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Introduction

The solution of applied problems of the
dynamics of layered conical shells is based on the
well-known Kirchhoff-Love, Hermann-Mirsky and
other refined theories of vibration [1-2]. These
theories are developed for single-layer, homogeneous
shells [3-4], and therefore, their application to study
the dynamics of layered structural elements is
accompanied with certain difficulties of a
mathematical nature and ensuring the fulfillment of
the contact conditions between the layers [5-6].
Therefore, in the last few decades, theories of
vibrations of layered elements of structures began to
be developed [7-8]. The number of works devoted to
the development of new theories of vibration of
structural elements, taking into account various

Doi: &os¥ef https://dx.doi.org/10.15863/TAS.2021.06.98.8

rheological, temperature, anisotropic and other
properties of materials, is large. Despite this, at
present, the study of non-stationary oscillations of
such elements continues on the basis of new theories
and equations of oscillation [9-11].

This article is devoted to the study of the
equations of torsional vibrations of layered conical
elastic shells following from the general equations of
vibrations of a three-layer elastic shell as limiting
cases.

Formulation of the problem.
In a cylindrical coordinate system (r,8,z), the

problem of torsional vibrations of a homogeneous and
isotropic conical shell made of an elastic material is
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considered, the inner I and outer I, radii of which

are linear functions of the longitudinal coordinate, i.e.
n=r,+kz;r,=r,+kz+d;

where r, = const, d - TommuHa o6onouky; K =tga

(puc.1). When deriving the equations of oscillation, it

is assumed that the conical shell, as a three-
dimensional body, strictly obeys the mathematical
theory of elasticity and, in its exact formulation, is
described by its equations. In a cylindrical coordinate
system, we consider a three-layer conical shell of an
elastic material that is inhomogeneous in thickness.

Figure 1.

We will assume that the rational design of the
conical shell from the point of view of its work on the
action of dynamic loads will be such when the bulk of
the rigid material in the form of two layers, hereinafter
called load-bearing layers [1], is spaced at some
distance by means of a thin wall or a third layer. The
third layer can be of the same material as the carrier
layers. When the space between two rigid layers is
filled with a lighter, and therefore less rigid material,
it is hereinafter called a filler. The third layer or filler
keeps the bearing layers at a distance equal to its
thickness and carries out their joint work.

Moreover, if problems are considered that are

Therefore, in the future, we will not emphasize this
every time, implying that this is always the case.

The dependencies between the components of
stresses and strains at the points of the layers of a
conical three-layer shell are considered to be given in
the form [2].

O-igm)(r’ 9’ Z’t) = ﬂ’m (g(m))+ Zlum (gi;'n) ’ (Ii J = ri 91 Z) 1 (1)
A+ My~ Lame coefficients of the materials of the
layers.

The equations of motion of points of layers, as

conical three-dimensional bodies, in the absence of
volumetric forces have the form [3].

different from the problems of transverse vibration of oo™ 106 oo SM_gm 57y
the shell, then it is easy to guess that the joint work of o +F 20 + pe + r =p Pe ;
the bearing layers depends on the ability of the filler ) ) ) X
to resist their relative shear. Based on these 00wy 100w 003w 2 (m) _ O s . @
considerations, we will assume that the contacts or r o0 2 PO = P x
between the bearing layers and the filler are rigid. (m) (m) (m) (m) 2

We direct the Oz axis of the coordinate system 00y, 1904 + 00y O _ o uzzm
along the symmetry axis of the shell and number the or r oo oz J ot
layers as shown in Fig. 1. Through a and b we denote Further, following [4], the potentials of

the inner and outer radii of the shell, and through r;
and r, the inner and outer radii of the middle layer
(filler). When deriving the equations of oscillation, we
will assume that both the cylindrical shell as a whole,
and the bearing layers and the filler, strictly obey the
mathematical theory of elasticity and in the exact
setting are described by its three-dimensional
equations in a linear formulation.

