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Introduction 

 

1. On Methods of Forming a Resolution System of 

Differential Equations for a Finite Element 

Analytical methods for studying oscillation 

problems (Fig. 1) are often ineffective, and in other 

cases they cannot be used at all. The complexity of the 

tasks, the need to obtain more accurate results forced 

us to turn to numerical methods of research. Different 

methods are used to solve dynamic problems. These 

are, of course, difference circuits, and the method of 

generalized relaxation, and the method of integral 

relations, and the method of splitting, and the method 

of cells. In recent years, one of the most effective 

numerical methods for solving edge problems of 

continuous medium mechanics, the finite element 

method (MEA), has gained great popularity.  

It is characterized by a simple physical 

interpretation of basic computing operations, as well as 

the presence of machine programs, which provides a 

high degree of automation of labor-intensive 

operations of compiling and solving systems of 

equations. This method has a number of varieties. The 

choice of a method is largely determined by the nature 

of the tasks and to a large extent by the "taste" of the 

researcher, although some ideas about these methods 

have already developed. 

For example, as indicated in the book [1,2,3], the 

difference method leads to more loaded machine 

memory, which is a certain disadvantage when solving 

large-order systems. But the difference method gives 
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the values of functions that are less oscillating. There 

are other features of this method. Our research is based 

on the FEM. It should be noted that as the FEM 

developed, its connection with other approximate 

methods became obvious. Currently, there is an 

opinion that all the approximation processes used in 

solving problems are described by differential 

equations, in fact, they form a single whole. However, 

when using certain schemes, various machine 

algorithms are implemented to form a resolving system 

of equations [4,5]. In dynamic problems, the initial 

generalized parameters are functions of coordinates 

and time. In principle, we can give a discretization of 

the entire space-time domain [6,7]. That is, we can 

introduce four-dimensional finite elements. Then the 

basic functions (functions of the form) can have the 

form )(),,( tTzyxN km . So, for a linear finite 

element (Fig.1) and and of the two-point pattern we 

have 

𝑁1 = 1 −
𝑥

𝑒
; 𝑁2 =

𝑥

𝑒
; 𝑇 = 1 +

(𝑡𝑛−𝑡)

𝛥𝑡
. 

Then the function of displacements along the x-

axis gets the following form 

𝑀(𝑥, 𝑡) = [𝑁1, 𝑁2] [
𝑘1 𝑘2 0 0
0 0 𝑘1 𝑘2

]

{
 

 
𝑈1,𝑛
𝑈1,𝑛+1
𝑈2,𝑛
𝑈2,𝑛+1}

 

 
  (1) 

However, the introduction of such time – space 

basis functions proved impractical for a number of 

reasons [8,9]: in the case of a large time domain, the 

problem becomes excessively cumbersome; the system 

of equations is generally unsymmetric even when using 

methods such as the Galerkin method; the geometric 

prostate of the time domain does not encourage the use 

of irregular partitioning into space – time elements; 

when using basis functions of the form (1), the same 

results will be obtained as with sequential 

discretization in space and time. Physically more visual 

and cost-effective from the point of view of machine 

time costs are the representation based on the splitting 

of the solution (the method of partial discretization). 

We consider that the function within the finite element 

is approximated by interpolation polynomials that 

depend only on the coordinates and are multiplied by 

the nodal parameters that are functions of time 

𝑞(𝑥, 𝑦, 𝑧) = ∑ 𝑁𝑘(𝑥, 𝑦, 𝑧)𝜙𝑘(𝑡)
𝑛
𝑘=1 .            (2) 

The first stage of FEM research usually consists 

in obtaining finite element dependencies in the form of 

ordinary differential equations with respect to time. 

There are different ways to do this. The nature of the 

problem largely determines the ways of forming a 

resolving system of equations for the elements. The 

most popular are the variational and energy methods, 

when the energy and work of forces are introduced into 

consideration, the Bubnov-Galerkin method, in which 

either dynamic partial differential equations of a 

continuous medium or equations of state are taken as 

the initial ones. These methods are based on the 

fundamental principles of mechanics, the correct 

understanding and use of which guarantees correctness 

in the formulation and solution of mechanical 

problems. 

 The problems of mechanics are reduced to the 

problem of the calculus of variations, if we are talking 

about a functional and cutting off the necessary 

conditions for the stationarity of this functional. 

Usually, if we talk about the variational approach in 

continuum mechanics, it is called with the Hamilton 

principle (for stationary connections) or with the 

Hamilton-Ostrogradsky principle (for stationary 

connections). Hamilton's principle, as is known [10, 

11], states that a certain integral of the Lagrange 

function −= TL  (T and P are the kinetic and 

potential energies of the system, respectively), is equal 

  ℑ = ∫ 𝐿𝑑𝑡
𝑡2

𝑡1
,                             (3) 

it takes on a stationary value (the variation of a certain 

integral 0=I ) with respect to any possible variations 

of the system in which the initial and final positions 

remain fixed.  

