represent the stiffness and mass matrices 
while 𝐾𝑟  and 𝑀𝑟 are the rotated stiffness and mass matrices of 
the plate structure. 

2.2 Initial stress  

The curved plate has a pre-stress because of the distributed 
load component. After obtaining a curved finite element model, 
the stress caused by the vertical load on the model is defined. 
The work done by the in-plane loads is given by equation (36). 

𝑉 =
1

2
∫(𝑁𝑥 (

𝑑𝑤

𝑑𝑥
)
2

+ 𝑁𝑦 (
𝑑𝑤

𝑑𝑦
)
2

 

𝐴

+ 2𝑁𝑥𝑦 (
𝑑𝑤

𝑑𝑥

𝑑𝑤

𝑑𝑦
))𝑑𝑥𝑑𝑦 

(36) 

The stress effect is called initial stress matrix, and obtained 
through equation (36) by neglecting 𝑁𝑦  and 𝑁𝑥𝑦, because the 

axial load reveals the pre-stress [28]. 

𝑉 =
1

2
𝑁𝑥∫(

𝑑𝑤

𝑑𝑥
)
2

𝑑𝑥𝑑𝑦

 

𝐴

 (37) 

The force 𝑁𝑥 is an initial axial force. As can be seen in Figure 6, 
𝑁𝑥 is obtained from equation (38): 

𝑁𝑥 =
𝐹𝑦

sin 𝜃
 (38) 

 

 

Figure 6. The axial forces in plate element. 

where 𝐹𝑦 is the total distributed vertical load. Rearranging 

equation (37) in the matrix form yields equation (39). 

𝑉 =
1

2
𝑞𝑆𝑞 (39) 

Stiffness matrix 𝐾𝑟 , mass matrix 𝑀𝑟 and initial stress matrix 𝑆𝑒 
of each plate element are used to form global stiffness, mass and 
initial stress matrices. After evaluating the final element 
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stiffness 𝐾𝑟 , mass 𝑀𝑟, and initial stress matrix 𝑆𝑒 , global 
stiffness 𝐾, mass 𝑀, and initial stress matrices 𝑆 are obtained. 
The dynamic response of a plate for the total system can be 
formulated via equation of motion (40). 

[𝑀]{𝑞}̈ + [[𝐾] + [𝑆]]{𝑞} = 0 (40) 

Natural frequencies can be obtained via equation (41), where 𝜆 
denotes natural frequency parameter 𝜔2. 

(𝐾 + 𝑆) − 𝜔2𝑀 = 0 (41) 

3 Results and discussion 

The study presents the free vibration of a two edges fixed pre-
stressed curved plate. The four-node flat plate element is used 
to obtain the pre-stressed plate structure, which is large 
deflected. The plate is discretized into 20x20 finite elements. 
The properties of the material are given in Table 1. 

Table 1. Material specifications and the geometry of the plate. 

Symbol Property Quantity 

𝐸 Modulus of Elasticity 200 GPa 
𝜌 Mass density 7800 kg/m3 
𝜈 Poisson’s ratio 0.30 
𝑎 Length of the plate 1 m 
𝑏 Width of the plate 1 m 
ℎ Thickness of the plate 3 mm 

The effects of the dimensionless load parameter on the first five 
natural frequency parameters, 𝜆, are examined. The 
dimensionless load parameter 𝛽 is considered between 0 and 
1.38. The maximum value of the load parameter equals almost 
85% of the yield strength. 𝜆 and 𝛽 are given in equation (42), 
where 𝐴 is the cross-section area of the plate, and 𝜔 is the 
natural frequency. 

𝜆 = ⍵√
𝜌𝐴𝑎4

𝐸𝐼
 

𝛽 =
𝑃𝑎2

𝜈𝐸𝐼
 

(42) 

As the plate is largely deflected, it is fixed from the end on which 
distributed vertical load is applied. Thus, pre-stressed curved 
plate is obtained. The free vibration analysis is performed for 
all considered geometrical forms. The results of the present 
study are compared with ANSYS to verify the reliability and 
validity of the present model. A flow chart of the ANSYS 
software process is given in Figure 7. 

Figure 8 shows the deflection of cantilever plate subjected to a 
distributed vertical load 𝑃 in terms of the non-dimensional load 
parameter ranging between 0 and 1.38, 𝛽 = 0 represents the 
flat plate, while 𝛽 = 1.38 represents the curved plate in the 
maximum load condition. Table 2 indicate that the error rates 
are quite consistent. The error rate does not exceed 6.16% for 
the first five frequencies, also the error rate remains below 4%, 
when the maximum load is taken as 60%, (𝛽<1.01), of the yield 
strength of the material. This, proves the accuracy of the model 
applied in the present study. The changing of the natural 
frequency parameters versus the load parameter are given in 
Figure 9. 

 

Figure 8. Deflection of a plate under different load parameters. 

 

Figure 9. The relationship between the load parameter and the 
natural frequency parameters. 