The components of the vectors of displacement
of the points of the layers along the coordinate axes,
which are considered small, will be denoted by
U (r,0,2,t), u,(r,0,z,t), u,(r,6,z1). Here and

below, the index takes on the values 0,1,2.

longitudinal ™ and transverse ¢™ waves are
introduced by the formula
U™ = gradg, +rot[e,y,, +rotE,z, ). (3)
Note that when the vector potentials 5("‘) are
represented in the form
B =&+ 10L&, 1, ), @)
where €,—111- unit vector along the axis z , solenoid

conditions for the range of vector fields ;/3('"),

divg™ =0 are performed automatically [5].
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Substitution of expressions (3) into the equations op, %1,
of motion (2) allows us to write them through the m = Y ore ©))

wave equations with respect to the wave potentials [6]

m m T s P, = .
ApM =P Ag =Emg o (5)
A + 248, Mty

where p, — density of layer materials; A — Laplace

In this case, the formulas for the deformation
components are also simplified, which can be written
in the form

2
&y =a—(¢m + al”‘} ,

operator. or? oz
LG A SN =T 12( ) .12, 1 20)
ot roar r?oe & e ror| oz )Y rarl’™ @
From expressions (3), it is easy to determine the 5
components of the displacement vectors of the layers m__Yofloy,) m__10W, ©)
of the shell u,,,, Uy, , U, through the potentials of the " el or )T 2 ozor

longitudinal ¢, and transverse v, ., waves

y 0P 10tn On 104,

m_0¢n 1010 10( 0
Vr oroz 2or|o0z> ror\ or Zm

™ & r o o r 00* It is assumed that at t <0 the conical shell is at
U 1 0pn  OY, +1 %y, (6) rest, and at the moment t =0, stresses are applied to
™ 00 or r 0200’ its boundary surfaces, causing its torsional vibrations,

uzm — i n +0}(_m +l%
or oz r oo
The last expressions for the components of the
displacement vectors of the points of the shell layers
make it possible to express the deformation
component in terms of the wave potentials
8(m) = 82¢m —i a(Dm -|-1 aZWm + 63;(”‘2 il
060 r orof ozor

i o’ r?
o _ 20, _(A o ]%

i.e. itis believed that the boundary conditions have the
form
atr=a, o¥azt)=fY(zt)
at r=b, c@(b,z,t)= f9(z,1) (10)
In addition, according to the conditions of rigid
contact on the boundary surfaces between the layers,

the conditions of equality of mixing and stresses must
be fulfilled, i.e.

atr=r,

“ oz? o) oz er(rvzvt):uel(rvzvt);
) W (11)
m_1(18 @ ( a;(mj (1 ajav,m o9(r.z,t)=cf(r,z,1).
Egp ==| S5t — | O+ || - |
r\roe or 0z r or) oo atr=r,
y(m) _l(g_lj OPn, +1(£_1j O Ym n uoo(rbzat):uaz(rbzlt); (12)
“ rler r)oe rlor r)od @ (. 2,t)=c?(r,,2,t).
+iazyxm _rof oy, The initial conditions of the problem are
or2 9% 2orl or ) assumed to be zero.
5 5 5 The torsional vibrations of the conical shell are
(m) =l%_l%_i[A_25_2] Om , axisymmetric, and therefore the displacements and
2060z 2 oor  2r oz° ) 00 deformations of the points of the layers, and,
w 10 5 o, 1%, consequently,_the stresses_, do not depend on the
n Ee—| 25— A |xn + +-—=, angular coordinate. Only displacements u,,, stresses
20r( oz oroz 2 o6oz ) () _ M) )
Moreover, it is easy to check by these formulas Org oz aNd defo.rmatlons g_f9 o &or Wil be
the validity of the equality nonzero, [7]. In this case, displacements and

6 = ol 4ol 450 = Mg,

If problems are considered symmetric with
respect to the axis, then the components of the
displacement vectors of the shell layers do not depend
on the angular coordinate 8 and, expressions (6) take
the form

00 10( On _ Oy,
m=- T~ r ;u&n - ]
0z ror or or

deformations are determined by formulas (8) and (9),
from which it follows that they depend only on the
potentials v, ,
In this case, the equations of motion (2) take the
form
ooy do! (m) _ O Ugn
—re 4 2L 4 — =
or o ro TP
Which, after applying (5), go over to wave
equations with respect to potentials y,,, i.e., the

oc™ 2

(13)
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equations of motion of a conical elastic three-layer d ~
shell, with its torsion will be Ugn (K, P) = __'/’m’ (21)

2
Ay, = &a_'/’zm; (14)
My O
where

m=1 at a<r<r, m=0 at rp<r<r,and
m=2atr,<r<b.

Thus, the problem of torsional vibrations of a
three-layer conical shell is reduced to the integration
of equations (14) at boundary - (10), contact - (11),
(12), and also zeroat t =0

_ W _,.

Vi ot
initial conditions.

