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Abstract 

In recent years, deep learning methods have come to the forefront in many areas that require remote sensing, from medicine to 
agriculture, from defense industry to space research; and these methods have achieved tremendous success as compared to traditional 
methods. Together with substantial growth in available data with high-quality labels and computational resources, these deep neural 
network architectures and techniques have seen remarkable developments. The major difference between deep learning and classical 
recognition methods is that deep learning methods consider an end-to-end learning scheme which gives rise to learning features from 
raw data. Better regularization techniques and robust optimization algorithms introduced with state-of-the-art deep learning models 
are other factors leading this difference. In this paper, we discuss the remote sensing problems and how deep learning can be used to 
solve these problems with a special focus on medical and remote sensing applications. In particular, we briefly review outperforming 
architectures within the deep learning literature and their use cases.  

Keywords: Applications in Medicine, Applications in Remote Sensing, Deep Neural Network Architectures, Supervised Learning, 
Unsupervised Learning, 

Introduction 

Machine learning approaches called deep artificial 
neural networks have led to significant developments 
in many areas related to artificial intelligence, 
including computer vision in the past ten years. One of 
the underlying factors in the success of deep models is 
the end-to-end learning scheme these models have. 
Unlike the hand-crafted features extracted from raw 
data and used by traditional machine learning models 
in learning, these deep models can learn features from 
the raw data in a hierarchical manner. However, the 
distinctness of these features and the performance of 
deep models depend directly on the capacity of these 
models as well as on the amount of data on which the 
models are trained.  

The companies such as Google, Microsoft, Facebook 
have used deep learning actively in their applications 
and services for object recognition, target detection, 
image segmentation, and classification. Moreover, 
deep learning toolboxes like Tensorflow from Google, 
CNTK from Microsoft, Torch from Facebook, Caffe, 
MXNet, Theano, Deeplearning4j led to a surge of 
studies on various topics (De Felice, 2017). For 
example, it has been proven that Convolutional Neural 
Networks (CNNs) are especially good at extracting 
medium and high-level features from raw data in a 
translation-invariant manner (Zhu et al., 2017). In this 
way, the features learned by CNNs are successfully 
used in problems such as image recognition, object 
detection, and semantic segmentation. On the other 

hand, Recurrent Neural Networks (RNNs) have shown 
significant success in sequential data analysis such as 
action recognition, video analysis, and subtitling. In 
addition to these achievements, the use of deep 
learning is becoming widespread in remote sensing, 
medical and defense industries thanks to increased data 
sizes and computing resources. Medical and remote 
sensing applications present some new challenges for 
deep learning. For instance, data in both application 
areas appear as multi-modal.  Data acquired in remote 
sensing industry using various cameras such as light 
detection and ranging (LiDAR), radio detection and 
ranging (RADAR), synthetic aperture radar (SAR), 
hyperspectral should be collected and processed 
together.  Similarly, it may be necessary to integrate a 
patient's genetic information and test results (e.g. blood 
and urine) with information obtained from images such 
as magnetic resonance imaging (MRI), ultrasound and 
x-ray. Multi-modality also requires the processing and 
interpretation of data received at different resolutions, 
at different times or over a long period of time series.  

In this paper, firstly we attempt to answer the question 
about what deep learning is and what kind of success 
has been achieved. We briefly review state-of-the-art 
deep learning models and approaches. Then, we 
discuss supervised and unsupervised deep learning 
approaches, architectures and frameworks i.e. deep 
convolutional neural networks and deep generative 
networks. Also, we provide two sections for deep 
learning applications in medicine and remote sensing. 
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Table 1. Properties of models that won the ImageNet classification challenge. Top-5 error represents the percentage of 

test samples for which the correct class was not in the first 5 predicted classes. 