 

 

Figure 7. Flowchart of the ANSYS analyzes. 
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Table 2. Comparison between the present model and ANSYS software results, (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5)

 

𝛽 

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 

Prsnt ANSYS Err 

(%) 

Prsnt ANSYS Err 

(%) 

Prsnt ANSYS Err 

(%) 

Prsnt ANSYS Err 

(%) 

Prsnt ANSYS Err 

(%) 

0.00 3.69 3.72 0.73 4.40 4.42 0.52 7.25 7.29 0.51 10.19 10.40 2.00 11.19 11.39 1.72 
0.11 4.90 4.85 1.21 5.48 5.45 0.50 8.07 8.04 0.46 10.31 10.51 1.85 11.38 11.56 1.57 
0.21 7.05 6.87 2.68 7.54 7.38 2.22 9.94 9.72 2.25 10.88 10.96 0.74 12.07 12.14 0.59 
0.32 8.44 8.38 0.72 9.20 9.05 1.68 11.89 11.57 2.76 12.44 12.20 1.98 13.56 13.37 1.41 
0.42 8.94 9.01 0.80 10.19 10.09 0.96 13.52 13.16 2.74 14.58 14.16 2.91 15.53 15.16 2.44 
0.53 9.13 9.25 1.33 10.89 10.78 1.01 14.91 14.49 2.88 16.28 16.03 1.55 17.17 16.89 1.62 
0.64 9.22 9.36 1.49 11.52 11.35 1.50 16.19 15.68 3.26 17.26 17.32 0.36 18.18 18.15 0.21 
0.74 9.28 9.42 1.49 12.15 11.88 2.28 17.42 16.77 3.90 17.77 18.06 1.57 18.77 18.91 0.70 
0.85 9.32 9.46 1.49 12.80 12.44 2.88 18.06 17.86 1.07 18.61 18.49 0.70 19.15 19.39 1.24 
0.96 9.35 9.48 1.42 13.46 12.99 3.65 18.23 18.73 2.69 19.42 18.87 2.93 19.75 19.70 0.27 
1.06 9.37 9.50 1.31 14.14 13.55 4.36 18.34 18.89 2.89 19.66 19.82 0.82 20.82 19.93 4.49 
1.17 9.39 9.51 1.19 14.81 14.10 5.01 18.42 18.99 3.00 19.89 20.12 1.15 21.83 20.71 5.41 
1.27 9.41 9.51 1.05 15.47 14.65 5.53 18.49 19.07 3.06 20.13 20.29 0.80 22.77 21.53 5.77 
1.38 9.43 9.52 0.90 16.09 15.19 5.90 18.53 19.12 3.08 20.41 20.47 0.30 23.66 22.29 6.16 

 

 

As seen from Figure 9 and Table 2, the curve between the 
natural frequency parameter and the load parameter differs for 
each natural frequency. The parametric natural frequency 
values changes in different trends for each load parameter 
interval. 𝜆1, 𝜆2, 𝜆3 increased apparently in the 0-0.2 range, while 
𝜆4, 𝜆5 slightly increased. The increase of the first natural 
frequency parameter between 0.4-1.4, the third natural 
frequency parameter from 𝛽 > 0.8, and the fourth natural 
frequency parameter from 𝛽 > 1 is negligible. There is no such 
situation in other natural frequencies. Accordingly, the second 
natural frequency increases almost linearly when 𝛽 > 0.2. In the 
fifth natural frequency, while 𝛽 = 0.2-0.6, the increase is more 
apparent than the 0-0.2 range. This increase in the range of 0.6-
0.9 started to decrease and became negligible. However, there 
is a significant increase in the 0.9-1.4 range again. Due to the 
differences in the mathematical model and analysis method, the 
error rates are relatively higher in the mode shape change 
regions and in 𝜆2 and 𝜆5, where the curves are in an increasing 
trend between 𝛽 = 1.0-1.4. In addition, the effect of the changes 
in curves on the mode shapes is investigated.  

The difference between mode shapes is observed at 𝛽 = 0.54 for 
the first natural frequency parameter, as shown in Figure 10. 

  

(a): 0 ≤ 𝛽 < 0.54. (b): 0.54 ≤ 𝛽 ≤ 1.38. 

Figure 10. Mode shapes of first natural frequency parameter, 
𝜆1, respect to load parameter, 𝛽. 

As the load parameter reaches to 0.57, the second mode shape 
changes. Figure 11 shows the two different mode shapes of the 
plate structure which are between 0-0.57 and 0.57-1.38. 

 

  

(a): 0 ≤ 𝛽 < 0.57. (b): 0.57 ≤ 𝛽 ≤ 1.38. 

Figure 11. Mode shapes of second natural frequency 
parameter, 𝜆2, respect to load parameter, 𝛽. 

Three different mode shapes, shown in Figure 12, are observed 
in the third mode as the load parameter is between 0-0.66, 0.66-
1.07, and 1.07-1.38. 

  

(a): 0 ≤ 𝛽 < 0.66. (b): 0.66 ≤ 𝛽 ≤ 1.07. 
 

 

(c): 1.07 ≤ 𝛽 ≤ 1.38. 