(15)

The solution of the problem.
To solve this problem, the functions of external
influences can be represented in the form

30 k =~
sin }k({)frg)(k,p)ep‘dp, (i=12). (16)

In accordance with the accepted representations
for the external action function - (16), the solution of
problem (5) (14), (11), (12) and (15) will be sought in
the form

f0(z,t
rH( ) —COk

sinkz - -~
dk i [g v |e™dp;
Coskz} N7 S

«C0SKkz
= dk [ 7 ptd
Zm 0sin kz} (I) P

Substituting transformations (14) for potential
functions y,, into the wave equations, we will have

[omvnl=1"
(17)

d> 1d

— = =0, 18

(dr2+rdr ﬂmjwm (18)
where

B2 =K +p [t (18"

General solutions of equations (18) have the
form
V(N =CP 1 (BN +COK (Br): (19
where 1,(r), K,(r),- modified Bessel functions [1].
The further task is to express the components of
the displacement vectors and stress tensors at the
points of all three layers through the obtained
solutions (19). For this purpose, we will first do this
for the movements. Therefore, the displacements u,,

can also be represented as
»Sin kz
u th—I dk j U, (r,k, p)e™d
m (1,20 Oskz} 4 Uan (1K, p)edp.

Substituting (17) and (20) into (8) for the
transformed values of displacements u,,(k, p), we

obtain

(20)

Let us represent voltages o,, as well as (16)

«Sinkz -
‘m’(r,z,t)— o k}dk{a,‘gm)(r,k,p)em; (22)

and substitute representations (16) and (22) into
boundary conditions (10). We get

«Sinkz
i }dk 1 a9 (rk, p)e™dp =

o—coskz| o 23)
=Sinkz ; .
=] dk 1 9k, p)e™dp
o—coskz| M
From here
9@k, p) =9k, p), 24)

53 b,k p) = f9 (k. p).

On the other hand, based on the fundamentals,
we have

~ 1 d,dy
a(r)= —m 25
(= r dr) dr (25)
Substituting (25) into (24), we obtain
1 d.d .y
() !
r ar |,_,
1 d.dy (20)
v, _~arf @
e = f5].
rdr)drr:b # 1]

Similarly transformed contact conditions (11)
and (12), based on expressions (20), (21) and (25),
will have the following forms:

ar=r
d - d -
— =, 27
dr‘//l dr‘/’o (27)
1 d. dy, dl//l
)1 = - 28
(r Olr) ar 1(Ir ) (28)
andat I =1,
d - d -
— W, =—V,, 29
dr’//o dr'//z (29)
l_i vy _ __i dy, (30)
r dr r dr

General solutions (19) for all three layers have
the same structure, taking into account the
boundedness of solutions at r—0 and r—>ow
simultaneously. In this case, the boundaries of the first
layer are equal to a and I}, @ < I < I}. Itis bounded
from below (from the inside) by surface r =a,
which in the limit can tend to zero, i.e. a— 0 but
cannot exceed I, in any way, i.e. cannot strive for
infinity.

Therefore, when writing a general solution to the
potential function of the first layer- ¢, (r), one can
restrict oneself to taking into account its limitations
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only 'at r—0. Basgd on this., we take the general cl _ _ﬂ0|1(ﬂ0r2)cél) _ﬂOKl(ﬂorz)CéZ) 39)
solution (19) for the first layer in the form 2 = B, K (B,1,) :

g =CY,(ar); (a<r<r), (31

where Cl(l) - constant of integration.

Similarly, the boundaries of the second, outer
layer are cylindrical surfaces r=r, and r=»b;
r,<r<b.

It is bounded from above (from the outside) by
surface r =b, the radius of which can tend to infinity,
i.e. b — oo. On the other hand, the inner surface of this
layer cannot be pulled to a straight line, b.c. this would
lead to a homogeneous round bar with a radius
r=hb.

Therefore, in the general solution for the
potential function of the second layer- ¢, (r) , one can
restrict oneself to taking into account its limitations
onlyat I — o0,

Based on this, we take the general solution (19)
for the second layer in the form

Wz(r) C 'K, o(Bor); (r, <r <b) (32)

For the middle layer, we will accept the general

solution (19), taking into account that our solution, in

the absence of two outer layers, should transform into

the known solution for a homogeneous cylindrical
layer, limitedat r -0 and r -0, i.e.

