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spectroscopy-scanned images are characterized by low-resolution images thereby posing significant challenges when 

object detection is to be performed in such images. Recently, deep learning-based detection has shown much 

prospects owing to their highly based computer vision approach for its superior efficiency and easy network 

parameter optimization. In this paper, we perform a comprehensive analysis of prominent object detection models 
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witnessed in airports, subway stations etc. By way of boosting the performance coupled with detection accuracy of 

the models, we expand our initial terahertz images via image augmentation. Experimental results reveal that one-
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Introduction 
To mitigate the increased danger of terrorism 

activities, illicit items in luggage and personal safety 

at checkpoints in airports, bus terminal and industry 

entry gates, etc., the use of diverse detection 

technologies turn to be highly important [1]. 

Detection systems such as weapon detectors for 

travelling passengers and X-ray systems [2] for 

scanning hand-carried gadgets are effective but 

additionally have their own shortcomings. X-ray 

imaging systems can penetrate materials such as paper 

box, leather bag, clothing, wooden boxes as well as 

the human body. The hazards of X-ray system are that 

their radiation is very high and they are very 

detrimental to the human body. The operators staffing 

these check points who are performing their lawful 

businesses turn to be in danger as well as the 

passengers or the clients being attended to at various 

checkpoints since these X-rays signals reflect, absorb 

and transmit contrary to terahertz rays. [3–6] 

The terahertz (THz) portion of the 

electromagnetic spectrum, shown in figure 1, extends 

from approximately 100 GHz to 10 THz (where 1 THz 

= 1012 Hz corresponding to 4.14 meV). It lies 

between the microwave and infrared band; the 

wavelength in this range is 3 mm to 30 µm. THz 

waves can penetrate numerous non-metallic materials 

that may be opaque in the range of visible and infrared 

light. Moreover, as nonionizing radiation, THz waves 

present minimal known health risks [7]. 

Terahertz system can also be referred to as the 

millimeter wave or submillimeter/far-infrared waves 

(sometimes also called T-rays). THz waves have 

attracted increased interest due to their capability to 

non-destructively penetrate strong objects, including, 

those made of cloth, paper, wood, plastic, and 

ceramics, and to produce images of the hidden objects. 

Sub-THz body safety scanners are also encouraged at 

airports because of their non-ionization effects. 

Higher frequency represents shorter wavelength 

(1–10 mm) [7], which yields higher resolution 

terahertz images. Weapon detectors can solely 

identify similar weapon targets, such as metal 

handguns, knives, blade, screwdrivers as against non-

weapon gadgets such as mobile phone, water bottle, 

board marker, wireless mouse etc. 

This paper focuses on terahertz active imaging 

for security applications and intends to realize high-

speed and high-accuracy detection of weapon and non 

-weapon objects of terahertz scanned images. Deep 

learning models have great effects on optical images 

as well terahertz images. 

Optical images basic classification and feature 

extraction strategies brings boundary path histogram 

[8], Fourier transform, window Fourier transform [9], 

wavelet transform [10–12], least squares [13],etc. 

Additionally, it includes histogram of oriented 

gradient (HOG) [14] and  invariant feature transform 

(SIFT) [15], the most widely used object-detection-

and-recognition model is the deformable parts model 

(DPM) [16], which uses a support vector machine 

(SVM) [17] to train an object model and retain the best 

performance unlike the hand-made features, which 

lack the self-training processing and visual 

processing. Today artificial neural network (ANN) 

and convolutional neural network (CNN) LeCun et al 

[18] depicts from support virtual Machine (SVM) 

notwithstanding has gradually attracted peoples’ 

interest  [19, 20]. 

