

Research Article

Repurposing Artemisia annua L. Flavonoids, Artemisinin and Its Derivatives as Potential Drugs Against Novel Coronavirus (SARS –nCoV) as Revealed by In-Silico Studies

Krishna Kumar Rai¹, Apoorva¹, Lakee Sharma¹, Neha Pandey^{1,2}, Ram Prasad Meena¹, Shashi Pandey Rai^{1*}

Abstract

¹Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi-221005 (Uttar Pradesh), India ²Department of Potany, CMB PG College, University of Allababad, Prayagrai, India

²Department of Botany, CMP PG College, University of Allahabad, Prayagraj, India

Article Information

Received: 04 November 2020 Revised version received: 25 November 2020 Accepted: 30 November 2020 Published: 28 December 2020

Cite this article as:

K.K. Rai et al. (2020) Int. J. Appl. Sci. Biotechnol. Vol 8(4): 374-393. DOI: <u>10.3126/ijasbt.v8i4.33667</u>

*Corresponding author

Prof. Shashi Pandey Rai, Centre for Advance Study in Botany Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India Email: shashi.bhubotany@gmail.com/ p.shashi@bhu.ac.in

Peer reviewed under authority of IJASBT © 2020 International Journal of Applied Sciences and

This is an open access article & it is licensed under a Creative Commons Attribution Non-Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/)

Biotechnology

Coronavirus-induced COVID-19, a highly contagious respiratory illness first originated from Wuhan city of Hubei province, China, and has affected 235 countries across the globe. The COVID-19 is mainly transmitted by the droplets of an infected person when they cough, sneeze, or exhale. Currently, there are no specific drugs licensed for the effective treatment or prevention of COVID-19 and the treatment is mainly focused on controlling symptoms. Identification of small bioactive plant molecules that specifically target whole viral replication apparatus have great potential towards the development of antiviral drug discovery. This communication describes our current understanding of SARS-nCoV interaction with some herbal bioactive compounds of A. annua including sesquiterpenes, flavonoids and phenolics using in silico approach.

Keywords: SARS-nCoV; Artemisinin; Artesunate; Remdesvir; in-silico analysis

Introduction

Deadly SARS-nCoV has created serious attention worldwide as there are currently no effective therapeutic drugs for treating COVID-19 coronavirus infections to date (Gao *et al.*, 2020). Seeing serious health emergencies

throughout the globe we systematically analyzed the genome of SARS-nCoV. The genome of this virus is peptidoglycan enveloped, positive-sense, single-stranded RNA beta-coronavirus. The whole-genome sequence of

(Severe 2019-nCoV acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, GenBank: MN908947.3) indicates that this new coronavirus has four catalytic sites of the enzymes that can be utilized as antiviral targets because they are highly conserved, and have high sequence similarity with the viruses causing severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) (Gao et al., 2020). Furthermore, 2019-nCoV virus protein structural analyses revealed that major drug-binding pockets in enzymes are highly conserved across 2019-nCoV, MERS, and SARS (Xu et al., 2020). Although the disease SARS and MERS have been reported to have higher mortality rate than the COVID-19. Yet COVID-19 is highly infectious because the SARS-nCoV virus is highly contagious and spreads more easily among people, leading to increased fatality around the globe.

Similar to SARS and MERS, the SARS-nCoV open reading frame, ORF1a encoding non-structural proteins (such as 3chymotrypsin-like protease, papain-like protease), ORF1 b encoding RNA-dependent RNA polymerase and helicases and ORF for spike glycoprotein and other accessory structural proteins (Fig. 1) (Li et al., 2016). Several options and studies for emerging infections of SARS-nCoV, including small-molecule drugs, monoclonal antibodies, oligonucleotide-based vaccines, peptides, interferon therapies are being suggested by many health professionals (Wu et al., 2020). The drug therapies that act on the coronavirus based on the mode of action can be divided into following groups based on the target of specific pathways: (1) by blocking the virus from binding to human cell receptors, (2) by preventing the virus RNA synthesis and replication; (3) by improving host's innate immunity; and (4) by preventing virus entry to the host's cells (Fig. 2). However, new interventions related to target the genome of SARS-nCOV are likely to require several months or years to develop (Xu et al., 2020).