The Hamilton principle is applicable to an 

arbitrary mechanical system with holonomic 

connections. It contains only one statement, covering 

the entire period of time. In this principle, movement is 

considered as a whole. Consider a variation of a certain 

integral whose integrand depends on many 

independent variables, their derivatives, and the 

argument t : 

ℑ = ∫ 𝐿(𝑞1, 𝑞2, . . . . , 𝑞𝑝, 𝑞′1, 𝑞′2, . . . . , 𝑞′𝑝, 𝑡)𝑑𝑡
𝑡2

𝑡1
,    (4)        

Due to the commutativity property of the 

variation operation, the variation from a certain 

integral is equal to a certain integral from the variation: 

.
2

1

2

1

 =

t

t

t

t

LdtLdt 
 

Here L  is a given function of variables 
rr qq ',

and t does not change during the variation process. 

dt

dq
q ='  

You can write 

𝛿𝐿(𝑞𝑟, 𝑞′𝑟, 𝑡) = 𝐿(𝑞𝑟 + 𝜀𝜙𝑟 , 𝑞′𝑟 + 2𝜙′𝑟, 𝑡) −

𝐿(𝑞𝑟, 𝑞′𝑟, 𝑡) =∈ [
𝜕𝐿

𝜕𝑞𝑟
𝜙𝑟 +

𝜕𝐿

𝜕𝑞′𝑟
𝜙′𝑟],  

where  is the parameter tending to zero; 

r - some arbitrary function that satisfies the 

same general continuity conditions as the function 

rrq +  . The function 
r must be continuous and 

differentiable. 

With a variable parameter , you can make the 

change in the function L  arbitrarily small, aiming at 

 zero, and get 

.'
'1

2

1

2

1


=













+




=

p

r

t

t

r

r

r

r

t

t

dt
q

L

q

L
Ldt 
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An expression in this form is not suitable for 

further analysis, because although it 
r  is interrelated, 

this 
r'  relationship cannot be written in algebraic 

form. This difficulty will be circumvented by applying 

integration in parts 

.'
'1

2

1

2

1

2

1

 
= 


































−




+












=

p

r

t

t

r

rr

t

t

r

r

t

t

dt
q

L

dt

d

q

L

q

L
Ldt 

    (5)                                     

the expression drops out if we vary 
2

1

'
'

t

t

r

rq

L












  at fixed 

boundary values, L  and  
r then vanishes at 

moments 
21,tt  .As already noted, a function 

r  is an 

arbitrary function that satisfies the same general 

continuity conditions as a function 
rrq +  . In 

mechanical systems, their position is determined by a 

set of generalized coordinates 
rq  . Therefore, it is 

quite acceptable to use a private method of variation. 

The FEM procedure provides for a transition from 

differential dependencies for individual finite elements 

to a global system of equations for the entire array. For 

linear problems, this global system in matrix form 

usually has the form: 

           FqKqCqM =++ '''             (6) 

Here are      KCM ,,  the matrices of mass, 

stiffness, and damping matrix, respectively; q - vector 

of generalized nodal parameters;  F - external load 

vector. 

Analytical methods for solving linear systems of 

ordinary differential equations are well known. 

However, due to the high order of the matrices, their 

practical implementation is possible in most cases only 

by applied numerical methods. We used in the 

numerical procedure proposed by [12], the essence of 

which consists ''q  in the assumption that the 

acceleration variation is linear in the time interval t . 

Using this assumption, we have: 

       ;''
2

''
2

'' 11 ++ 






 
+







 
+= nnnn q

t
q

t
qq      (7) 

    ( )     .''
6

)(
''

3

)(
' 1

22

1 +

−

+ 






 
+







 
++= nnnnn q

t
q

t
qtqq  

After substituting (7) into the matrix differential 

equation 

       PqKqM =+''  

we get  

       nnn bKPqH −= ++ 11''             (8) 

where      

     ;
6

)( 2

K
t

MH 






 
+=     

       nnnn q
t

qtqb ''
3

)(
'

2








 
++=  

Thus, the starting values (the values that take 

place at the initial moment of time) are the 

displacements, velocities, and accelerations. 

They are used to determine  nb , and then from 

the expression (8), the acceleration nq ''  at the next 

moment in time. From formulas (7), the displacements 

and velocities are found at this next moment in time, 

and the procedure is repeated. The described two-point 

pattern makes it possible to efficiently solve equations 

(8) through the Gaussian elimination procedure at each 

time step t . 