Model Year Key points # of Layers # of Parameters Top-5 Error 

AlexNet 2012 

ReLU non-linearity 

Multiple GPUs 

Dropout 

Data augmentation 

Overlapping pooling 

8 61 M 16.4 % 

VGGNet 2014 
Simple architecture model 

Small receptive fields 
19 144 M 7.3 % 

GoogleNet 2014 

Deeper in parallel path with different receptive 

field size 

Inception module 

22 6.8 M 6.67 % 

ResNet 2015 
Shortcut connection 

Residual mapping 
152 60 M 3.57 % 

SENet 2017 
Channel relationship 

Squeeze-and-Excitation  blocks 
SE bloks 145 M 2.251 % 

Deep Learning Models 

Deep convolutional neural networks used today for the 

classification of images obtained especially in the 

visible band have started to become popular with the 

successful realization of classification of handwriting 

numbers and letters with the model named LeNet-5 

proposed by LeCun and his colleagues (Lecun et al., 

1998). Several architectures have been proposed after 

LeNet. In 2012, Krizhevsky et al. proposed a deep 

artificial neural network model named AlexNet, whose 

architecture is similar to LeNet, for the problem of 

classification of high-resolution visible band images 

containing 1.2 million datasets with 1000 different 

classes (Krizhevsky et al., 2012). With its structure and 

concomitant techniques such as the dropout 

regularization, AlexNet beat all the competitors of the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). After these developments, with the 

increasing amount of data, GoogLeNet (Szegedy et al., 

2015) and VGGNet (Simonyan and Zisserman, 2014) 

were declared as the two most successful architectures 

in the ILSVRC 2014 competition. Later, with a 

revolutionary development, ResNet came to the 

forefront with its 152-layered structure, and won the 

ILSVRC 2015 competition (He et al., 2016). ResNet 

has the deepest network running on ImageNet. Its core 

idea is in the identity shortcut connection that skips one 

or more layers. The most important contribution of 

ResNet is that it can train the network more rapidly and 

successfully while increasing the depth of the network.  

DenseNet (Dense Convolutional Network) is another 

family of CNN architecture which got best paper award 

in 2017 CVPR. DenseNet creates short paths from 

early layers to later layers and unlike short-cuts in 

ResNet, it combines features by concatenating them. 

Due to the fact that each layer receives feature maps 

from all previous layers, DenseNet has fewer 

parameters to learn, making them easier to train 

(Huang et al., 2017). Squeeze-and Excitation Network 

(SENet), the winner of the ILSVRC 2017 classification 

challenge, is another excellent example of CNN 

architectures. SENet networks have a mechanism that 

can recalibrate features for adaptively stating the 

importance of each channel. A single parameter is 

added to each channel and a linear criterion is used to 

show how relevant the added channel is. SE is actually 

a block that develops inter-channel dependencies for 

CNNs with virtually no computational costs. The goal 

of using these blocks in the convolution layers in 

SENet is to increase the sensitivity of the network 

against the useful attributes to be used in the network 

and to suppress the less useful ones. SE blocks are 

flexible that can be integrated into modern 

architectures with sophisticated designs (Hu et al., 

2018). Table 1 shows some of these popular models 

with their properties and Figure 1 presents the 

mainstream architectures of aforementioned top 

competitors. 

ResNet is easy to train, however, it cannot take full 

advantage of features in sequential convolutional layers 

with larger receptive fields. DenseNet combines these 

hierarchical features but the training of a deep dense 

network with large blocks is difficult. To address these 

drawbacks, Zhang et al.  proposed Residual Dense 

Networks (RDN) to fully make use of all hierarchical 

features from the original image (Zhang et al., 2018). It 

is a fact that as the models developed to be run in the 

ImageNet dataset become more complex, the 

performance accuracy has increased but most models 

are not effective in terms of processing cost and need 

tedious manual parameter tuning. In recent years, 

researchers tried to create architectures that will 

produce more efficient results with smaller models. 

Unlike the approaches that arbitrarily scale network 

sizes such as width, depth, and resolution, Tan and Le 

have proposed a method called EfficientNets, which 

have scaling factors for each dimension (Tan and Le, 

2019).   EfficientNet has achieved superiority over the 

state of the art models by providing 84.4% accuracy 

with 66M parameter on ImageNet while being 8.4x 
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smaller and 6.1x faster on inference than the best 

available model. 