The ongoing SARS-nCoV pandemic makes us painfully realizethat our current known options for the treatment of this highly infectious life-threatening zoonotic new coronavirus infections are very limited (Bogoch *et al.*, 2020). Therefore, there is an urgent need for specific drugs that can efficiently block the processing of virus, replication, modification, and infection along with the ability to boost host immunity (Hui *et al.*, 2020). The SARS-nCoV enters into its host cell by the attachment of its S-glycoprotein through the receptor-binding domain (RBD) to a membrane protein that acts as a first receptor (human ACE2) on the host's surface. Among them, the 3C-like main protease (3CLpro), Papain-like proteinase (PLpro), RNA dependent RNA polymerase (RdRp), helicase, capsid,

and spike proteins/enzymes are the major targets for the development of small-molecule inhibitors as a potential drug(Wu et al., 2020). As therapeutic options in response to COVID-19 are urgently needed, we analyzed the potential of some Artemisia annua derived bioactive compounds and their conjugates that are already established as an antimalarial agent and have antiviral and immunomodulatory potential too. Interestingly, in the recent years, the bioactive components of A. annua herb such as artemisinin, beta-arteether, flavanoids and phenolic compound along with its semisynthetic derivatives such as artesunate and artemether have proven its efficiency as an antiviral agent. It has proven its efficacy against human cytomegalovirus, herpes simplex virus type 1, Epstein-Barr virus, hepatitis B virus, hepatitis C virus, bovine viral diarrhea virus and various other viral diseases. In this study an *in-silico* approach has been exploited to attest the efficacy of several bioactive compounds of A. annua along with artemisinin and its derivatives against SARS-nCoV.

Materials and Methods

Sequence Retrieval of SARS-nCoV, Human ACE₂ Receptor and Data Collection

The complete genome of "severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1" was downloaded from NCBI GenBank https://www.ncbi.nlm.nih.gov/genbank/ , accession no. MN908947.3 (Li and Clercq, 2020) and the native crystal structure of the human ACE2 extracellular domain (PDB code: 1R42) were downloaded from the protein data bank (PDB). The viral whole genome has been divided majorly into 3 open reading frames (ORFs) by NCBI ORF- Finder i.e. ORF1a containing Protease domain, ORF1b containing RNA dependent RNA polymerase and Helicase domain, and last coding region contained Spike and other associated structural proteins (Fig. 1). Each ORF was extracted from the whole genome of 2019-nCoV and translated by employing a translational tool of ExPASy server (Gasteiger et al., 2003). Further, each protein sequences were aligned individually to search the homologs as well as paralogues by **BLASTp** program https://blast.ncbi.nlm.nih.gov/Blast.cgi. To analyze the functional domains, different tools were used such as SMART http://smart.embl-heidelberg.de/, NCBI CDD https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, Pfam https://pfam.xfam.org/. and Further other physicochemical properties of the proteins were characterized including isoelectric point, GRAVY (grand average hydropathicity) of https://www.bioinformatics.org/sms2/protein_gravy.html (Stothard, 2000).

Fig. 1: Overall genome and nucleotide sequences responsible for coding different ORFs of SARS-nCoV. The large replicase polyprotein ORFab with the purple rectangle showing PLpro, and 3CLpro and the residues that bound the individual proteins/domains. Red rectangle showing ORF1b that includes RNA dependent RNA polymerase and helicase and brown rectangle showing sequences responsible for spike and other glycoproteins.

Fig. 2: Proposed model for Artemisinins (artemisinin and its derivatives) and flavonoids from *Artemisia annua* as potential candidate drugs for SARS-CoV-2 treatment therapy. ACE2 receptor inhibition, spike protein inhibition, protease inhibition, helicase inhibition and RNA polymerase (RdRP) inhibition are various mechanisms of action for artemisinins and flavonoids of *Artemisia annua*. Artemisinins also exhibit anti-inflammatory responses by targeting inflammatory networks including NF-kB, IRF3 and IRF7 and may prevent cytokine storm which is the leading cause of death in Covid-19 patients.