 

 
Figure 1 - Terahertz Spectrum region 

CNN aims to mimic human perception for 

intelligent classification, recognition and 

segmentation. CNNs  architectural structure (e.g., 

AlexNet  [21]), the deep structure (e.g., VGG [22], 

GoogleNet  [23], the residual unit embedded structure 

like ResNet [24], ResNeXt [25], DenseNet [26], 

DarkNet [27], and the lightweight structure 

MobileNet [28]. Krizhevsky et al. (2012) with 

understanding of SVM trained a large, deep CNN 

(Alexnet) [29]. The activation functions that Rectified 

linear devices (ReLUs) and others utilized improved 

nonlinear mapping capacity of this network and lost 

gradient. Large and improved networks in Alexnet  

[30, 31] due to more studies in Alexnet [32]  Pan et 

al., (2009). Donahue et al. studied a semi-supervised 

deep convolution method for multitask mastering of 

transfer learning. This growing knowledge in CNN 

turns to caffe best features. Today, caffe is a widely 
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used open-source framework for deep learning with 

incredible GPU speed. R-CNN (Fast R-CNN) 

proposed by using Girshick et al. [33] is a one-stage 

detection algorithm that improves object proposals 

and refines their locations and their real-time 

detection. SNIP [34] discovered the domain-sift and 

corrects the multi-scale training problem. To solve the 

problem of multi-scale object detection, STDN [35] 

introduced a scale-transfer layer into DenseNet 

without increasing computational complexity. To 

further boost the detection efficiency, RefineDet  [36] 

combined the RPN and FPN with the fast SSD [37] 

approach. Fast R-CNN  [30], Faster R-CNN [38], R-

FCN [39], and YOLO [27] use their numerous 

features within CNN to predict objects at different 

scales, as well as SSD [25] and MS-CNN [26]. 

Combining RPN and Fast R-CNN into a single 

network, called the Faster R-CNN, the framework of 

Faster R-CNN and other advanced models, such as the 

Mask R-CNN [32, 40], adds pixel-level segmentation. 

PANet [41] was thereafter proposed and has achieved 

even better segmentation results. The (SPPnet)[42] 

reduces the training and speed. Spatial pyramid 

pooling networks had been proposed to speed up R-

CNN by way of sharing computation and 

convolutional features.  To solve the micro target 

detection problem, [23, 29] revised the ResNet by 

integrating the idea of feature pyramid. 

PASCALVOC 2007 [43], MS COCO [44] from 

optical images, x-ray image and terahertz images are 

slightly different with distinctive imaging 

mechanisms. Their similarities in frequency spectrum 

are nearer. As a result, terahertz images of detection 

have inspection geometry features to optical images 

and x-ray images, because reflection, absorption, 

scattering of electromagnetic rays exhibits similar 

traits like angle, target structure and material 

penetration factors. In this paper, we attempt to 

transfer these classification strategies and detection 

strategies in terahertz images.  

In order to detect objects of different scales, a 

basic strategy is to use featurized image pyramids 

[23] to obtain features at different scales.Yolov3 

backbone is also known as Darknet-53 [27] .In this 

paper, we also adopt this training framework to 

instruct an effective model network on terahertz 

weapon and non-weapon security scanned image. 

This paper is arranged as follows. In Section 2, 

the introduction of Terahertz scanned images and 

augmented dataset arrangements. In Section 3, the 

methodology of object detection grouped into one-

stage, two- stages detector models, and their 

concealed diagrams are explained. In Section 4, we 

present the experimental outcomes and corresponding 

evaluation of the model. Section 5 discusses the 

optimized best results based on analyzed models and 

Section 6 concludes this paper. 

 

Dataset Description 
In this section, we introduce the acquisition steps 

of terahertz image and the expansion methods for the 

image data set, including rotation, translation, affine 

transformation, transmission transformation and so 

on. Finally, the corresponding statistical analysis of 

the expanded data set is carried out. 

 

Data Acquisition 
Due to acquisition rate up to 5000 lines per 

second teraFAST-256 device can accommodate scan 

speed up to 15 m/s. The sensor has single sensitivity 

band at 100±10GHz but experimental power source is 

between 100GHz. The conveyer belt speed of 10.1m/s 

is for image capture. 

 

 
Figure 2 - Terahertz image acquisition 

The size of the image data collected by the device 

is 512px*256px. For our research, we collected a total 

of 8 kinds of terahertz images of objects, including 4 

types of weapon images and 4 types of non-weapon 

images (in total, 369 images, because there might be 

more than one instance of a single image).  