AlexNet, VGGNet, GoogLeNet, ResNet and similar 

architectures are supervised deep learning methods that 

require labeled data for each class. However, another 

important issue is to learn deep networks with 

unsupervised learning. For instance, deep generative 

network models (Goodfellow et al., 2014; Maaløe et 

al., 2016) used in unsupervised learning, learn data 

distributions in high dimensions. Another popular 

example neural network architecture used in 

unsupervised learning is Deep AutoEncoders (AEs), in 

which outputs are the inputs (Deng and Yu, 2014; 

Goodfellow et al., 2016). AEs take the original data as 

an input encodes it for compact representation. Then, 

AEs decode to reconstruct the original input. Both 

supervised and unsupervised deep learning techniques 

will be described in more detail in the following 

sections. 

 (a) 

      (b) 

     (c)  (d) 

(e)  (f) 

Figure 1.  The mainstream architecture of (a) AlexNet, (b) VGGNet, (c) GoogleNet, (d) ResNet, (e) DenseNet, and (f) 

SE-ResNet module. 
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Supervised Deep Learning 

Most of the deep networks, including AlexNet, which is 

given as an example here, are equipped with the 

following other important features: 

i) Rectified Linear Units (ReLU) have been used

in AlexNet instead of the traditionally used

nonlinear functions such as sigmoid or

hyperbolic tangent. ReLU not only reduced

training time but also prevented training from

becoming saturated.

ii) Overfitting of the data is prevented with the

dropout layers.

iii) Data augmentation techniques have been used to

artificially increase the size of the training set.

iv) Graphic processing units (GPU) have been used

to rapidly incorporate all these techniques into

the training.

Convolution, pooling and normalization layers, which 

are among the fundamental elements that stand out in 

AlexNet and similar architectures, are shown in Figure 

2.  

Figure 2.  Change of the input data size after the initial 

convolution and pooling layers of AlexNet (Krizhevsky 

et al., 2012).  

Today, architectures such as AlexNet, VGGNet, and 

ResNet can be used directly. Moreover, the filters 

learned by these architectures are being used in many 

studies as a feature extractor. With that, there are three 

main ways of training deep convolutional neural 

networks: 

Classification with fully-trained networks: 

In this type of training, the entire architecture is 

designed end-to-end and this new deep network is 

trained with its own data. This method corresponds to 

designing and training similar architectures such as 

AlexNet, GoogLeNet, VGGNet. The training of these 

architectures require millions of data, need GPUs and 

plenty of time to process them. 

Feature extraction using pre-trained networks 

In this type of learning, the last layers of networks like 

AlexNet (such as some of the fully connected layers 

and convolutional layers) are removed, and the 

remaining layers are used directly for feature 

extraction. This method is particularly preferred for 

applications with only limited number of data. 

Feature extraction by fine-tuning on pre-trained 

networks 

In this approach, as in the previous learning, the last 

layers are discarded however, the replaced layers are 

retrained according to the desired problem. Thus, both 

the training time is reduced and a deep network 

specific to the desired problem is learned. 

Unsupervised Deep Learning  

Exploring the ways of using deep networks in 

unsupervised learning is an increasingly important 

topic in deep learning literature, and various deep-

generative network models have been proposed 

(Goodfellow et al., 2014; Gregor et al., 2015; Kingma 

and Welling, 2014; Larochelle and Murray, 2011; 

Radford et al., 2016; Rezende et al., 2014; Theis and 

Bethge, 2015; Van den Oord et al., 2016a; Van den 

Oord et al., 2016b; Shaham et al., 2019; Choi et al., 

2019). These deep generative models aim to learn the 

probability distributions of samples via high 

dimensional examples such as digital images. Real-like 

synthetic samples can be produced by using deep 

generative networks through these learned distributions 

after the training procedure. For the case where the 

samples consist of digital images, the purpose of the 

generative models is to capture the pattern between the 

pixels and produce synthetic images that look as 

realistic as possible. These patterns can have local 

relationships such as adjacent pixels, which show 

similar visual characteristics in terms of color, 

brightness, and texture. It may also be possible to 

identify a particular object, such as the human face, 

along with the parts of the pixels. Considering their 

computational approaches, deep generative networks 

can be divided into three main groups as shown in 

Figure 3. 