Structural Modelling and Analysis

Once the genomic sequences were analyzed and validated, those were further divided into fragments, according to the proteins. In our work we have dissected the genome into 5 parts: 1st denoting the translation of whole CDS (ORF1a), 2nd denoting helicase, 3rd RNA polymerase, 4th spike protein, and 5th glycoprotein portion of 2019-nCov. Experimentally resolved templates (based on X-ray diffraction and NMR parameters) were obtained by SWISS-MODEL; https://swissmodel.expasy.org/, a homology modelling tool (Waterhouse et al., 2018). Templates having a maximum identity and query coverage were selected for 3D modeling. 3D structure of all the five proteins was modelled in intensive mode with the hidden Markov model (HMM) by employing Phyre2 server (Kelley et al., 2015). 3-D model having minimum DOPE score were further refined ModRefiner by server https://zhanglab.ccmb.med.umich.edu/ModRefiner/ using two-step Atomic-level Energy Minimization (Xu and Zhang, 2011). All models were validated RAMPAGE http://mordred.bioc.cam.ac.uk/~rapper/ and ProSA web servers (Widerstein and Sippl, 2007).

Active Site Analysis

Active pockets of the modeled proteins were predicted by analyzing the sites and amino acid residues participating actively in covalent and non- covalent interactions with ligands using Metapocket 2.0 server (Huang, 2009) which characterize topology of the functional domains of query protein by other predictors like LIGSITE^{cs}, PASS, Q-SiteFinder, SURFNET, Fpocket, GHECOM, ConCavity, and POCASA. The final selection of ligand binding sites on the protein surface was done based on the Z- score.

Preparation of Ligand Database and Molecular Docking

In this work, we have selected 4 test ligands which are either natural or derivative bioactive compounds of *Artemisia annua*. The ligands are- artemisinin (CID: 68827), beta-artether (CID: 107929), artesunate (CID: 6917864), and artemether (CID: 68911), while the control ligand was set to remdesivir (CID: 121304016). With the help of PubChem database https://pubchem.ncbi.nlm.nih.gov (Kim *et al.*, 2019), target ligands were drawn using ChemDraw software

https://www.perkinelmer.com/category/chemdraw. All the docking calculations were executed by employing the Patchdock server in which receptor and ligands were docked having local molecular shape complementarity (Duhoyny *et al.*, 2002). Based on the area, score, and ACE (Atomic Contact Energy) value, the results were visualized in both 3D and 2D format to locate the binding site of ligands on the receptor surface and to identify the potential amino acid residues that are involved in the interaction.

Results and Discussion

Artemisinin and its derivatives have been already known for their powerful outstanding bioactivity, tolerability, and relative affordability. These properties of proven effective safety and availability make artemisinin a natural plantbased drug of special attention for various clinical studies (Chen et al., 1994; Wang et al., 2020). Indeed, its nonmalarial applications have augmented progressively over time since artemisinin was known to the world for the approved treatment of malaria. The possible use of artemisinin as anti-cancer, anti-inflammatory, anti-parasitic (other than malaria), and anti-viral roles have been also discovered. In addition, flavonoids of A. annua are also known for various biological activities including anti-tumor al., 2019). (Razak et anti-inflammatory and immunomodulatory activities (Laavola et al., 2012). Here, in this paper, we analyzed some auspicious research in artemisinin and flavonoids repurposing, especially for COVID-19 treatments, as a window that can help future drug development processes for this pandemic (Ho et al., 2012).

Sequence Retrieval and Ligand Database

Artemisinin and its derivatives are sesquiterpene lactones that bear the 1,2,4-trioxane moiety having endoperoxide bridge which is essential for the effective pharmacological activity of artemisinin and its chemical derivatives (Zhou et al., 2020). In this paper, we have tested several ligands that are natural/derivatized bioactive compounds of a Chinese medicinal plant Artemisia annua. These ligands are artemisinin, betaartether, artesunate and artemether. In addition, apigenin, casticin, chrysophanol, eupatorin, limonene, pinene, rosmarinic acid and rutin were also tested while the control ligand was set as remdesivir, hydroxychloroquine and ivermectin (Table 1). Remdesivir is a nucleoside analogue that acts as RdRp inhibitorwhere as hydroxychloroquine (HCQ) which is an analogue of chloroquine has been widely known to act as immunomodulator and Ivermectin is basically an antiparasitic drug use to treat skin infection and cutaneous diseases. However, compared to remdesvir, both HCQ and Ivermectin also have antiviral properties which have also shown promising results in the preliminary treatment of SARS-nCoV. On January 31, 2020, the New England Journal of Medicine reported the diagnosis and treatment of the first SARS-nCoV patient by Remdesivir which showed some effective possibility in the treatment of the novel coronavirus infected individuals. Recently, several researchers have confirmed the antiviral effect of HCQ which was effective in the preventing the progression and infection SARS-nCoV disease (Zhou et al., 2020). Similarly, Yao et al. (2020) has designed and optimized the respective doses of HCQ for the treatment of SARS-nCoV. The mechanism by which HCQ is being effective for the treatment of SARS-nCoV is that it is able to regulate various post-translational modification processes particularly