The raw data information is shown in table 1 and 

Figure 3. 

 

 



Impact Factor: 

ISRA (India)        = 6.317 

ISI (Dubai, UAE) = 1.582 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 9.035 

SJIF (Morocco) = 7.184 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  238 

 

 

Table 1. Original terahertz image data 

Class Screwdriver Blade Knife Scissors Board marker Mobile 

phone 

Wireless 

mouse 

Water bottle 

Number of images 65 19 66 59 40 40 40 40 

 

 
Figure 3 - Scanned THz images 

Data Augmentation 
It is indisputable fact that terahertz technology is 

fairly new hence associated images are scanty. It is 

therefore not bizarre that from the previous steps the 

number of terahertz data sets collected was too small.  

Consequently, the target detection algorithm 

may be under-fitted in the case of so little data since 

terahertz image database is uncommon, and the 

performance of the model cannot meet the actual 

detection accuracy requirements. For this reason, it is 

necessary to expand the original image data. The 

methods of data argumentation used in this study are 

shown in figure 4. 

These image augmentation methods can be used 

alone or combined with a variety of transformations, 

that solves the problem of little training data to a 

certain extent. After augmentation, we get a total of 

1884 images, and mark the location of the object. The 

next section will make a statistical analysis of the 

augmented data set. 

 

(a)

(c)(b) (d) (e)

(g)(f) (h) (i)  
Figure 4 - Methods for augmenting terahertz images. (a) Original image. (b) Translation. (c) Rotation. (d) 

Scaling. (e) Affine. (f) Blurring. (g) Sharpen. (h) Cropping. (i) Dropout. 

 

Statistical Information of Dataset 
The statistical analysis of the data set is helpful 

for us to understand the characteristics of the data and 

to optimize the subsequent model. First, we make 

statistics on the number of instances and the average 

bounding box size of eight (8) categories, and get the 

following results: 

Table 2. Dataset Statistics Analysis 

Class Number of instances Average bounding box size 

Screw drive 390 108px*84px 

Blade 200 36px*35px 

Knife 396 89px*75px 

Scissors 354 104px*91px 

Board marker 240 78px*68px 

Mobile phone 240 110px*87px 

Wireless mouse 240 70px*75px 

Water bottle 240 118px*91px 
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As can be seen from table 2, the number of blade 

categories is the fewest, and the average bounding box 

is also the smallest. Screwdriver and knife are the 

largest in number and, bounding box is relatively 

large.  In addition, we also counted the ratio of all 

bounding box areas to the whole picture, and obtained 

the histogram shown in figure 5. 

From the results of figure 5, we can see that most of 

the bbox area ratio is about 3% to 10%. A small part 

is concentrated in the 1% area ratio, and the maximum 

proportion is no more than 25%. Further, we can 

analyze the size distribution of different types of bbox, 

as shown in figure 6. 

It can be seen from figure 6 that the bbox size of 

the blade category is relatively small, which may also 

cause the target detection algorithm to become worse 

under this category.  The sizes of other categories are 

widely distributed and evenly distributed.  

Methodology 
In this section, we introduce five target detection 

algorithms for terahertz images, namely, YOLOv3 

and SSD, (one-stage detection) and Faster RCNN as 

well as Cascade RCNN (two-stage detection). These 

algorithms will be used to detect weapon class objects 

and non-weapon class objects in terahertz images.  

 

One-stage detector 
The single-stage detector realizes a series of end-to-

end processes such as image input, feature extraction, 

regression location and object classification, and no 

other processes are introduced as shown in figure 6. 

This kind of target detection algorithm ensures a 

certain accuracy under high detection speed, and is 

also widely used in industrial detection. 

 

 
Figure 5 - Graph of Classes distribution & Histogram of Bounding boxes 

 

Figure 6 - Scatter diagram of bounding boxes 
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Figure 7 - One-stage detector Architecture 

YOLOv3 
YOLOv3 is the improved algorithm for 

YOLOv2 [27] and uses the darknet-53 network as the 

feature extraction network and the residual module 

(residual block).  

