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Abstract 
Understanding the current and past state of land use and land cover (LULC) changes in a region is possible through multitemporal 
remote sensing studies in order to identify patterns of long-term changes. This study was conducted to evaluate the shoreline 
dynamics of the Valencia lake and the magnitude of LULC changes in Zamora Municipality, Venezuela from 1986 to 2016. Landsat 
(5/7/8) images were processed and classified through the object-based approach. The image classification assessment was performed 
through the stratified random sampling and the unbiased accuracy assessment methods over 397 sampling units. We used GIS 
(Geographical Information System) analysis to estimate the magnitude of LULC changes, ascertain the evolution of the shoreline, 
and identify areas in conflict with the potential for agricultural use. Our image classification accuracy was 69%. We found that 
scrublands and farmlands experienced reductions, 13029 ha, and 818 ha respectively, whereas forest, built-up, and water bodies 
showed increments, 11792 ha, 1482 ha, and 634 ha correspondingly. The lake shoreline underwent more than 50% of its raising 
during the last two study years (2003-2016). It was also observed during these two years that LULC changes prompted conflicts with 
other land uses, 82% of the lands affected by the shoreline increment were farmlands with high potential for crop yields, and built-up 
areas grew at a rate of 81 ha /yr. wherein more than one third were lands with high or moderate potential for agricultural use. Our 
results show that scrublands and/or grasslands experienced important reductions and to a lesser degree farmlands. On the other hand, 
other classes experienced remarkable increments: forest, and built-up. An upward trend of the Valencia lake shoreline was 
determined. Further studies are advisable to determine whether the object-based or the pixel-based classification is more suitable to 
evaluate LULC changes in our study area.

Keywords: Land Use/ Cover, Multitemporal Remote Sensing, Object-Based Classification, Valencia Lake, Venezuela. 

Introduction 

The Valencia lake basin spans 3055 km2 and is located 

between the Serranía del Litoral (littoral mountains) and 

the Serranía del Interior (inland mountains) of the 

Cordillera de la Costa (coastal mountain range) in the 

central region of Venezuela. This basin is an endorheic 

basin that retains water and without outflow to other 

water bodies like rivers or oceans (Wikipedia, 2017). 

Approximately 0.3% of the territory in Venezuela is 

occupied by this basin, but nearly 10 % of the population 

and 30% of the industrial infrastructure in Venezuela lie 

within the Valencia lake basin (Fundacite, 1999). The 

compulsive establishment of manufacturing and raw 

material processing companies in this basin has been 

accompanied by a significant urban sprawl. 

The abovementioned issues have created enormous 

environmental pressures in this basin, especially since 

the industrialization of areas surrounding the Valencia 

Lake. As a result, urban centers have been expanded 

without planning; generating significate land use and 

land cover (LULC) changes. It is important to highlight 

that the volume of wastewater flowing into the Valencia 

lake has increased as a consequence of an improvised 

occupation of the basin's territory, especially in flatlands. 

For more than fifty years, this wastewater has been 

discharged into the lake without appropriate treatment 

and management (Jaimes, 2011). Therefore, the lake 

water is polluted and is not suitable for human 

consumption and recreational or agricultural activities 

because the lacustrine ecosystem is seriously affected by 

urban and industrial effluents. Since the mid-twentieth 

century, this basin has experienced quick population 

growth, generating scarcity of freshwater. To solve this 

problem, water from the Pao river (a tributary of the 

Orinoco river basin) began to be transferred since the 

late 1970s. In consequence, since the 1980s, the lake 

level has grown significantly and agricultural and urban 

areas have been flooded. 

In this respect, areas for agricultural use in this basin 

have dropped due to increments of the lake level and 

urban and industrial areas (Fundacite, 1999). Between 

1982 and 2000, urban areas grew at an average annual 

rate of 3.3 % and 70 % of this increment affected lands 

with high potential for agricultural use (Ormeño, 2002).  

From 1980 to 2000 the annual average rate of area 

decreases for agricultural use was 790 hectares per year 

(Ormeño, 2002). Due to the fast development, the 

Valencia lake basin has undergone, LULC changes have 

shown dynamic and heterogeneous behavior. Natural 

covers and urban and agricultural uses have experienced 

significant changes (Tejada, 2006). 