glyosylation of angiotensin-converting enzyme 2 (ACE 2) with in the host cell as well able to cleave SARS-nCoV spike protein thereby preventing the binding of SARS-nCoV virus to the receptor protein (Yao *et al.*, 2020).On the contrary, researchers have also indicated promising effect of Ivermectin in treating SARS-nCoV disease as it has

-

shown to inhibit replication of SARS-nCoV under *in-vitro* condition (Caly *et al.*, 2020). Similarly, Lv *et al.* (2018) has also demonstrated the inhibitory effect of Ivermectin on importin- α/β -dependent nuclear transport viral proteins thus inhibiting the entry of virus into the host cell.

Table 1: Details of the selected	phytocompounds used in this stud	y with their PubChem IDs.

Compound name	Mol. formula	Mol. Wt. (g/mol)	2D structure	PubChem ID
Terpenes:				
Artesunate	$C_{19}H_{28}O_8$	384.421		6917864
Artemether	$C_{16}H_{26}O_5$	298.37		68911
Betaartether	$C_{34}H_{56}O_{10}$	624.8		3037930
Limonene	$C_{10}H_{16}$	136.23	H ₃ C ^{CH₃}	22311
Pinene	$C_{10}H_{16}$	136.23	H ₃ C H ₃ C CH ₃	6654
Flavanoids				
Apigenin	C ₁₅ H ₁₀ O ₅	270.05	HO CH O	5280443

K.K. <i>R</i>	Rai et al.	(2020) Int	. J. Appl.	Sci.	Biotechnol.	Vol	8(4):	374-39	73
---------------	------------	------------	------------	------	-------------	-----	-------	--------	----

.

Compound name	Mol. formula	Mol. Wt. (g/mol)	2D structure	PubChem ID
Casticin	C ₁₉ H ₁₈ O ₈	374.34		5315263
Chrysophanol D	$C_{15}H_{10}O_4$	254.24	HO O OH	10208
Eupatorin	$C_{18}H_{16}O_7$	344.3		97214
Rutin	$C_{27}H_{30}O_{16}$	610.5		5280805
Phenolic Compounds:				
Rosmarinic acid	C ₁₈ H ₁₆ O ₈	360.3	HO CH OH	5281792
Recommended drugs as cont	trol			
Hydroxychloroquine	C ₁₈ H ₂₆ ClN ₃ O	335.9		3652
Ivermectin	C48H74O14	875.1		6321424
Remdesvir	$C_{27}H_{35}N_6O_8P$	602.6		121304016

Table 1: Details of the selected phytocompounds used in this study with their PubChem IDs.

Table 2 Patchdock results showing interaction of Artemisia annua flavanoids, artemisinin and its
derivatives with different selected ORFs