In order to better detect objects of different 

scales, YOLOv3 draws lessons from feature pyramid 

network[45].We refer readers to [45–47] for further 

information on YOLOv3 regarding the ideas of 

outputting the three feature graph maps of different 

sizes. The overall structure of YOLOv3 as shown in 

figure 8. 

 
Figure 8 - YOLOv3 Model Structure [48] 

The loss function of YOLOv3 is composed of the 

loss sum of three output characteristic graphs. The 

loss of each feature graph is composed of bounding 

box loss, object confidence loss and non-object 

confidence loss (non-object confidence). The 

expression is as follows: 

 

 

 
In the above formula, the weight control 

parameter, tx, ty, tw, th is the offset, 
obj

i1 denotes if 

object appears in cell i and 
obj

ij1  denotes that the j-th 

bounding box predictor in cell i is "responsible" for 

that prediction that needs to be learned.  

Single Shot MultiBox Detector (SSD) 
The Single Shot Detector (SSD) [48] is one of the 

first attempts to use the pyramidal characteristic 

hierarchy of the convolutional neural network to 

detect items of different sizes effectively. 

 

(1) 
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Figure 9 - SDD Model Structure 

SDD loss function is the sum of a localization loss 

and a classification loss. 

 

𝐿 =
1

𝑁
(𝐿𝑐𝑙𝑠 + 𝛼𝐿𝑙𝑜𝑐） 

Where N is the number of bounding boxes 

matched and where α balances the weights between 

two losses, chosen by cross validation. The loss of 

localization is a smooth loss of L1 between the 

expected correction of the bounding box and the true 

values. The transformation of the correction of 

coordinates is the same as what R-CNN does in the 

regression of bounding boxes.  

Where 1𝑖𝑗
𝑚𝑎𝑡𝑐ℎ indicates whether the i-th 

bounding box with coordinates (𝑝𝑥
𝑖 , 𝑝𝑦

𝑖 , 𝑝𝑤
𝑖 , 𝑝ℎ

𝑖 ) is 

matched to the j-th ground truth box with coordinates 

(𝑔𝑥
𝑖 , 𝑔𝑦

𝑖 , 𝑔𝑤
𝑖 , 𝑔ℎ

𝑖 )  for any object 𝑑𝑚
𝑖 , 𝑚 ∈ {𝑥, 𝑦, 𝑤, ℎ}. 

 

 

 
Figure 10 - Two-Stage detector architecture 

Where 1𝑖𝑗
𝑘  indicates whether the i-th bounding 

box and the j-th ground truth box are matched for an 

object in class k [48]. 

The R-CNN clusters of models are all regional 

focused from figure 8. The detection takes place in 

two stages: (1) first, by selecting search or regional 

proposal network the model proposes a collection of 

regions of interest. The regions proposal network are 

sparse as possible candidates for the bounding box 

may be infinite. (2) Secondly, only the region 

candidates are processed by a classifiers [49]. 
 

Faster R-CNN 
To incorporate the area proposal algorithm into 

the CNN model, an intuitive speed-up solution is 

Faster R-CNN [50] which does exactly this: create a 

single, unified model consisting of RPN 

(region proposal network) and fast R-CNN with 

shared convolution layers.  

 

(2) 

(3) 
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Figure 10 - Faster R-CNN Model Structure 

 

Faster R-CNN is optimized for a multi-task loss 

function [49] 

 

Symbol       Explanation 

       Predicted probability of anchor i being an 

object. 

      Ground truth label (binary) of whether 

anchor i is an object. 

        Predicted four parameterized coordinates. 

        Ground truth coordinates. 

   Normalization term, set to be mini-batch 

size ( ̴256) in the paper. 

   Normalization term, set to the number of 

anchor locations ( ̴2400) in the paper 

      A balancing parameter, set to be  ̴10 in the 

paper (so that both Lcls
and Lbox

term are 

roughly equally weighted.                              

The multi-task loss function combines the losses 

of classification and bounding box regression: 

 

 

Where Lcls is the log loss function over two 

classes, as we can easily translate a multi-class 

classification into a binary classification by predicting 

a sample as being a target object otherwise L1
smooth is 

the smooth L1 loss. 