Figure 3.  Major parts of deep generative networks. 

The first group of the generative models is 

autoregressive generative models, which represent the 

fully observed model group among the generative 

models and they model sample production as a series 

of predictive problems (Larochelle and Murray, 2011; 

Theis and Bethge, 2015; Van den Oord et al., 2016a; 
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Van den Oord et al., 2016b). The best-known examples 

of models in this group are PixelCNN (Van den Oord 

et al., 2016b) and PixelRNN (Van den Oord et al., 

2016a), which encode relationships between pixels via 

convolutional and recursive deep networks. 

Variational autoencoders, unlike autoregressive 

generative models, define a hidden variable that can 

not be directly observed for each observed data point. 

Thus, they try to encode the distributions of the related 

examples, which are generally expressed in lower 

dimensions (Gregor et al., 2015; Kingma and Welling, 

2014; Rezende et al., 2014). The most important 

advantage of this approach is that a deep hierarchical 

structure can be included in these models with its deep 

network. Another advantage of hidden variables is to 

express the structure of the data represented by the 

samples in a low-dimensional vector, which also 

provides compression in data representation. On the 

other hand, variational autoencoders that process 

digital images as examples typically produce partially 

blurry samples in the next generation phase and so, the 

photorealism level of these samples can be low. 

The last group, generative adversarial networks 

(GANs), are transformation-based models and model 

the process of learning the distribution of real samples 

as a minimum-maximum game (Goodfellow et al., 

2014; Radford et al., 2016). This game consists of two 

networks that compete with each other which are 

productive and distinctive. The productive network 

tries to create synthetic samples from noise vectors that 

will convince the distinctive network. The distinctive 

network tries to distinguish between real samples taken 

from the training data and synthetic samples produced 

by the productive network. Thus, both the productive 

network and the distinctive network become experts at 

the problems they try to solve. As a result, the 

productive network begins to produce highly realistic 

examples that are indistinguishable from reality. The 

training of generative adversarial networks is not easy 

due to its game theory-based approach, but the quality 

of the produced synthetic images is generally much 

sharper and more natural than the ones obtained from 

auto-encoders. 

On the hand, GAN models are vulnerable to training 

instability. As a solution to this problem, the Spectrally 

Normalized GANS (SNGANs) propose a weight 

normalization technique to stabilize the training of the 

discriminator (Miyato et al., 2018). This normalization 

technique is computationally efficient and capable of 

generating high-quality synthetic images compared to 

previous training stabilization methods such as 

Wasserstein - GAN (WGAN) (Arjovsky et al., 2017). 

One of the state-of-the-art models in image synthesis, 

the BigGAN (Brock et al., 2018), also uses this spectral 

normalization method. Futher, the first version of 

GANs could produce high-quality synthetic images; 

but the size of the produced images often remained 

relatively small.  BigGAN, on the other hand, focuses 

on scaling up the GAN models for generating both 

high quality and larger images by configuring the 

model and the training process. 