 

2. Finite-elementary solution of a system of 

ordinary differential equations 

We consider a second-order matrix differential 

equation with a dissipative term (6). We study the 

behavior ( )Nkqk ,...,2,1=  of the function over a time 

AT  interval. We divide 
AT  the function into finite 

sections )(2 t  and take an approximation of the 

function kq  in the form: 

  .2

321 tataaqk ++=                         (9) 

Then you can represent this function like this: 

  .,ekk qNq =  

  









−


−


+


−=

)(2)(2
,

)(

2
,

)(2)(2

3
1

2

2

2

2

2

2

t

t

t

t

t

t

t

t

t

t

t

t
N  (10) 

form function; 

 
















=

+

+

2,

1,

,

,

nk

nk

nk

ek

q

q

q

q . 

Here are the time points at the beginning, in the 

middle, and at the end of the time finite element. For 

the entire mechanical system with the same duration of 

all finite time elements, the vector in equation (6) will 

be equal to: 

 

 

 

 





















































































































=

+

+

+

+

+

+

2,

1,

,

2,2

1,2

,2

2,1

1,1

,1

2

....................................
:

:

nN

nN

nN

n

n

n

n

n

n

N

q

q

q

N

q

q

q

N

q

q

q

N

q

q

q

q

     (11) 

Substituting the expression  q  for from (10) and 

running the Bubnov-Galerkin procedure, we get 
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∫ ([𝑀]𝑁𝑖
|

|

𝑑2[𝑁]

𝑑𝑡2
{

𝑞1,𝑛
𝑞1,𝑛+1
𝑞1,𝑛+2

}

. . . . . . . . . . . . . . . . . . . . . . . . . .

𝑑2[𝑁]

𝑑𝑡2
{

𝑞𝑁,𝑛
𝑞𝑁,𝑛+1
𝑞𝑁,𝑛+2

}
|

|
2𝛥𝑡

0
+ [𝑆]𝑁𝑖

|

|

𝑑[𝑁]

𝑑𝑡
{

𝑞1,𝑛
𝑞1,𝑛+1
𝑞1,𝑛+2

}

. . . . . . . . . . . . . . . . . . . . . . . . .

𝑑[𝑁]

𝑑𝑡
{

𝑞𝑁,𝑛
𝑞𝑁,𝑛+1
𝑞𝑁,𝑛+2

}
|

|
+ [𝐾]𝑁𝑖

|

|
𝑁 {

𝑞1,𝑛
𝑞1,𝑛+1
𝑞1,𝑛+2

}

. . . . . . . . . . . . . . . . . . .

𝑁 {

𝑞𝑁,𝑛
𝑞𝑁,𝑛+1
𝑞𝑁,𝑛+2

}
|

|
− 𝑁𝑖{𝐹})𝑑𝑡 = 0

  

)3,2,1( =i  

 

After the corresponding transformations, we have 

the following system of three matrix equations of a 

finite time element: 

[𝑀]
4

3(𝛥𝑡)
|

𝑞1,𝑁 − 2𝑞1,𝑛+1 + 𝑞1,𝑛+2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑞𝑁,𝑛 − 2𝑞𝑁,𝑛+1 + 𝑞𝑁,𝑛+2

| + [𝑆] ||
−
2

3
𝑞1,𝑁 +

2

3
𝑞1,𝑛+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
2

3
𝑞𝑁,𝑛 +

2

3
𝑞𝑁,𝑛+1

|| + 

+[𝐾]𝛥𝑡 ||

2

15
𝑞1,𝑁 +

16

15
𝑞1,𝑛+1 +

2

15
𝑞1,𝑛+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2

15
𝑞𝑁,𝑛 +

16

15
𝑞𝑁,𝑛+1 +

2

15
𝑞𝑁,𝑛+2

|| = ∫ [
2𝑡

𝛥𝑡
−

𝑡2

(𝛥𝑡)2
] {𝐹}

2𝛥𝑡

0

 

 

Such a system of equations is compiled for each 

time finite element. As a result, we get a system of 

equations in accordance with the number of time 

segments - elements into which the total time interval 

is divided
AT . 

Next comes the transition to the global system of 

equations, from which the values of functions are 

searched for kq at all considered time points. Thus, 

there is no step-by-step solution of the problem, when 

the previous values of the function are searched for 

subsequent values. In the method under consideration, 

ultimately, all the values of functions within the time 

interval are found from a system of algebraic equations 

at once 
AT . Let us now carry out the transformations 

in a narrow direction. We will not solve equation (6). 

About the average components of the functions of the 

form (10) on )(2 t the segment. Such a system of 

equations is compiled for each time finite element. 