 

 

 

Mask/Cascade R-CNN 
Mask R-CNN  [32] extends Faster R-CNN to 

segmentation of images at pixel level. The key point 

is to decouple prediction activities from the 

classification and the pixel-level mask.  

It introduced a third branch, based on the Faster 

R-CNN architecture, to predict an object mask in 

parallel with existing branches for classification and 

localization. The mask branch is a small completely 

linked network added to each RoI predicting a pixel-

to - pixel segmentation mask. 

Since segmentation at the pixel level involves 

much more fine-grained alignment than bounding 

boxes, the R-CNN mask enhances the RoI pooling 

layer (named " PsRoI Pooling layer") so that RoI can 

be better and more accurately mapped to the regions 

of the original image. The PsRoI Pooling layer is 

designed to fix the location misalignment caused by 

quantization in the RoI pooling. Bilinear interpolation 

is used to measure the input values of floating-point 

positions [51]. 

 

p
i

p
i

*

t i

t i

*

N cls

N box



(4) 

(5) 
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Figure 11 - Mask R-CNN Model Structure 

 

The multi-task loss function of Mask R-CNN 

combines the loss of classification; localization and 

segmentation mask ℒ = ℒ𝑐𝑙𝑠 + ℒ𝑏𝑜𝑥 + ℒ𝑚𝑎𝑠𝑘  where  

ℒ𝑐𝑙𝑠 and ℒ𝑏𝑜𝑥 are same as in Faster R-CNN. The 

mask branch generates a mask of dimension m x m for 

each RoI and each class; K classes in total. Thus, the 

total output is of size K*m2. 

ℒ𝑚𝑎𝑠𝑘 is defined as the average binary cross-

entropy loss, only including k-th mask if the region is 

associated with the ground truth class k. 

 

𝐿𝑚𝑎𝑠𝑘 = −
1

𝑚2
∑ [𝑦𝑖𝑗log�̂�𝑖𝑗

𝑘

1≤𝑖,𝑗≤𝑚

+ (1 − 𝑦𝑖𝑗)log(1 − �̂�𝑖𝑗
𝑘 ) 

 

where yij is the label of a cell (i, j) in the true mask for 

the region of size m x m; ŷ
𝑖𝑗
𝑘  is the predicted value of 

the same cell in the mask learned for the ground-truth 

class k [49]. 

 

Experimental Results and Discussion 

In this section, we first introduce the indicators 

used to evaluate the accuracy of the detection model. 

Secondly, we compare and analyze the detection 

results of the five detection models mentioned above 

under the terahertz image data set, and discuss the 

differences between them.  

Finally, we select a model with the best detection 

speed and accuracy as our final detection algorithm 

for security detection of terahertz images. The 

hardware and software configuration of experiments 

is shown in Table 11. 

 
Table 3. Hardware and software configuration of experiment 

 

Hardware/Software Parameters 

Operating System Ubuntu18.04 LTS 64bit (Linux 4.15) 

Central Processing Unit Intel(R) Core (TM) i7-7800X CPU @ 3.50GHz 

Graphical Processing Unit NVIDIA RTX 2080(8G) 

RAM DDR4 32G 

CUDA CUDA 10.1 

cuDNN cuDNN 7.6.1 

Deep Learning Framework PyTorch 1.4 

 

Evaluation for Metric Detection 

In this paper, we adopted the detection metrics 

introduced in [22] applied to table 5, which includes 

average precision (AP) over multiple Intersection 

over Union (IoU) values. The IoU can be calculated 

in equation 7. 

𝐼𝑜𝑈(𝐵𝑜𝑥𝑝𝑟𝑒𝑑 , 𝐵𝑜𝑥𝑔𝑡) =
𝐵𝑜𝑥𝑝𝑟𝑒𝑑 ∩ 𝐵𝑜𝑥𝑔𝑡

𝐵𝑜𝑥𝑝𝑟𝑒𝑑 ∪ 𝐵𝑜𝑥𝑔𝑡

 

The calculations of precision and recall are 

shown in Figure 12. Traditionally, The average 

precision (AP) is a detection measure which combines 

the classification accuracy and location accuracy for 

each object. mAP is the mean AP for all objects. 