Figure 12. Mode shapes of third natural frequency parameter, 
𝜆3, respect to load parameter, 𝛽. 
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There are four different mode shapes, shown in Figure 13, in 
the fourth mode for three different load parameter intervals,  
0-0.79, 0.79-1.07, 1.07-1.15, and 1.15-1.38. 

  

(a): 0 ≤ 𝛽 < 0.79. (b): 0.79 ≤ 𝛽 ≤ 1.07. 
 

  

(c): 1.07 ≤ 𝛽 < 1.15. (d): 1.15 ≤ 𝛽 ≤ 1.38. 

Figure 13. Mode shapes of fourth natural frequency 
parameter, 𝜆4, respect to load parameter, 𝛽. 

The fifth mode comprises three different mode shapes as the 
load parameter changes. The critical points for those changes 
are 𝛽= 0.79, and 𝛽=1.15. The mode shapes that change at these 
specified load parameter points are given in Figure 14. 

  

(a): 0≤𝛽<0.79. (b): 0.79≤𝛽≤1.15. 
 

 

(c): 1.15 ≤ 𝛽 < 1.38. 

Figure 14. Mode shapes of fifth natural frequency parameter, 
𝜆5, respect to load parameter, 𝛽. 

In a nutshell, two different mode shapes in the first and second 
natural frequencies, three different mode shapes in the third 
and fifth natural frequencies, and four different mode shapes 
are observed in the fourth natural frequency. For fundamental 
frequencies, mode shapes are in a balanced distribution in 
symmetric geometries. However, the curved plate examined in 
this study is deflected on the loading edge. This reveals 
asymmetry. This asymmetry shifts the balanced distribution of 
the mode shape towards the loading edge and creates new 
mode shapes. The asymmetry, which remains as the load 

parameter increases, leads to the emergence of new mode 
shapes. These new mode shapes cause differences in the 
behaviour of natural frequency values, as seen from Figure 8. 

The first mode, as seen from Figure 9(a), shifted towards the 
loading edge as the asymmetry increases. Hence, a new mode 
shape is emerged. This new mode shape emerges where the 
loading parameter value reaches to 0.54 at which the trend 
curve of 𝜆1 changes as seen in Figure 8. The first mode shape 
Figure 10(a) of the second natural frequency parameter turns 
into a different mode shape Figure 10(b) by shifting towards 
the loading edge when the loading parameter value exceeds 
0.57. The mode shape Figure 11(a) of the third natural 
frequency parameter shifts to the new mode shape  
(Figure 11(b) as the loading parameter value reaches to 0.66. 
However, as the loading parameter exceeds 1.07, another new 
mode shape, shown in Figure 11(c), is occurred. Four different 
modes are observed in the fourth mode as the load parameter 
reaches to 0.79, 1.07, and 1.15, respectively. The critical loading 
parameter values are 0.79, 1.07, and 1.15. There are three 
different mode shapes for the fifth mode, and the critical 
loading parameter values that changes the mode shapes are 
0.79 and 1.15, respectively. 

4 Conclusions 

This study presents the free vibration analysis of the pre-
stressed curved thin plate fixed from both ends. To obtain the 
curved plate structure, first, it is fixed from one end. Then a 
distributed vertical load is applied on the free edge of the 
structure. The plate is deflected by applying such a load. Finally, 
the deflected structure is fixed from its free end. The curvilinear 
geometry of the plate structure is modelled by rotating flat 
plate element. The maximum vertical distributed load is taken 
a value that brings the plate up to 85% of its yield stress value, 
due to the operating conditions. All results obtained from the 
present model are in a close agreement with ANSYS software 
results. It is essential to understand the dynamic properties of 
pre-stressed plate structures under several loading conditions. 
This study reveals the change of dynamic behaviour of the pre-
stressed curved plate structure as the parametric load, which is 
the function of the distributed vertical load, increases. Based on 
all results presented within this study, the conclusions are as 
follows: 

Knowing dynamic behaviours under operating conditions is 
important in terms of predicting the damages that may occur in 
the structure due to concepts such as resonance and stability. 
In this study, the dynamic behaviour of the pre-stressed curved 
thin plate structure is examined. 

• In all loading cases up to 85% of the yield stress value of the 
plate, the present model represents the pre-stressed curved 
thin plate model accurately, 

• The error rates are acceptable and partially better for the 
first, third and fourth natural frequency parameters, where 
they are mostly tended to remain stable than the second and 
fifth natural frequency parameters, 

• Various curvature values of the structure occurs as the 
applied load increases. This causes mode shape differences 
at the same modes, 

• The asymmetry of the curved plate shifts the pattern of the 
mode shape to the edge on which the loading is present. 

• As the asymmetry of the curved plate becomes apparent, 
different mode shapes emerge, 

• In the light of the results, the method used in this study 
provides a simple and fast alternative way for modelling and 
multiple analysis of curved plates, 
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• In future studies, different and complex plate structures can 
be modeled, and static and dynamic analysis of pre-stressed 
curved plates can be performed by considering the 
presented method in this study. 
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