In the vanilla GANs, although the generated images 

become more realistic over time, controlling and 

understanding their output remains one of the main 

challenges. Style-Based Generator Architecture for 

GANs (StyleGAN), one of the most famous GAN 

models recently published, proposes a new model that 

addresses this problem (Karras et al., 2019). StyleGAN 

produces synthetic images by using the progressive 

growing method, i.e. it generates high-resolution 

images by starting with very low resolution. It focuses 

on the generator network and uses the adaptive 

instance normalization module to transfer the encoded 

information into the generated image via a mapping 

network. StyleGAN has made great advances in the 

quality of GANs, but when the images generated are 

examined, blob-like unnatural artifacts (water droplets) 

are observed. To tackle this problem, StyleGAN2, an 

extended version of StyleGAN, has been developed 

recently (Karras et al., 2020). StyleGAN2 takes 

advantage of a hierarchical generator by skipping  

connections instead of progressive growing and uses 

the normalized weight of CNN instead of adaptive 

sample normalization statistics to eliminate these water 

droplets. 

Traditional versions of GANs learn representations 

form multiple real images. However, in SinGAN, a 

variant of GAN introduced in recent years, image 

generation is learned from a single training image 

(Shaham et al., 2019). The model includes a pyramid 

of fully convolutional GANs in which generator and 

discriminator are responsible for learning 

representation at different scales of the image. This 

architecture allows generating new samples with 

arbitrary size and aspect ratio. The model is trained in a 

coarse-to-fine fashion. The pair of generator and 

discriminator learn coarse features like background at 

the lowest scale, whereas they learn fine details like 

edges and corners at high scales. SinGAN achieved 

impressive results in a variety of image manipulation 

tasks, thereby winning the best paper award at ICCV 

(IEEE International Conference on Computer Vision) 

2019. 

Another compelling application of GANs is the image-

to-image translation, which expresses the problem of 

generating new images based on input images. 

StarGAN is one of the well-known image-to-image 

translation models (Choi et al., 2018). It uses a unified 

model architecture that allows simultaneous training of 

multiple datasets with different domains within a single 

network. The superiority of the approach has been 

tested on a facial attribute transfer and facial 

expression synthesis tasks. StarGAN v2 is an extended 

version of StarGAN, which addresses two major 

challenges in image-to-image translation framework: i) 

translating an image from one domain to diverse 

images in target domain, ii) supporting multiple target 

domain at the same time (Choi et al., 2019). 
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With this summary of the recent advancements in deep 

learning, the two sections below survey some of the 

leading examples of deep learning in medicine and in 

remote sensing. 

Applications of Deep Learning in Medicine 

Machine learning in medicine is being developed all 

the way across the treatment spectrum; for disease 

prevention, for ordering patients according to their 

urgency and for diagnosis (Lee et al., 2019; Suzuki, 

2017). 

A remarkable example of deep learning on radiological 

diagnostics is the study published by Rajpurkar and his 

colleagues in 2018 (Rajpurkar et al., 2018). The 

software named CheXNeXt that has been developed in 

this study uses a DL based algorithm to detect 

clinically important pathologies in front-view chest X-

rays. Trained on more than 100,0000 chest X-rays from 

approximately 31,000 patients in the National Institutes 

of Health (NIH) ChestX-ray8 dataset, this software has 

been tested on 420 images and the results have been 

compared with nine different radiologists. The 

CheXNeXt algorithm has not only achieved a 

comparable success as compared to the radiologists 

decisions, but also managed to analyze this data in 

under 1.5 minutes as opposed to the 240 minutes spent 

by the radiologists. It is thought that such software may 

be used in regions where radiologists are absent. It is 

also thought that CheXNeXt may reduce misdiagnosis 

due to lack of expertise or fatigue (Saria et al., 2018). 

Another noteworthy example of using deep learning as 

a preventive method is the study of Corey and his 

colleagues to detect complications that may occur 

within 30 days after surgery (Corey et al., 2018). With 

the data obtained from approximately 88,000 patients, 

a software called Pythia has been developed that takes 

into account the age, race, gender, medications used, 

and the history of comorbidity. With this information, 

Pythia has been found to be able to detect particularly 

high-risk patients with high sensitivity. The purpose of 

such preventive support systems is to identify high-risk 

patients and to minimize the complications that may 

occur in these patients with precautions taken before or 

after the operation. Similarly, MedAware software 

which is a commercially available product, monitors 

the patient's historical data, detects potential drug 

errors by machine learning methods and warns them. 