(likewise AR and mAR).  

Unless otherwise specified, AP and mAP used in 

this paper. The detection metrics are listed in Table 4. 

(6) 

(7) 
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Figure 12 - Calculation of precision and recall. 

 

Datasets and Training Configuration 
The target detection task not only needs to 

determine which object it belongs to, but also needs to 

determine the location of the object. This paper uses 

the evaluation indicators used in the COCO data set 

and the labelImg software tool. We included the 

average precision (AP) and average recall (AR) 

indicators, with results further subdivided into: under 

small (area smaller than 32px*32px), medium (area 

between 32px*32px and 96px*96px) and large (area 

larger than 96px*96px) detection areas. Finally, the 

augmented data total of 1884 images, and divide the 

training, and test sets at the proportion of 4:1:1. 

Finally, we randomly divided the data samples get 

1205 training sets, 302 validation sets and 377 images 

of the test set. In order to ensure the rationality of the 

algorithm comparison, we uniformly use the 

parameters shown in table 5 during the model-training 

phase. 

AP (averaged across all 10 IoU thresholds and 

all categories) should be considered the most 

important metric when considering model 

performance in our research. For metric AR, the larger 

the value the lesser the false negative rate which is 

important for defect inspection along the overhead 

transmission line. Finally, in order to measure the 

image detection speed of different models, we also use 

the detection speed index: frame per second (FPS). 

To train the defect detection model introduced in 

previous section 2, it is essential to setup the training 

configurations properly. In our research, we use the 

configurations listed in Table 5. 

 

 

Table 4. Dataset information for training and testing 

 

Metric Meaning 

AP Average precision for [ IoU = 0.50:0.95 | area = all | maxDets = 100 ] 

AP@0.5
 Average precision for [ IoU = 0.50 | area = all | maxDets = 100 ] 

AP@0.75 Average precision for [ IoU = 0.75 | area = all | maxDets = 100 ] 

APsmall Average precision for [ IoU = 0.50:0.95 | area = small | maxDets = 100 ] 

APmedium Average precision for [ IoU = 0.50:0.95 | area = medium | maxDets = 100 ] 

APlarge Average precision for [ IoU = 0.50:0.95 | area = large | maxDets = 100 ] 

AR1 Average recall for [ IoU = 0.50:0.95 | area = all | maxDets = 1 ] 

AR10 Average recall for [ IoU = 0.50:0.95 | area = all | maxDets = 10 ] 

AR100 Average recall for [ IoU = 0.50:0.95 | area = all | maxDets = 100 ] 

ARsmall Average recall for [ IoU = 0.50:0.95 | area = samll | maxDets = 100 ] 

ARmedium Average recall for [ IoU = 0.50:0.95 | area = medium | maxDets = 100 ] 

ARlarge Average recall for [ IoU = 0.50:0.95 | area = large | maxDets = 100 ] 
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Table 5. Models Training Parameters 

 

Parameter Value 

Training epochs 50f 

Optimizer Adam 

Learning rate 1e-4 

Batch size 8 

 

Evaluation results 
After completing the model training, we evaluate 

the performance of the five models on the test set. 

Since there are eight categories to be detected, we first 

present the overall results in table 6. 

As can be seen from table 6, the yolov3 model 

has the best results in evaluating the overall 

performance of the dataset. 

 

Table 6. Models Evaluation Performance 

 

Metric yolov3 SSD300 SSD512 Faster RCNN Cascade RCNN 

AP 0.739 0.713 0.716 0.562 0.632 

AP0.5 0.992 0.963 0.981 0.884 0.878 

AP0.75 0.854 0.774 0.828 0.596 0.669 

APsmall 0.51 0.339 0.345 0.26 0.221 

APmedium 0.705 0.681 0.695 0.524 0.599 

APlarge 0.816 0.781 0.776 0.643 0.682 

AR1 0.763 0.747 0.744 0.624 0.678 

AR10 0.791 0.759 0.756 0.652 0.697 

AR100 0.791 0.759 0.756 0.652 0.697 

ARsmall 0.699 0.366 0.472 0.358 0.282 

ARmedium 0.761 0.727 0.733 0.617 0.658 

ARlarge 0.85 0.823 0.808 0.709 0.74 

 

The higher the AP, the higher the true positive 

rate, the average recall, and the smaller the false 

negative rate, which is very important in the field of 

security. To ensure high recognition accuracy, it is 

also necessary to ensure a lower missed detection rate.  