LULC is a topic that is widely discussed and studied by 

several scientific disciplines. This is mainly due to the 

fact that unplanned human activities such as illegal 

logging and burning of forests, mining, agriculture, and 
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urban expansion, are causing negative effects on the 

environment (Pontes, 2013; Burak et al., 2004).

Land cover refers to all biotic and abiotic factors of 

Earth’s surface and the underlying subsoil. Land cover 

change is the conversion from one category to another, 

implying changes in its condition, for example, changes 

from agriculture to urban areas, or forest degradation 

(Giri, 2012; Kaya et al., 20017). Land use can be defined 

as the way by which human beings use or occupy the 

territory. This term is related to socioeconomic factors 

that influence a particular use of the territory (e.g. 

production, recreation, conservation, etc.). Land use 

change refers to the substitution of one use for another 

one due to human activities, for example, a forest can be 

used as a protected area (e.g. change of use), resulting in 

a greater number of visitors, which does not imply a 

change in land cover (Giri, 2012; Gazioğlu et al., 1997; 

Islam et al.,I 2016; Mohammadı and Hosseınalı, 2019). 

LULC changes are caused directly or indirectly by 

human activities seeking to ensure essential resources. 

This may have happened for the first time when humans 

burned vegetation in order to facilitate hunting. 

Agricultural activities have accelerated this process 

dramatically, resulting in widespread deforestation and 

intervention of the Earth's surface. Recently, the 

industrialization has triggered population growth in 

urban areas and population depletion in rural areas. This 

has intensified the use of the most productive lands for 

agriculture and the marginalization of the less suitable 

lands (The Encyclopedia of Earth 2010). 

Data captured through remote sensing techniques and 

their analyses provide detailed information for 

monitoring LULC changes (Rogan and DongMe, 2004). 

The accessibility of free and low-cost data generated 

from remote sensing and new image analysis techniques 

have encouraged the remote-sensing community to 

generate information for LULC mapping (Mallinis and 

Georgiadis, 2019). In contrast to traditional methods, 

LULC mapping using remotely sensed data is faster and 

cheaper, map products are readily updated. It is 

straightforward to join remotely sensed data with data 

derived from GIS, and by using data obtained from 

remote sensing it is possible to map large areas (Toure, 

et al., 2018), which is very useful for LULC purposes. 

There are a variety of remote sensing techniques 

producing various results due to the remotely sensed 

data, environmental conditions, and image processing 

methods (Berberoglu and Akin, 2009). Mapping 

accurately land use and land cover using remote sensing 

techniques requires adequate image classification 

methods (Ngan Lam, 2008). Image classification is an 

essential stage during the image analysis that allows 

users to group pixels of an image into classes or 

categories representing land covers (Patil, et al., 2012).   

New classification methods have been devised to 

enhance the classification process (Ngan Lam, 2008). 

New methods such as fuzzy classification, artificial 

neural network, and object-based classification have 

been successfully applied (Ngan Lam, 2008).   The 

object-based classification uses the sizes, shapes, 

textures and spectral features of the regions (Campbell 

and Wynne, 2011). To extract features, the object-based 

paradigm makes use of all aspects of remote sensing, 

especially spectral, spatial, contextual, textural and 

temporal properties of the features (Navulur, 2007).  

The purpose of this work is to evaluate the shoreline 

dynamic of the Valencia Lake and its LULC changes 

through geomatics tools, focusing on the Zamora 

municipality in the Aragua state. These dynamic and 

LULC changes were assessed by classifying medium 

resolution satellite imagery using the object-based 

approach between 1986 and 2016. 

The main objective of this work is to evaluate the 

evolution of the Valencia lake shoreline and LULC 

changes in Zamora municipality Aragua state from 1986 

to 2016. Other objectives are as follows: (i) describe 

LULC changes in Zamora municipality between 1986 

and 2016; (ii) ascertain the evolution of the lake 

shoreline in the study area from 1986 to 2016; (iii) 

identify areas in conflict with the potential agricultural 

land use in the study area between 1986 and 2016. 

Study Area 

Zamora municipality is located at the middle part of the 

Aragua state (Figure 1). Its limits are the following: 

North: Libertador, José Ángel Lamas and Sucre 

municipalities; South: Guárico state; East: San Sebastián 

and José Félix Ribas municipalities; West: Carabobo 

state (Figure 2). 