7o (r) =CO1,(B,r)+CPK,(B,r), T, <T <b.(33)
Thus, the number of integration constants to be
determined from the contact conditions is reduced to
two, Cl(l) and Cf). Therefore, there is no need for
four contact conditions (11) and (12). Taking this
circumstance into account, we restrict ourselves to
only two contact conditions, leaving in (11) - (12) only
the conditions of equality of displacements,
atr=r,
uel(zvt) =Uyy (Z:t) (34)
andat r =,
Uy, (2,1) = Uy, (2,1) (35)
Conditions (34) and (35) are equivalent to
conditions (27) and (29), respectively. Substituting
solutions (31), (32), and (33) into transformed
boundary conditions (26) and contact conditions (27)
and (29), we obtain

{%h(ﬂla)—ﬁfuo(ﬁla)}c = A[EY (). (36)

[ZﬁZK(ﬂz )+ B2K, (b )} 0 = AT K, )], (37)

ﬂ1 I 1(ﬁ1r1)C11 = ,Bo |1 (,Bo rl)cél) - ﬂo K1(ﬁo rl)C((JZ)’

- B K, (ﬁz rz)ng) = ol (,Bo rz)C(()l) - BoK, (ﬂo rZ)C((JZ)'
From the last two equations we find

Substituting (38) and (39) into boundary
conditions (36), (37) and obtain the following system
of equations

21,(8.2)- Al (5a)
8,1, (B -

1, (B.1) (42)
— BoKy (Bor)CP = B TTL (, p)],
ﬁKl(/szb)szo(ﬂzb)[ o

K1(ﬂzrz) ﬂo 1(ﬂor2) 0o - (43)
— BoKy (Bon,)CE = TR (k. )],

Let us express the transformed displacements of
layers Uy, interms of solutions (31), (32) and (33). To

do this, it is enough to recall formulas (20) for
Ugn(r K, p) ie.
oYn

ﬁam(r'kv p):_?l (44)

Substituting (31), (32), and (33) into (44) at
m=0;m=1 and m=2, we obtain, respectively

Uyo (1K, P) = =By, (B,r)CY + BoK, (Bor)C;
Uy (r.k, p) = =41, (Br)CY
0,5 (1K, p) = B, K, (B,r)CP

In the expression for the torsional displacement
Uy, (r.k, p) of the middle layer, we expand the Bessel

(449

functions 1,(S,r) and K, (5,r) in power series in the
argument (A3,r), or, to put it another way, we use the

standard expansions in power series of Bessel
functions 1,(8,r) and K (5,r) in powers (g,r). We
get
N r 2 2n+1 1
Ttk P =it 5 it /(n)+ 32"
2n+1
23 Inﬁ—1 n+1)+y(n+2 ana (1/2)
B LN e oo
Combining the amounts here, we get finally

)+ z{ C( +C { Bt

2
(r/2)2n+1
ni(n+1)!

Here y(n) — is the logarithmic derivative of the
Gamma function

) 2 p2nd
L f,
n=0

+

+ B,C}

uao (r,k,p)=
(45)
—%(7(n+1)+7(n+2))}}°ﬂ§””

I'(z
/(2) = I'(z)
r(z)
Following the work [23] for the unknown values
for the values of displacement and stress, calculated at

co Boli (B, rl)Clgl) - BoK, (B, rl)Céz) . (38) the points of a certain “intermediate” surface of the
' ARCAD ’ middle layer. The radius of this surface is defined in
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the interval £elr,r,]. At £=r, and &=r,, this 3

“intermediate” surface turns into contact surfaces
between the layers, and at. It passes into the median
surface of the filler. At r,=r,, the radius of the
intermediate surface passes into the radius of the
contact surface between the bearing layers.

We put r=¢ in the expression of the
transformed displacement (2.1.31) and select its main
parts, assuming that they are determined as the first
terms of a converging power series, we obtain

RCEE N I S PPN
Uao((f)—gco {C +CY { y@) 2}}/30(2),

We introduce the following notation [23]

~ 1
9=Lcp

(46)
=0 _ ol _c@mm Bl _my_Lila2 8
Ugo {Co Co [In 2 y@) 2]}ﬂo (2)
where
C(z) éguao ;
o _ ﬂo§ 1 _i% 0).
C U90§|: 2 ():| ﬁo UEO '

In order to express the transformed displacement
Uy (r,k, p) through the introduced new functions

0\ and G transform (47) as follows
3 {255 (—Eﬁoz)'[cél) -
1 (r/2)2n+1 .
—c@(n e -
o ( 5 r@)- 2)]}n'(n+1)l I

Jor 1 1 1o L] (2™
C0|:InE_§7(n+1) 2 (n+2)+2}/(1) :|}nl(n+]_)|

In the last expression, we introduce the notation

~ 1
u@O(r’kl p) = FC[SZ) +

SANNCY)

nl(n,r)zIné—%y(n+1)—%ﬁ(n+2)+l(1)+%
or
n n 1
n(nr)= InE 20:D) “E (48)

Taking into account (48) and (46), expression
(2.1.31) takes the form.