 

 
Figure 13 - Yolov3 training Model 
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The more surprising result is that the 

performance of two-stage detector Faster RCNN and 

Cascade RCNN on terahertz data is not satisfactory, 

and its AP index decreases by 23.9% and 14.5% 

respectively compared with yolov3. The detection 

effect of the model is the worst. For SSD300 and 

SSD512 models, there is little difference in AP 

indicators, but in AP0.5 and AP0.75 indicators, 

SSD512 model is 1.9% and 6.5% higher than SSD300 

respectively. The reason is that SSD300 zooms to 

300px*300px size during image input, while the 

original image is 512px256px. A lot of feature 

information is lost after image compression, resulting 

in a decline in SSD300 performance. However, 

compared with the yolov3 model, the SSD500 model 

still decreased by 3.1% under the AP index. The 

calculations of precision and recall are shown in 

Figure 6.  

In table 7, we analyze the recognition effect of 

six (6) categories and select AP as the analysis index, 

which is stricter to the detection accuracy. 

 

 

Table 7. Model Detection Accuracy for hiding weapons & non-weapons 

 

Category yolov3 SSD300 SSD512 Faster RCNN Cascade RCNN 

Screw drive 0.659 0.642 0.63 0.409 0.449 

blade 0.539 0.479 0.557 0.26 0.385 

knife 0.642 0.563 0.594 0.326 0.33 

scissors 0.695 0.605 0.608 0.433 0.455 

Board marker 0.78 0.803 0.771 0.663 0.773 

Mobile phone 0.899 0.878 0.875 0.837 0.886 

Wireless mouse 0.832 0.868 0.826 0.748 0.907 

Water bottle 0.87 0.866 0.865 0.816 0.872 

mAP 0.740 0.713 0.716 0.562 0.632 

 

Combined with the detection accuracy results 

obtained above, we use AP as abscissa and AR as 

ordinate to draw figure 13 to show the results, in 

which the circle size represents the speed of model 

reasoning. 

 

Table 8. Inference Models with time 

 

Model yolov3 SSD300 SSD512 Faster RCNN Cascade RCNN 

Inference time           

(ms per image) 
21.2 50.4 61 79.6 61 
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Figure 14 - Comparison of models’ detection performance 

From figure 14, we can see that while ensuring 

the detection performance, yolov3 also ensures the 

detection speed. Compared with other models, yolov3 

is more superior. Figure 15 shows the recognition 

results of yolov3 in different categories. 

 

 

 
Figure 15 - True-Recognition of hidden weapons and non- weapons 

It can be seen that it is good to identify the type 

and the specific location of objects. However, when 

we check the model test results, we also find that the 

probability of false recognition of category blade is 

relatively high, and it is easy to be wrongly identified 

as scissors, knife, and screen drive as shown in figure 

15. 

It is necessary to further improve the recognition 

effect of this category. 

Optimizing YOLOv3 

From the previous experimental results, we can 

see that among the single-stage and two-stage 

algorithms proposed in this paper, the YOLOv3 

algorithm is currently the best in terms of detection 

accuracy and speed, and the detection speed can 

achieve 21.2ms image, which is close to the 

acquisition speed of terahertz images.  

 

 
Figure 15 - Falsehood –Recognition of hidden weapons 
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In order to further improve the detection speed 

and ensure sufficient accuracy, we will improve the 

backbone and neck parts of YOLOv3 in this section. 

 

Optimizing Backbone 

The overall structure of YOLOv3 includes data 

input, backbone, neck and head, for detection. The 

schematic diagram of the structure is shown in figure 

16. 