Zamora municipality is in the Aragua state in Venezuela 

and spans an area of 68424 hectares. The western portion 

of this municipality lies in the Valencia lake basin where 

important urban centers are located: Villa de Cura 

(capital city), Tocorón and San Francisco de Asís. On 

the other hand, the eastern area of this municipality that 

makes up the Guárico river basin is predominantly hilly 

and has not urban development. This work is based on 

the LULC changes that occurred in this territory. 

Almost all the Zamora municipality territory has a 

tropical savanna climate. The predominant vegetation is 

savanna, with some features of premontane forests. The 

most important economic activities of this municipality 

are mining, agriculture, and industries. Its relief is 

formed by the Serranía del Interior (inland mountains), 

which in geological terms is a recent mountainous block. 

Open or natural paths such as Villa de Cura allow the 

communication between the Valencia lake basin, the 

Aragua valleys and the Guariqueños Plains (Wikipedia, 

2016). 
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Figure 1. Study Area Figure 2. Study Area Boundaries 

Materials and Methods 

Datasets 

Cartographic information was reviewed in order to 

obtain geospatial data and information related to the 

study area.  In this regard, vector and raster datasets of 

the Aragua state administrative areas, land use 

classifications, topography, among others, were selected 

and used. These datasets were mainly obtained from the 

Ministry of Environment, the Faculty of Agronomy 

UCV (Universidad Central de Venezuela) and the 

regional government. 

Landsat 5, 7 and 8 images were obtained from the 

Geological Survey of the United States (USGS) through 

the website http://earthexplorer.usgs.gov/. Landsat 5 and 

7 thermal infrared band (band 6), and Landsat 8 coastal 

aerosol (band 1), cirrus (band 9), and infrared thermal 

bands (band 10, 11) were not taken into account since 

they are generally used for coastal and aerosol studies, 

cirrus cloud contaminations and soil moisture (USGS, 

2015). In order to obtain an even spatial resolution, only 

Landsat images were used throughout the study periods. 

Four study periods were defined, for each period an 

image was selected with the specification presented in 

Table 1. 

Land Use and Land Cover System 

The CORINE Land Cover system adapted to Colombia 

was chosen as the basis for defining LULC change 

categories. The Colombian CORINE Land Cover project 

standardized a classification system with hierarchical 

categories, based on the information provided by 

Landsat TM images according to local conditions of the 

territory in Colombia (Instituto de Hidrología, 

Meteorología y Estudios Ambientales, et al., 2008). The 

CORINE Land Cover system adapted to Colombia was 

used in this work because Venezuela and Colombia have 

similar anthropic footprint patterns as well as common 

biotic and abiotic features. The Colombian CORINE 

Land Cover system adapted to this investigation is 

presented in Table 2. 

Table 1. Images used in this study 

Study Period Acquisition / Study Year  Mission/Sensor Processed Bands 

1986-1998 
1986 Landsat 5 (TM) 1-6 

1998 Landsat 5 (TM) 1-6 

1998-2003 2003 Landsat 7 (ETM+) 1,2,3,4,5,7 

2003-2016 2016 Landsat 8 (OLI/TIRS) 2-7 

Table 2. CORINE Land Cover Colombia legend adapted to this study 

Level 1 Level 2 

1. Artificial Surfaces 1.1 Urban fabric 

1.2 Industrial and commercial units 

1.3 Mine and dump sites 

2. Agricultural Areas 2.1 Heterogeneous agricultural areas 

3. Forest and Semi Natural Areas 3.1 Forests  

3.2 Scrub and/or herbaceous vegetation associations 

3.3 Open spaces with little or no vegetation 

4. Water Bodies 4.1 Inland waters 

Coiman / IJEGEO 7(3):305-318 (2020)



Coiman / IJEGEO 7(3):305-318 (2020)

308

Image Pre-processing 

In the image processing step, three operations were 

performed on each of the selected images: cropping, 

atmospheric correction, and enhancements. It is 

important to highlight that when multitemporal studies 

are carried out, it is necessary to atmospherically correct 

the images since the scattering is not the same for images 

acquired on different dates (Chuvieco, 1995; Kaya et al., 

2015). 

The FLAASH module (Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes) of the ENVI 5.1 

software was used for image atmospheric correction. The 

eCognition Developer software was used for image 

enhancement.  Images used in this study were not 

geometrically corrected because the USGS performs a 

standard terrain correction (level 1T) with systematic 

radiometric and geometric accuracy (Rodríguez, 2011). 