There are also several studies that provide the 

classification of heart and lung sounds with deep 

convolutional neural networks while preserving the 

comfort of the specialist and patient without collecting 

any additional data from the patient (Aykanat et al., 

2017; Bardou et al., 2018). Bien et al. presented 

MRNet, an automated deep learning method for 

interpreting knee magnetic resonance imaging (MRI), 

and compared their results with general radiologists 

(Bien et al., 2018). They examined 1,370 knee MRI 

images at Stanford University Medical Center. Their 

findings support the claim that deep learning-based 

models can improve the performance of clinical 

specialists during medical imaging interpretation.  

Hosny and his colleagues have trained an end to end 

3D CNN structure on seven independent datasets 

across five institutions totaling 1,194 patients to assess 

the utility of deep learning networks in predicting 2-

year overall survival of non-small-cell lung cancer 

patients from computerized tomography data. They 

have concluded that learned deep learning features 

dramatically predominate over existing prognostication 

methods in post-surgery patients (Hosny et al., 2018).  

Pham and his colleagues have used a two-step deep 

learning approach to detect lung cancer of lymph node 

metastases from whole slide histopathologic images. In 

the first step of this study, a CNN based deep learning 

structure has been used to eliminate misclassified 

noncancerous regions. In the second step, the cancer 

cells were detected by a deep learning classifier (Pham 

et al., 2019).  

The study of Gurovich and his colleagues is another 

conspicuous example of deep learning applications in 

medicine. They have presented a facial analysis 

framework for genetic syndrome classification called 

DeepGestalt (Gurovich et al., 2019). They have 

analyzed facial images with DeepGestalt, a CNN-based 

structure trained on a dataset of over 17,000 images 

representing more than 200 syndromes. Deep Gestalt 

has produced results that will add significant value to 

phenotypic evaluations in clinical genetics and 

precision medicine.  

The study of Zheng and his colleagues is one of the 

newest examples of deep learning applications in 

medicine (Zheng et al., 2020). They have developed an 

early-warning-system for high-risk suicide attempt 

patients. Advanced machine learning algorithms and 

deep neural network models have been used on the 

data obtained from the electronic health records of 

Berkshire Health System. They have calculated a final 

risk score for each patient and illustrated the 

probability of a suicide attempt in the next one-year 

period. 

Most recently, deep learning has also found its use in 

the Coronavirus 2019 disease (COVID-19). COVID-19 

is a highly contagious viral respiratory disease 

characterized by high fever, shortness of breath, and 

respiratory distress. The devastating effect of COVID-

19 on global health continues: as of 25th June, the 

number of COVID-19 cases has exceeded 9.5 million 

and the death toll has exceeded 485,000 in more than 

213 countries and territories across the world 

(Worldometers, 2020). Deep learning methods have 

also been utilized to control the spread of the disease 

by quickly screening large numbers of suspected cases 

to take appropriate quarantine and treatment measures. 

Wang et al. have used a CNN based architecture on the 

collected 453 computed tomography images to extract 

certain graphical features of COVID-19 (Wang et al., 

2020). Wang and Wong have proposed a deep neural 
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network model called COVID-Net for the detection of 

COVID-19 cases from chest-X-ray (CXR) images 

(Wang and Wong, 2020). They have also introduced 

COVIDx, an open access dataset over 13,900 images 

across 13,870 patient. They have concluded that their 

model has achieved high positive predictive value 

(98.9%). These two studies show that deep learning 

methods can be applied to CT or CXR to effectively 

scan COVID-19. It is hoped that such advancements in 

the screening technologies would save time in 

treatment and help prevent the spread of the disease. 

Applications of Deep Learning in Remote Sensing 

In the remote sensing, deep learning appears both in 

target detection applications that require image and 

signal processing and also in logistics. Machine 

learning in logistics is needed in applications such as 

dynamic inventory optimization or predictive 

maintenance and services. For example, the system 

estimates when the used vehicles will expire or fail and 

orders accordingly; providing an urgent supply of 

batteries for a vehicle that is running out of battery 

(Lennon, 2018). 