In the previous experiment, the backbone of the 

YOLOv3 detection model is the darknet53 network 

proposed by [27] which draws lessons from the resnet 

network, so there are more convolution layers to 

extract image features.  

Here we draw lessons from the cross stage partial 

structure proposed in the [27] to transform the 

darknet53, and its structure is shown in figure 16. 

 

 
Figure 16 - Our model structure 

 

The graph (a) is the original darknet structure, 

and the graph (b) is the improved structure where 

Partial transition represents the convolution operation 

and pooling operation. Using this structure can not 

only ensure accuracy, but also effectively reduce the 

calculation of the model, so as to obtain faster 

reasoning speed. 

 

 

 

 

Optimizing Neck 

In the neck section, our improvement is to add 

PANet and SPP structures. The structure of PANet is 

as shown in figure 17. 

The function of adding bottom-up path 

augmentation network to the FPN network is to make 

full use of the object position information in the 

shallow features, which will help to improve the target 

position detection accuracy of the network.  
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Figure 17 - The structure of PANet 

 

SPP network solves the problem of fusion of 

different size features, and can ensure that images of 

different sizes are input during training and testing. 

 

Experimental Results and Discussion 
After improving the structure of YOLOv3, we 

use the previous experimental conditions and data sets 

to retrain, and evaluate the results of the improved 

model on the test set. The training graph and results 

are shown in figure 18. 

 

 

 

 
Figure 17 - Our Optimization Training Model 
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Table 8. Optimized model 

 

Model AP AP0.5 AP0.75 APsmall APmedium APlarge Inference 

time(ms) 

Darknet53 0.739 0.992 0.854 0.51 0.705 0.816 21.2 

Darknet53-SPP 0.735 0.991 0.855 0.591 0.703 0.8 21.5 

CSPDarknet53-

SPP 

0.733 0.986 0.864 0.534 0.716 0.788 6.9 

CSPDarknet53-

PANet-SPP 

0.748 0.99 0.873 0.585 0.725 0.804 8.4 

 

 

 
 

Figure 18 – Improved Yolov3 model correctly identifies blade 

 

 
Figure 17 - Comparison of different optimized models 

 

 

After the backbone structure of YOLOv3 blade 

detection has been signiificantly improved better than 

the former at Figure 18. 

From the comparison results of the above table, 

it can be seen that the detection speed of the modified 

backbone model CSPDarknet53-SPP and 

CSPDarknet53-PANet-SPP is 3.1 and 2.5 times faster 

than that of the yolov3 model with Darknet as 

backbone, respectively.  

Among them, the reasoning speed of 

CSPDarknet53-PAN-SPP model is 17% slower than 

that of CSPDarknet53-SPP without PAN (path 

aggregation network), and the increased time loss 

mainly occurs in the process of characteristic 

information propagation in PANet.  

However, the adoption of the PANet structure 

also brings a 2% performance improvement to the AP 

index of the model. 

From the optimization results of yolov3, the 

reasoning speed of the model is greatly improved by 

using the new CSPDarknet53 network, but the 

improvement in prediction accuracy is not very 
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obvious. Considering the detection speed and 

accuracy, CSPDarknet53-PANet-SPP network will be 

the best choice for detecting terahertz images. 

 

Conclusions 
In this paper, we perform a comprehensive 

comparative study of five deep learning detection 

algorithms for detecting terahertz hidden weapons and 

non-weapons objects. We also performed data 

argumentation to increase the database. In other terms, 

the greater the Dataset, the greater the improved 

detection method efficiency achieved. 

On the successful distribution of hidden weapons 

and non-weapons in terahertz image, we implement 

large average recall and average precision of 

intersection of union (IOU) parameters. In addition, 

we pooled this approach and Yolov3 into a uniform 

terahertz detection system and it performed the best as 

compared to other deep learning models proving that 

one-way detection method for hidden weapons and 

non-weapons is far better than two-way detection 

methods. 

It can also be deduced from experimental results 

that after optimization of Yolov3, the detection speed 

and accuracy of our new model out performs five 

elected existing models with respect to the detection 

of hidden weapons and non-weapons in terahertz 

images. 
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