Image Classification 

Landsat image classification was carried out by using the 

eCognition Developer 8.0 and the object-based 

approach. The following steps were executed in order to 

perform the object-based classification (Figure 3). (i) 

loading land use vectors and image composites into 

eCognition projects; (ii) definition of parameters used by 

the Multiresolution Segmentation algorithm; (iii) 

building class trees from the categories shown in Table 

2; (iv) collecting training samples to define parameters 

of the classification rules. Ten (10) samples were 

collected per category since each of them must be made 

up by a number of training sites (at least 5 to 10) that 

ensure that their spectral properties are represented 

(Campbell and Wynne 2011); (v) definition of 

classification rules for each coverage classes based on 

the membership function classifier. The membership 

function method uses the fuzzy logic approach to 

classify image objects (Xiaoxiaa, et al., 2004); The 

classification rules were based on image composites and 

vegetation indices like Normalized Difference 

Vegetation Index (NDVI), Ratio Vegetation Index 

(RVI), Soil-adjusted Vegetation Index (SAVI), and 

Difference Vegetation Index (DVI). The classification 

rule for the Inland waters class was defined from the 

Land Water Mask (LWM) used by (ICIMOD, 2015); 

(vi) defining algorithms to classify objects based on 

classification rules and vector layers. The following 

algorithms were used: Classification, Assign Classes by 

Thematic Layer and Assign Class; (vii) image 

classification assessment through the error matrix 

(confusion matrix) based on the unbiased accuracy 

assessment method proposed by (Olofsson, et al., 2013). 

The classification assessment was only performed on six 

classes of the 2016 classification results due to the lack 

of ground truth data for all the classified images. The 

Copernicus Global Land Cover Layers: CGLS-LC100 

collection 2 (Buchhorn, et al., 2019) and the Google 

Earth Engine Python API were used to capture ground 

truth samples. 397 random sample points were selected 

within the strata or classes using the stratified random 

sampling method and the NOAA Biogeography 

Branch’s Sampling Design Tool for ArcGIS (NCCOS, 

2017). 

Image post-classification 

In the post-classification phase, all the classified objects 

were processed in order to generate vector layers that 

were used in subsequent stages of spatial analysis. The 

objects were merged with the Merge Region algorithm 

of eCognition and then exported as shapefile layers. 

Vector layers were adapted to the minimum mapping 

unit (MMU) that was set at 25 ha which is equivalent to 

¼ cm2 at a 1: 100000 scale. Finally, shapefile layers 

were reduced to the Zamora municipality extent through 

a cutting operation. 

Figure 3. Steps executed to carried out the object-based classification. 

Evolution of the lake shoreline, and the agricultural 

and urban use 

To calculate the evolution of the lake shoreline, the area 

occupied by the lake was extracted from each study year 

shown in Table 1. Layers of consecutive years were 

joined to obtain polygons containing data about the 

variation of the lake surface for each period of study 

depicted in Table 1. This task was carried out through 

ArcGIS Desktop 10.1. The FID field of the resulting 

attributive table was used to pinpoint growth polygons of 

the lake. To calculate the lake shoreline level of each 

study year, the above-mentioned polygons were 

transformed into polylines from which the lacustrine 

shoreline was obtained. Then, a 10 m buffer was 

calculated that was used to extract the portion of the 

MDE-SISDELAV (Sistema de Información de Suelos de 

la Depresión del Lago de Valencia) and the shoreline 

mean elevation or each study year. 
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To obtain agricultural use and urban use areas, a 

procedure similar to the above-mentioned was used. For 

each study year, areas of agricultural and urban use were 

selected and converted into new layers. Then, layers of 

consecutive study years were joined in order to obtain 

polygons containing the variation of the agricultural and 

urban areas by period of study. The FID attribute was 

equally used to determine areas that increased or 

decreased.  

Identification of areas in conflict with potential 

agricultural land use 

The identification of areas in conflict with potential 

agricultural land use was carried out on the following 

classes: Inland waters (lake), Heterogeneous agricultural 

areas and Urban fabric. To do that, the following layers 

were processed: increment of the lake area, raise and 

shrink of agricultural and urban use, and potential land 

use from SISDELAV data. QGIS 2.18 was used to clip 

the SISDELAV data using the corresponding increment 

and decrement polygon. This procedure allowed 

obtaining the data to quantify and characterize the 

potential agricultural land use affected by the evolution 

of the lake shoreline, the increase and/or decrease of 

agricultural areas and the urban expansion in Zamora 

municipality. 