In the elements that the total time interval is 

divided into
AT  . Next comes the transition to the 

global system of equations, from which the values of 

the functions are searched for kq  at all considered time 

points. Thus, there is no step-by-step time solution to 

the problem. In the method under consideration, all the 

values of functions within a time interval are eventually 

found from a system of algebraic equations at once   

AT . Let us now carry out the transformations in a 

narrow direction. We will not solve equation (6). We 

will average the components of the functions of the 

form (10) on the segment and where ( )t2  and 

 ( )eqRq =  where 

 
( ) ( ) ( ) ( ) ( )








+


+


+


=

tt

t

t

t

tt

t

t

t
R

2

1
,

22
,

2

3
222

 

We will have ( )t2  

( ) 6

1

2

0

1

1 =


=



t

dtN

N

t

СР

; 
3

2
2 =СРN ;  

6

1
3 =СРN

( )t
R CP


−=

2

1
1

;  02 =CPR ;   
( )t

R CP


=
2

1
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Then we come to the form of Nu Mark difference 

relations: 
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The most important problem of numerical 

implementation is to provide a stable, oscillating 

solution within acceptable limits. Much attention is 

paid to this problem in the literature [13,14,15,16]. It is 

also closely related to the choice of the type and size of 

the final element. In the guise of a time step, a method 

of numerical approximation. It is known that an 

explicit stability criterion for general problems solved 

by the FEM has not yet been derived due to the 

following difficulties. As can be seen from the above, 

at the first stage we obtain a system of inhomogeneous 

differential equations (linear equations). Such a system 

of differential equations must be stable. They will be 

stable if all the roots of the corresponding characteristic 

equation are less than one in absolute value. Here, in 

principle, it is possible that the system will be stable at 

some time steps, and unstable at others. The choice of 

the time integration step t  is crucial for ensuring the 

stability of the solution. The integration step must be 

directly related to the dimensions of the final element. 
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The practice of computing allowed us to develop 

certain criteria. It is known that the simultaneous 

reduction in the size of the element and the time step 

usually significantly reduces the range of oscillations. 

In practice, it usually turns out that in order to get 

acceptable results and ensure the stability of the 

account, it is necessary to ensure this stability not 
*t

at any (unconditional stability), but only in the case 

when the step does not exceed a certain critical value 

(conditional stability). It is usually defined as

max

*



k
t =  . Where k  is a certain numerical coefficient, 

max is the highest natural frequency. 

For example, for the value of Bernoulli-Euler 

beams on impulse loads, good results are obtained if, 

for the length of the finite element 62,7=t sm of the 

cross-sectional area of the beam 61,1=  sm2, the 

moment of inertia of the cross-section 217,0=T  sm4 

is 𝛥𝑡 = 10−6𝑠 taken. With 9,1=t sm, you have to 

apply𝛥𝑡 = 10−7𝑠, and with 782,0=t sm,  ,𝛥𝑡 = 5 ⋅

10−8𝑠 
 

3. Damping of resonant vibrations of rod and tube 

vibrations. 

To reduce resonant vibrations (Fig. 1), layers of 

vibration-absorbing materials are used. At the same 

time, the resonant vibrations can be reduced in a wide 

frequency range with a slight increase in the mass and 

overall dimensions of the structures. The effectiveness 

of the use of vibration-absorbing materials is illustrated 

in Fig. 1. The use of a board consisting of three layers 

of fiberglass with thin layers of vibration-absorbing 

(VP) material drawn between them reduced the 

resonant vibrations by 3 times. Figure 2 shows 

examples of using vibration-absorbing materials to 

suppress resonant vibrations in structures. The solution 

of the boundary value problem (6) is found in the form: 

. .  ( ) ( ) tk

k extq  −=*
,                  (12) 

 
Figure 1. Change of vertical movement from time to time.1-without taking into account the viscosity, 2-

taking into account the viscosity of the base, 3 - with vibration-absorbing layerswhere ( )xk is the complex 

waveform, and 
IR i += is the desired complex frequency. 

 

 

 

The problem is reduced to solving homogeneous 

algebraic equation 

( ) 0, = IR  ,   (13) 

The solution of the eigenvalue problem is carried 

out by the Muller method without explicitly allocating 

the complex parameter. 

These examples fully reflect the fundamental 

possibilities of using multilayer damping structures. 

These examples fully reflect the fundamental 

possibilities of using multilayer vibration-absorbing 

coatings to reduce resonant vibrations of radio 

engineering structures 

Conclusions 

With a rigid mount, the dynamic gain 42= at 

a resonant frequency of about 33 Hz. Installing the 

panel in plastic guides reduces the dynamic gain to 

17=  . The use of damping leads to an even greater 

reduction  5=  in the dynamic gain. The integrated 

use of plastic guides and damping allows you to   

2,4=  reduce the dynamic gain to, and high 

frequencies (up to 200 Hz and above) 1=  to (with 

3  a rigid mount). 
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