S. no.	Receptor +	Active	Amino acids	Score	Area	ACE	Other surrounding
	ligand	pocket involved	involved in interaction			value	residues
1.	Protease (ORF	1 st	HIS ²³⁵² ,	3592	407.60	-176.24	LEU ²³³⁸ , PHE ²⁴⁵¹ ,
	1a) +		CYS ²⁴⁵⁶ ,				GLY ²⁴⁵⁴ , SER ²⁴⁵⁵
	artemisinin		MET ²³⁶⁰ ,				
			HIS^{2474} ,				
			HIS^{2475} ,				
			$ME1^{2477}$, GLU^{2477}				
2.	Protease (ORF	1 st	LEU ²⁴⁵² ,	4220	487.00	-212.11	PHE ²⁴⁵¹ , GLY ²⁴⁵⁴ ,
	1a) +		ASN ²⁴⁵³ ,				SER ²⁴⁵⁵ , HIS ²⁴⁷⁴
	betaartether		CYS^{2456} ,				
			HIS^{2352} ,				
			HIS^{2474} , HIS^{2475}				
			MFT ²⁴⁷⁶				
			GLU^{2477}				
3.	Protease (ORF	1 st	HIS ²³⁵² ,	4536	500.20	-190.81	THR ²³³⁷ , LEU ²³³⁸ ,
	1a) + artesunate		MET ²³⁶⁰ ,				HIS ²⁴⁷⁵
			GLY^{2454} ,				
			CYS^{2436} , CLU2477				
4	Protease (ORF	1 st	HIS ²³⁵²	3854	459.20	-150.20	PHF ²⁴⁵¹ GI Y ²⁴⁵⁴
ч.	1a) + artemether	1	MET ²³⁶⁰ .	5054	457.20	-150.20	SER ²⁴⁵⁵ , OL 1,
	,		ASN ²⁴⁵³ ,				
			CYS ²⁴⁵⁶ ,				
			HIS ²⁴⁷⁴ ,				
			HIS^{2475} ,				
			$ME1^{2476}$, CL 11^{2477}				
			$GL0^{-3}$, GLN^{2500}				
5.	Protease (ORF	1 st	THR ^{24, 25, 26,}	4344	518.80	-256.33	LEU ¹⁴¹ , ASN ¹⁴² ,
	1a) + Casticin		CYS ⁴⁴ ,				GLY ¹⁴³ , SER ¹⁴⁴ ,
			THR^{45} ,				HIS ¹⁶⁴ , MET ¹⁶⁵
			SER ⁴⁶ ,				
6	Protesse (OPE	1 st	ME1 ³⁰ CL N ²⁵⁰⁰	3716	424.40	181.37	I EL12452 ADC2499
0.	1a) +	1	GLU^{2477}	5710	424.40	-101.57	$HIS^{2352} PHE^{2451}$
	Chrysophanol D		MET ²⁴⁷⁶ ,				GLY^{2454} ,
	5 1		ASN ²⁴⁵³ ,				
			HIS ²⁴⁷⁴				
7.	Protease (ORF	1 st	GLY^{2382} ,	4514	520.20	-185.43	GLY^{2431} , SER^{2432} ,
	1a) + Eupatorin		VAL ²³⁸⁴ ,				ASN^{2406} , TRP^{2342} ,
			ME 1^{2320} ,				PRO ²⁴⁰⁷
			LYS^{2408}				
8.	Protease (ORF	1 st	ASN ²⁴⁶² ,	2716	281.00	-71.72	PHE ²³¹⁹ , THR ²⁶⁰³ ,
	1a) + Pinene		ILE ²⁴¹⁷ ,				ASP ²⁶⁰⁶ , PHE ²⁶⁰⁵
			GLN^{2421} ,				
0		1 st	THR ²⁴²²	4504	522.00	105.40	THD 2603 CT > 12/21
9	Protease (ORF 1_{2}) +	1.50	$1 Y K^{2+0.5},$ PHF ²⁶⁰⁵	4394	533.80	-105.49	$1 \text{HK}^{2003}, \text{GLN}^{2421},$ PHE ²⁴²³ DHE ²³¹⁹
	Rosmarinic acid		$\frac{1}{THR^{2422}}$, IIE , IIE '
	rtobilitarilité della		ASN ²⁴⁶² ,				
			ASP ²⁴⁶⁴				
10.	Protease (ORF	1 st	GLN ²⁵⁰³ ,	4048	458.50	-141.64	HIS ²³⁵² , GLN ²⁵⁰⁰ ,
	1a) + Apigenin		GLU^{2477} ,		1		THR ²⁵⁰¹ , LEU ²⁴⁷⁸
			ARG^{2499} ,		1		
			VAL ²⁺⁷ DHF ²⁴⁹⁶				
11	Protease (ORF	1 st	AL A ²³⁸¹	4160	482 10	-216.83	SER ²⁴³² GL Y ²⁴³¹
	1a) + Linonene	1	GLY ²³⁸² .	7100	-02.10	210.05	PRO ²⁴³³ . MET ²³²⁸ .
	,		LYS ²⁴⁰⁸ ,		1		TRP ²³⁴² ,
			PRO^{2407}				