Results 

Accuracy Assessment 

As mentioned previously, the image accuracy 

assessment was calculated through the unbiased 

accuracy assessment method. The following statistics are 

presented: (i) confidence interval, (ii) user accuracy, (ii) 

producer accuracy, and (iv) overall accuracy. A 

confidence interval gives a range of values for a certain 

parameter considering the uncertainty of the example-

based estimate (Olofsson, et al., 2013); user accuracy is 

the probability of commission error while producer 

accuracy is the probability of omission error, and the 

proportion of the area classified correctly is the overall 

accuracy (Olofsson, et al., 2013). A total of 397 

sampling points were used for the accuracy assessment 

of the year 2016, and the overall accuracy was 69 %. 

Producer accuracy for all classes ranged from 53 % to 95 

%, the user accuracy from 47 % to 84 % and the error (in 

hectares) of the area estimate for all classes varies from 

650 to 2965 (Table 3).  Although accuracy assessment 

between 75-85 % is acceptable (Mubako, et al., 2018), 

the overall accuracy is slightly below this range, that 

means, on average, that the chance a pixel will be 

correctly classified is 69 %. This could be attributed to 

the difference between the spatial resolution of the 

reference data (100 m) and the classified data (30 m). 

The latter explains why the urban and the agricultural 

classes showed low producer (e.g. omission error) and 

user (e.g. commission error) accuracy respectively, and 

wide confidence intervals (Table 3). Despite the 

limitation of available data for accuracy assessment, the 

reliability of the classified results is generally acceptable. 

Table 3. Unbiased accuracy assessment summary table 

Class Area 

(hectares) 

± 95% 

CI 

User's 

Accuracy (%) 

Producer's 

Accuracy (%) 

Overall 

Accuracy (%) 

Urban fabric 
3331.13 

1126.8

8 
76.9 50.8 

69.09 Inland waters 2892.68 649.47 84.2 93.7 

Forest 
22785.60 

2731.3

0 
66.7 65.7 

Scrub and/or herbaceous 

Vegetation associations 
34038.40 

2964.8

5 
73.7 68.2 

Heterogeneous agricultural areas 
3676.75 

1144.4

6 
47.7 95.6 

Table 4. Area of LULC categories per year of study 

AREA (ha) 

Class/Year 1986 1998 2003 2016 
Variation 

1986-2016 

Inland waters 2677 2949 2917 3311 634 

Open spaces with little or no vegetation 522 2890 4187 388 -134 

Heterogeneous agricultural areas 8412 8257 8454 7594 -818 

Scrub and/or herbaceous vegetation associations 46451 51811 48861 33422 -13029 

Forest 9387 1238 2388 21179 11792 

Mine and dump sites 72 107 240 148 76 

Industrial and commercial units 145 197 193 142 -3 

Urban fabric 758 975 1184 2240 1482 

TOTAL 68424 68424 68424 68424 
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Figure 4. Variation of Inland waters in Zamora Munipality between 1986 and 2016 

Figure 5. Variation of Open spaces with little or no vegetation in Zamora Munipality, between 1986 and 2016. 

Figure 6. Variation of Heterogeneous agricultural areas in Zamora Munipality, between 1986 and 2016 
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Figure 7. Variation of Scrub and/or herbaceous vegetation associations in Zamora Munipality, between 1986 and 2016 

Figure 8. Variation of Forests in Zamora Munipality, between 1986 and 2016. 

Land Use and Land Cover Changes 

Areas of LULC classes showed a variable behavior 

between 1986 and 2016. Table 4 shows the area of each 

class for each study year. Inland waters class showed a 

constant increase throughout the study years, its 

variation between 1986 and 2016 was 634 ha (Figure 4, 

Table 3). The category named Open spaces with little or 

no vegetation showed a notable decrease in its surface 

between 1986 and 2016 with a variation of -134 ha 

(Figure 5, Table 4). The Heterogeneous agricultural 

areas class showed a downward trend in its surface 

between 1998 and 2016, the difference in the area 

occupied by this class between 1986 and 2016 was -818 

ha (Figure 6, Table 4). 

The area of Scrub and/or herbaceous vegetation 

associations showed a variable trend with increases 

between 1986 and 1998 and declines from 1998 to 2016, 

its variation was -13029 ha between 1986 and 2016 

(Figure 7, Table 4). Forests showed a dramatic decline in 

more than 8000 hectares of their surface from 1986 to 

2003. Between 2003 and 2016 the area occupied by this 

land cover experienced remarkable increases, the surface 

variation was 11792 ha from 1986 to 2016 (Figure 8, 

Table 4). 