., p) = 20 +25 200 2™,
ni(n+1)!
2n+1 (49)
12
ni(n+1)!

Note that if the middle layer is thin (for example,
a thin layer of epoxy glue, usually applied between the
layers), then we can assume that I = & . Then

m=-"_ 21
& 2(n+1)n =1
which is a number, for example, for

2n+2 ~(1)

+§z “Ugg 1y

(50)

n=0 m(0)=0anpn n=1nM=-7

In order to express the boundary conditions (42)
(43) in terms of the main parts of the transformed
displacement U,, introduced by formulas (46),
consider the following formula
Bolli(Bor)B = Ky (Bor)B, [= 0, (8D)
Then, based on (49) for p,[1,(5,r,)B, -
— K, (,1)B, ] will have (51)
Aullu (BB, K, (BB, 1= S0 +

- _ o . 22n+1
+ 3205 + & nn ) AR B %

Taking into account (51), equations (42) and (43)
can be written in the form

|1( @)‘ﬂllo( 1a)
1, (A1)
0 Mﬁmﬂ}:ﬁﬁ[ﬂ?(k, D)

oao nn+)! r, °

: {EO 02'1 [?-Ga(g) +&m(nn)-
) (53)

EKl(ﬂzb)szo(ﬂzb)
Ko (B,

/Bo 90 ](rZ/Z) n+ +§J(§]6)} = ﬁgl[Fri’Z) (kr p)v

niin+1)! r,

For combinations of Bessel functions, limiting
ourselves in their expansions to zero and first
approximations, we obtain

at m=0

2,80+ B, (50) = K

: {ﬂgo 2209 + e (n.r,)

(54)

2)2 "B,

ph N1, 4 _ 1
+ﬂ{_[m7+cﬂ_ T 2@[ ﬂz)’
1 Bl 1))
)= Zﬂz[z int C‘zﬂ~

1[4 n( 1)
zzﬂii*?(c zjﬂz}’

Bb, 1]ﬂzb 2}

atm=1

2169 z/iolo(ﬂla)—j z(/’f %)
—ﬂ1(1+1—a):%+17a—ﬂ1— T
25 38""2 A ﬂf):

Il(ﬂlrl)=%(1+fﬂf).

Hence
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a’ a’ b? N
- Il( 1a)_ﬂ1|0( 1a) 2 1+71312 +f[1+2/12]ur(913 :‘?ﬂz HH(C_Z) é izj r9( )} (60)
= — . : (55) 2 2
2
L (An) g 1+Lﬁf Let us introduce the following notation [ ...... ]
4 (r /2)2ﬂ+1
2 8 4 (=25 s
P RBDTBBY P A= D)

K1(ﬂ2r2) - r, %+(C—%)ﬁ22

2
where ¢ =... is the number

Substituting (55) and (56) into equations (54),
we have

2 i 2 0
—r—[1+a7ﬂ1 ]{ﬂ [Zue(o) +6Z771(n r)

1 it}

20 @) |,
o Uao

(57)

n!(n+1) r

_f[ Jiz pir sy + an o )iy
(/2" &gl _ ol 8
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Let us rewrite (57) equation in a more convenient
form for subsequent use

(1+a—22ﬂfJ{§ 259 + e (n.r,)
E e S
[1—ﬂ2 ]{ 2 a9 +en,(n,,) (rz(/nz):l)l+
éue@} LA
.

: ﬂz} &k, p)]

Let us introduce functions ufg%), ué,lg

2@
o Ugo ]

2~ (1
0”50]

and

operators /1" by the formulas
v sinkz
u® y® K i
o2 w2 o coskz}d ® @
« Sink
N Z}dk(r)ﬂé"(c)emdp,
)

n — J.
Inverting conditions (58) over p and K, taking
into account (57), we obtain

© n az 2 2n+1
nzo;to(l-F?ﬂlJ[zué%) +6E771(n r1)ﬂv U(l) —( 1(/ 3_1) +

Ak - 1 5a st 9

2 2n+1
30/13(1—%1 J[zuggg vemnn =27

ni(n+1)!