12.	Protease (ORF	1 st	MET ²⁴⁷⁶ ,	4194	532.30	-263.46	ARG ²⁴⁹⁹ , ASP ²⁴⁹⁸ ,
	1a) + Rutin		THR ²³³⁶ ,				VAL ²⁴⁹⁷ , THR ²³³⁵ ,
			THR ²³³⁷ ,				GLY ²⁴⁵⁴
			HIS^{2352} ,				
10	D (ODE	1 et	MET ²³⁶⁰	60.64	065.00	100.56	DUD 2336 L DU 2452
13	Protease (ORF	130	HIS ²³³² , MET ²³⁶⁰	6064	865.80	-422.56	THR^{2330} , LEU^{2432} , CVS^{2456}
	1a) + Remdesivir		I FI 12361				C15
	Refficestvit		GLY^{2454}				
			GLN ²⁵⁰⁰				
14.	Protease (ORF	1 st	ASP ¹⁴² ,	4178	473.90	-270.13	HIS ⁴¹ , MET ⁵⁰ ,
	1a)		GLY ¹⁴³ ,				TYR ⁵⁵
	+Hydroxychlor		SER^{144} ,				
	oquine		CYS ¹⁴⁵				
15.	Protease (ORF	1 st	PHE^{144} ,	6092	747.90	-381.18	$HIS^{162}, HIS^{163},$
	la) + Issues a stim		LEU^{145} ,				$MET^{104}, GLU^{105},$
	Ivermecun		$ASIN^{13}$, CL V^{147}				LEU ¹⁰⁰ , PKU ¹⁰⁷
			SER^{148}				
		1	SER				
B. Resu	ults showing interac	<u>ction of d</u> rugs	with RNA poly	merase			
S. no.	Receptor +	Active	Amino acids	Score	Area	ACE	Other surrounding
	ligand	pocket	involved in				residues
1	DNA	involved	Interaction	2078	242.60	210.69	SED312 DHE313
1.	nolymerase	0	VAL	2978	542.00	-219.08	SEK^{31} , PHE ³¹⁴ ,
	+ artemisinin						0L1
2	DNA	cth	LEU257	2074	241.70	106.14	
2.	RINA	0	LEU ²³⁷ , THD ⁵³⁹	3274	541.70	-120.14	PRO^{313} , LEU^{313},
	+ betaartether		LYS^{675} and				VAL
	1 betaartether		SER ⁶⁸⁰				
3.	RNA	4 th	VAL ¹⁹¹ .	3968	495.60	-215.84	GLY ¹⁹⁰ , GLY ²⁰⁷
	polymerase		ASP ²⁰⁸ ,				, ,
	+artesunate		PHE ²⁰⁹				
4.	RNA	6 th	TYR ²⁶⁰ ,	3218	359.70	-256.13	GLY ³¹⁴ , PRO ³¹⁵ ,
	polymerase		VAL ³¹⁷				LEU ³¹⁶
	+ artemether						
5.	RNA	4 th	GLY ⁵⁰² ,	4526	480.90	-160.80	SER ⁶⁸⁰ , VAL ⁶⁶⁶ ,
	polymerase		TYR ⁴⁵⁵ ,				GLY ⁵⁵⁸ , VAL ⁵⁵⁹
	+		LYS ⁶⁷⁵ ,				
	Apigenin		LYS ⁴⁹⁹				
6.	RNA	4 th	VAL ^{327,}	5098	599.50	-118.45	GLY ²⁹⁰ , GLY ³³⁷
	polymerase		TYR ²⁸⁰				
	+ Casticin						
7.	RNA	4 th	VAL ³⁰	4306	470.90	-143.02	ASP ³⁹ , ALA ³³ ,
	polymerase		VAL ⁶ , ARG ⁹			110102	PHE^{34} , VAL^{41}
	+						
	Chrysophanol D				L		500
8.	RNA	4 th	ARD^{554} ,	5218	612.80	-185.16	ILE ⁵⁸⁸ , ASP 683 ,
	polymerase		$ALA^{004},$				THR ⁰⁰⁰ , SER ⁰⁸¹
	+ Funatorin		$11K^{500}$, $1.YS^{550}$				
9.	RNA	4 th	ALA ⁶⁸⁷	3542	427 10	-59 56	ARG554 HIS927
2.	polymerase	-	GLN ⁹³¹ .	5572	427.10	57.50	SER ⁷⁵⁸ . ASN ⁶⁹⁰
	+		SER ⁷⁵⁸				,
	Linonene						
10.	RNA	4 th	HIS ¹³² ,	3496	374.30	-111.08	PRO ²⁰ , PHE ¹³³ ,
	polymerase		CYS^{21} ,				ASP ¹³⁴
	+		GLY^{22} ,				
11	Pinene	⊿th	CLU ⁸¹⁰	5262	611.00	Q1 65	CED758 I VC797
11.	nolymerase	4	ΔSP^{617}	3202	011.80	-04.00	ΔSP^{760}
	+						
	Rosmarininc						
	acid						