Mine and dump sites and Industrial and commercial 

units showed variable behaviors throughout the study 

years. The area of Mine and dump sites varied 76 ha 

between 1986 and 2016 (Figure 9, Table 4). Industrial 

and commercial units decreased by 3 ha in its surface 

during the above-mentioned period (Figure 10, Table 4). 

Like inland waters, the Urban fabric class showed a 

sustained increase in its area between 1986 and 2016, 

with a variation of 1482 ha (Figure 11, Table 4). 
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Figure 9. Variation of Mine and dump sites in Zamora Munipality, between 1986 and 2016 

Figure 10. Variation of Industrial and commercial units in Zamora Munipality, between 1986 and 2016 

Figure 11. Variation of Urban fabric in Zamora Munipality, between 1986 and 2016 

Shoreline growth 

Valencia Lake expanded over an area of 544 ha between 

1986 and 2016. From 1986 to 1998 the surface of the 

lake increased by 158 ha, this is equivalent to 29% of the 

total expansion between 1986 and 2016. From 1998 to 

2003 the increase in the area occupied by the lake 

attained 66 ha, which represents 12% of the increase 

between 1986 and 2016. The Valencia lake increased its 

surface in 320 ha (59%) between 2003 and 2016. 

The shoreline level of the Valencia lake showed an 

upward behavior between 1986 and 2016. From 1986 to 

1990, this level rose from 387 meters above sea level 

(masl) to 390 masl, which is equivalent to a variation of 

3 m. Between 1998 and 2003 the lake level increased by 

7 m with 397 masl for 2003. The level of the lake 

increased by 25 m between 2003 and 2016 with values 

of 422 masl for the last year (Figure 12). 

Coiman / IJEGEO 7(3):305-318 (2020)
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Figure 12. Shoreline growth of Valencia lake between 1986 and 2016. 

Table 5. Surface variation of the Heterogeneous agricultural areas between study periods 

Period Increase (ha) Decrease (ha) Increase (%) Decrease (%) 

1986- 1998 907 1062 46.06 53.94 

1998-2003 1051 854 55.17 44.83 

2003-2016 642 1502 29.94 70.06 

1986-2016 2600 3418 43.20 56.80 

Table 6. Potential for agricultural use affected by the shoreline growth 

Period 

1986-1998 1998-2003 2003-2016 1986-2016 

Potential for 

agricultural use 

Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Total 

(ha) 
% 

High 41 26 32 48 264 83 337 62 

Moderate  4 3  4 6  15 5   23 4 

Low 91 58 19 29  21 7 131 24 

Very low  1 1  1 2   6 2    8 1 

No data 21 13 10 15 14 4   45 8 

Total (ha) 158 66 320 544 

Table 7. Potential for agricultural use affected by the urban growth 

Period 

1986-1998 1998-2003 2003-2016 1986-2016 

Potential for 

agricultural use 

Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Total 

(ha) 
% 

High 19 7 26 11 361 34 406 26 

Moderate  13 5 14 6  36 3   63 4 

Low 36 13 22 9  75 7 133 8 

Very low  92 34 33 13   240 23    365 23 

No data 107 40 
15

0 
61 341 32  598 38 

Total (ha) 267 
24

5 
1053 1565 

Coiman / IJEGEO 7(3):305-318 (2020)
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Evolution of the urban and agricultural land use 

Between 1986 and 2016 urban areas increased by 1482 

ha. From 1986 to 1998, urban areas in the Zamora 

municipality increased by 217 ha, which represents 15% 

of the increment between 1986 and 2016. Urban areas 

augmented by 209 ha (14%) between 1998 and 2003. 

From 2003 to 2016 occurred the greatest expansion of 

the urban fabric class with an increase of 1056 ha, 

representing 71% of the growth between 1986 and 2016. 

Between 1986 and 2016, agricultural areas showed a 

downward trend of its surface since the extent of 

decrease was greater than the extent of increase (Table 

5). From 1986 and 2016 Heterogeneous agricultural 

areas increased by 2600 ha and decreased by 3418 ha. 

These figures support its tendency towards the shrinking 

of its surface. 