0) 7@
Ugo™ »Ugo

pt dp
(58)

(61)

2n+1
Ay =l+ 5 771(n I )/Inﬂu'

rono T ni(ngy

Taking into account (61), Egs. (60) can be
rewritten in a more convenient form for what follows:

(1 + a—ﬂl][/mu“” + ALY =

s

= __,Ul
b? 0 1
(1_E42 j[Aizuéo) + éZAzzuég]

b2 I\ p2 (62)
-0 iR @
T {1+(c 2]812},5 (z,t)}

(44)*, it is
easy to obtain that the operators A, introduced by

formulas (58), with the reverse transition according to
Fourier and Laplace, in variables z,t have the

following forms

()= [pm (fﬂ (Zf H (63)

where u, — elastic operators of layer materials.

Based on the expressions for g,

Equations (62) in accordance with formulas (63)
for operators A, are integro-differential equations of
unbounded order. These equations contain the main
parts ul and uf) of the torsional displacement of
U, points of a certain “intermediate” surface of the

middle layer of a three-layer conical shell. The
specified "intermediate” surface has a radius, the
values of which are included in the interval
I, <& <r,. Inaccordance with the numerical value of

the radius &, this “intermediate” surface can pass into

the middle one at & = -—2 and the contact between

the layers of the shell surface at & =1, and £=T,.

Consequently, equations (62), depending on the
values of the radius &, can be the equations of

oscillation of a three-layer cylindrical shell relative to
the main parts of the torsional displacement of the
points of the middle or contact surfaces of the middle
layer.

The obtained equation in particular cases
transforms into the equations of vibration of a two-
layer elastic conical shell, into the equations of
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vibration of a single-layer elastic conical shell, and
others.

Results and Discussions

Let’s consider the problem of longitudinal-radial
vibrations of a shield clamped in the longitudinal
direction, at z=0 and z =1, where |- length

conical shell in the direction of the axis Oz. As
vibration equations, we take the system (62). The
boundary conditions of the problem have the form
6zué%) o auélo) : o*uly
oz° oz oz°
The initial conditions are assumed to be zero.
The solution of the system of equations (62),
which includs the conditions for fixing the ends, and
also the functions of external actions, is represented in
the form.

ul® =0; -0 =0.

) = 538 0si
(64)

The substitution of (64) into (62) leads to a
system of two fourth-order differential equations with

<or—._ 04 04 0% .
-0002 \ )Ir;
-0 003 \ 1{
-0.004 \ l'r
u'l \ /

F0 Lopos \ {,

-0.006 \ /
\\ /

0 007 \.__/’f

Fig. 1. Dependence of displacement ;%' on time

at z=02(—)03 (... 04 3 0.6(—-).
G
0004 ,"’f_ \‘\
/
\
0003 f.‘ \
0002 / \
\
0001 W
. | f"‘\\
M, NG

Fig. 4. Dependence of displacement &, on time
z=02(—X03()04 () 0.6(—-)

respect to the functions Ug(g)(t) and Ug,)(t). The

problem was solved numerically at the following
values of the physico-mechanical and geometric
parameters of the three-layer conical shell:

£=0.9h,; I=04m; r,=0.04m; d =0.005m;

r,=0.08m; p =30kg/m®; ,p, =2700kg/m?;
p, =2700kg/m*; E, =0.165-10° Pa; E, =69-10°Pa;
E, =69-10° Pa; v, =0.03125; v, =0.33; v, =0.33;
fzm(t)=3t2- The results are shown in Fig. 2-5 in the

form of graphs of the longitudinal and transverse
displacements of the points of the middle layer and
normal stresses in its various sections.

Conclusion

From the presented graphs in Fig. 2-3 it follows
that the longitudinal displacement of the points of
different sections reach their maximum at values
between 0.6 and 0.8 of the dimensionless time.
Negative values of longitudinal displacement indicate
that the shield for weight the period of action of the
external load undergoes compression.

0.0o0o1

=0.000m

=0.0002

-0.0003

1)

Fig. 3. Dependence of displacement 3, on time
at z=02(—)03(.-osa); 0.4 () 0,60 —-).

nols

o014

o1z

no1n

000z

0006

0.004

0002

Fig. 5. Dependence of displacement &, on time at

z=02(—)03()04( )0.6(—).
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The transverse displacement of the point of the
cross sections has a sinusoidal character as a function
of time. At the same time, it reaches its maximum at a
value of the dimensionless time close to 0.4. The
maximum value of the longitudinal displacement
corresponds to the zero value of the lateral
displacement. In addition, at the beginning of the
process and further to the time value of 0.63-0.66, the
transverse displacement is negative, and at
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