In target detection applications, the goal is to rapidly 

detect the targets from the data collected by the 

satellites, from flying vehicles such as UAVs, aircrafts, 

drones, or from land vehicles and fixed stations. For 

this purpose, data can be signals or images obtained 

from sensors like radar, SAR, LiDAR, hyperspectral, 

thermal, electro-optic, X-ray, mm-Wave or terahertz. 

In addition to interpreting these images instantaneously 

with deep learning techniques, predicting enemy 

behaviors, collecting weather conditions and coming 

up with decisions that are independent of weather 

conditions, and identifying narrow pass points can be 

listed as some of the many other goals (Shakhatreh et 

al., 2019).  

Vessel/ship detection and tracking in target detection 

problems stand out as an important military problem 

both due to the scale difference and the diversity of the 

background. To detect ships with deep learning 

methods, Fu et al. and Yang et al. have used Google 

Earth images obtained from Quick Bird satellite (Fu et 

al., 2018; Yang et al., 2018), Rainey et al. used Digital 

Globe satellites from World View-1 and World View-2 

images (Rainey et al, 2016); Wang et al. have used 

SAR images (Wang et al, 2017) and Khellal et al. have 

used infrared images (Khellal et al., 2018) 

As an example of predicting environmental conditions 

with deep learning, Drönner and his colleagues have 

made cloud predictions with deep convolutional neural 

networks to both make weather forecasts and to 

effectively distribute solar energy (Drönner et al., 

2018). Ouala et al. have developed a system to measure 

the temperature of the sea surface using the seven-year 

satellite data provided by the UK Met Office (Ouala et 

al, 2018).  

Deep learning techniques also plays an important role 

in mine, wire and handmade explosive detection, 

which are some of the most vital target detection 

problems. Ground Penetrating Radar (GPR) is an 

extensively used tool for buried target detection. In 

their related studies, Aydın and Yüksel (Aydın and 

Yüksel, 2017; Aydın and Yüksel, 2018; Aydın and 

Yüksel, 2019) have utilized transfer learning as it is 

very difficult and time-consuming to extract features in 

the classification of targets with similar electrical 

conductivity. They have taken the first two layers of 

AlexNet architecture and trained the last layer for GPR 

classification. They have also used multitasking 

learning so that the model learned in one soil type 

could be trained according to another soil type. In this 

method, they have developed a deep learning 

architecture that understands which type of soil (dry, 

wet, moist) the target is in. 

Salman and Yüksel have used a similar architecture for 

the fusion of the hyperspectral and LiDAR data 

(Salman and Yüksel, 2018). However, since the 

dimensions of the hyperspectral and LiDAR data are 

different from the images used in classical deep 

learning architectures, they have proposed various pre-

processing methods to equalize these sizes. They have 

shown that the results are much more successful than 

traditional methods. 

In the overall, an ideal remote sensing system should 

see what cannot be seen, should hear what cannot be 

heard, and should predict what is coming long before it 

happens to give the soldiers or decision makers ample 

time. Through the fusion of several sensors and 

external/prior information, deep learning methods are 

showing a promise in extracting the most useful 

information in each sensor in many applications as 

discussed above. 

Conclusion 

In this study, we have provided a brief review of deep 

learning approaches with a special focus on their use in 

medicine and remote sensing. A general look at the 

successful applications indicates what we always 

knew: that data is the key. However, now more than 

ever, collecting and understanding data is being more 

efficiently dealt with due to the advancements in 

technology and the methods in use. This includes 

storing patients’ data from all sorts of tests and for as 

long as possible for healthcare; and incorporating all 

kinds of sensors’ data such as weather information, 

intelligence data and the like for remote sensing. 

Considering the successes of the existing studies, we 

believe that deep learning will be used in these areas 

with increasing momentum in the coming years.  
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