Areas in conflict with the potential agricultural land 

use 

Between 1986 and 2016 the lake shoreline expansion 

flooded 544 ha. 66% of the affected areas were lands 

with high and moderate potential for agricultural use, 

while 25% of the areas were lands with low to very low 

potential for farming activities. From 1986 to 1998 the 

shoreline expansion mainly flooded lands with low 

potential agricultural use (91 ha). Between 1998 and 

2003 essentially, 32 ha with high potential for 

agricultural use were waterlogged, while during the 

period 2003-2016, 264 ha of land losses with high 

potential were quantified (Table 6). At the beginning the 

affectation was low and on soils with a high water table, 

then, in the period 2003-2016, the affected area was 

more extensive and mainly on well-drained soils, with 

high potential agricultural land use. 

Defining areas in conflict with urban growth was based 

on quantifying the potential for agricultural use affected 

by urban development. In general, during the study 

period (1986-2016), lands with high potential (406 ha.) 

and lands with very low potential (365 ha.) for 

agricultural use were affected by the expansion of urban 

areas (Table 7). It was not possible to calculate the 

potential for agricultural use in 38% of the affected area 

because there was not SISDELAV data. In the 

beginning, the urban growth overlaid land with low 

potential for agricultural use, then when engineering 

limitations constrained the urbanization, lands with high 

potential for agricultural use were affected (period 2003-

2016). Urban shrinking areas (83 ha) for the overall 

study period (1986-2016) were not included in this 

analysis. 

Heterogeneous agricultural areas showed increases and 

decreases in its surface during the study period (1986-

2016) (Figure 13).  From 1986 to 2016 the increase of 

agricultural areas was carried out mainly on lands with 

low to very low potential for agricultural use (37%), but 

there is only 1% of difference in comparison with the 

other classes of potential for agricultural use (Figure 14).  

There was no SISDELAV data for 27% of the areas 

affected by the increase of agricultural areas. Along the 

overall study period (1986-2016), shrinking of 

Heterogeneous agricultural areas was made up of land 

with high to moderate potential for agricultural use 

(45%), and there was no SISDELAV data for 23% of the 

areas affected by the decrease of agricultural areas 

(Figure 15). Similar to (Tejada, 2006), in general, it was 

possible to determine that between 1986 and 2016, 

Heterogeneous agricultural areas showed a downward 

trend made up essentially of land with high to moderate 

potential for agricultural use. 

Figure 13. Increase and decrease of Heterogeneous agricultural areas between 1986 and 2016 
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interpret Landsat image composites to extract urban and 
agricultural areas. Errors could therefore arise during the 
interpretation process due to the interpreter skills 
(Congalton and Green, 2019). Inaccurate visual 
interpretations could undermine user’s and producer’s 
accuracy of both Heterogeneous agricultural areas and 
Urban fabric categories respectively. More research is 
required on assessing object-based classification using 
images with different spatial resolutions in our study 
area. Also, it would be interesting to investigate whether 
is possible to achieve high overall accuracy combining 
Landsat and high-resolution images (Toure, et al., 2018) 
because object-based classification is mainly used to 
classify high-resolution imagery (Ma, et al, 2017). 

Our results provide compelling evidence for long term 
increments of the Forest class, especially after 1998. 
This suggests a secondary succession process 
characterized by changes in plant communities whereby 
vegetation has been disturbed but the soil has not been 
removed (Gibson and Gibson, 2006). From Table 4, and 
Figures 7 and 8, we can infer that owing to a secondary 
succession, areas occupied by Scrub and/or herbaceous 
vegetation in 1986 changed into Forest in 2016. 
Understanding how forest areas are changing due to 
local patterns of succession can help planers to visualize 
how the landscape will change over the next years 
(Perman and Milder, 2004), especially in the Valencia 
Lake basin. In the same way, we found evidence that 
urban areas exhibited an upward trend during the study 
period. In the beginning, the urban growth overlaid land 
with low potential for agricultural use, then when 
engineering limitations constrained the urbanization, 
lands with high potential for agricultural use were 
affected (period 2003-2016) (Table 7). This finding 
about urban growth are explain by the fact that built-up 
areas in the Valencia Lake basin have been populated 
untidily around urban centers and towards unsuitable 
areas for urbanization (de La Rosa, 2009; Jaimes, 2011). 
These insights should alert urban planners in the region 
because as a result of urban sprawl, prime farmlands can 
be negatively affected, resulting in irreversible change of 
forest and agricultural lands into urban areas (Doygun, 
2009). It is crucial to understand how urban expansion 
and agricultural land use interact because it allows to 
formulate land use planning polices and plans to balance 
the pressure of urban growth on farmlands (Jiang, et al., 
2013). Although our findings were aligned with other 
author’s claims about the relationship between urban 
growth and farmland, SISDELAV data only covered 
61% of our study area (Table 7). Future works should, 
therefore, produce the missing data in order to account 
for the potential for agricultural use affected by the 
urban growth in the entire study area. 
In this study, we determined the evolution of the 
Valencia Lake shoreline from 1986 to 2016 in Zamora 
municipality using the DEM of SISDELAV data and 
classification results of Landsat images.  The overall 
results indicate that the lake spread out into 544 ha and 
its water level (elevation) rose 35 m. The data confirms 
an upward trend of the lake level especially for the last 
study year (2016), and the claim of (Castillo and 
Jiménez, 2013) who stated that since 2010 the lake level 

has grown. These results build on existing evidence of a 
direct relationship between water importation and water 
level rising.  From 1981 on, the lake level has increased 
as a direct consequence of water importation (Jaime, 
2011) and probably as a consequence of changes in 
moisture availability (Curtis, et al., 1999). This 
knowledge has various implications in economic 
activities in the Valencia Lake basin. The rising of the 
lake level implies more flooded areas that impacts 
agricultural activities due to loss of high-quality 
farmlands, infrastructure for farming activities and 
perennials crops (Guevara, 2000), this situation is 
relevant to Zamora municipality because between 1986 
and 2016, 63% of the farmlands affected by the shoreline 
growth were lands with high potential for agricultural 
use (Table 6). It should be noted that Landsat images 
were valuables because they allowed us to obtain lake 
boundaries from which we extracted the shoreline for 
each year of study. On the other hand, we used a DEM 
with a spatial resolution (10 m) that constrained the 
accuracy of the calculated water level for each study 
year. A more detailed DEM should therefore be used in 
order to estimate more accurate lake levels.   

Conclusions 

Evaluating land use and land cover through 
multitemporal remote sensing allows identifying patterns 
of long-term changes. Due to the vast amount of 
historical Landsat data, we can classify images and 
extract features that are used to create a snapshot of a 
given time. Successive snapshots are then compared to 
gain insights into how LULC has evolved over time. 
Mutitemporal remote sensing capabilities have been used 
in this study to gain understanding of LULC changes and 
the Valencia Lake shoreline evolution over a thirty-year 
period in Zamora municipality. This kind of study is 
important because it is a source of data and information 
for conceiving informed plans for land using planning.       

The results show that there was a notable reduction of 
the scrub and/or herbaceous vegetation associations and 
to a lesser degree the Heterogeneous agricultural areas. 
On the other hand, other classes experienced remarkable 
increments in area: Forest, and Urban fabric. These 
findings are important to understand that LULC 
dynamics in the study area are related to secondary 
succession processes favoring forest recovery, and urban 
sprawl disturbing prime farmlands.   

An upward trend of the Valencia Lake shoreline was 
observed, and for the last two study years (2003-2016) 
more than 50% of this raising occurred. This trend 
elicited conflicts with the potential agricultural land use. 
Lands with high potential for crop yields were affected 
by the lake shoreline increment. At the beginning the 
affectation was low and on soils with a high water table, 
then, in the period 2003-2016, the affected area was 
more extensive and mainly on well-drained soils with 
high potential agricultural land use. 

In the image classification carried out by the object-
based approach, despite its moderate overall accuracy, 
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built-up areas and vegetated covers were satisfactorily 
extracted. Notwithstanding the accuracy outputs, it is the 
first time this approach was applied in the study area to 
classify images intended for LULC studies. Also, this 
study does suggest that in the absence of classification 
rules based on shape, texture, and contextual information 
of the images, it is possible to separate objects through 
vegetation indexes and thematic layers like we did in this 
study. 

In future studies, it is advisable to use high-spatial-
resolution images in order to improve image 
classification accuracy. High-resolution data could be 
very useful to separate objects in built-up areas wherein 
mid-resolution images tend to be more prone to generate 
errors. Therefore, high-spatial-resolution images in 
conjunction with mid-resolution images can be used to 
determine whether the object-based classification or the 
pixel-based classification is more suitable to conduct 
studies of LULC changes in our study area and its 
surroundings.   
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