12.	RNA polymerase + Rutin	1 st	GLN ⁹³¹ , GLY ⁵⁸⁹ , ASP ⁶⁸³ , ALA ⁶⁸⁷ , THR ⁵⁵⁵ , LYS ⁵⁵⁰	5862	734.70	-235.01	ALA ⁵⁵⁷ , ILE ⁵⁸⁸ , LEU ⁷⁵⁷
13	RNA polymerase + remdesivir	6 th	SER ⁵⁴⁹ , LYS ⁵⁵¹ , ARG ⁵⁵⁵	5464	663.40	-279.49	SER ⁷⁵⁹ , ASP ^{760,} ASP ⁷⁶¹
14.	RNA polymerase + Hydroxychloro	q 1 st	ASP ²¹⁷ , HIS ¹¹² , ASN ³⁸ , PHE ⁴⁷	4926	582.10	-216.97	ASP ³⁹ , LYS ⁴⁰ , PHE ⁴⁴ , ILE ¹¹³
15.	RNA polymerase + Ivermectin	1 st	$\begin{array}{c} THR^{539},\\ GLN^{540},\\ MET^{541},\\ ASN^{542},\\ LEU^{543},\\ LYS^{544},\\ TYR^{45} \end{array}$	7092	975.80	-266.44	ASN ⁵⁰⁶ , LYS ⁵¹⁰ , GLU ⁵⁵⁹ , VAL ⁵⁶⁰
C Dog	ulta abowing into	mation of drug	a with Ualionaa				
S. no.	Receptor + ligand	Active pocket involved	Amino acids involved in interaction	Score	Area	ACE	Other surrounding residues
1.	Helicase + artemisinin	2 nd	ASN ⁵⁵⁷	3840	442.20	-130.33	GLY ⁴¹⁵ , THR ⁴¹⁶ , LEU ⁴¹⁷
2.	Helicase + betaartether	2 nd	ASN ⁵⁵⁷	4064	492.70	-149.81	PRO ⁴⁰⁶ , GLY ⁴¹⁵ , THR ⁴¹⁶ , HIS ⁵⁵⁴
3.	Helicase + artesunate	2 nd	ASN ⁵⁵⁷	4614	561.80	-174.04	LEU ⁴⁰⁵ , PRO ⁴⁰⁸ , GLY ⁴¹⁵ , HIS ⁵⁵⁴
4.	Helicase + artemether	1 st	HIS ⁵⁵⁴	4002	470.20	-145.50	ALA ⁴⁰⁷ , LEU ⁴¹⁷
5.	Helicase + Apigenin	2 nd	SER ⁵³⁹ , ARG ⁴⁴³ , GLN ⁴⁰⁴ , LYS ²⁸⁸ , GLY ⁵³⁸	3988	470.00	-99.84	HIS ²⁹⁰ , GLY ²⁸⁷ , SER ²⁸⁹ , SER ⁵⁶⁷ , THR ⁵⁶⁶
6.	Helicase + Casticin	1 st	PRO ⁵¹⁶ , GLY5 ¹⁵ , THR ⁵⁵⁶ , HIS ⁵⁸⁴	4400	513.90	-166.74	ARG ³⁷⁸ , CYS ³⁰⁹ , MET ³⁸⁸ , ASP ³⁹³ , PRO ⁴¹⁸
7.	Helicase + Chrysophano l D	2 nd	ARG ⁴⁴³ , PRO ²⁸⁴ , LYS ²⁸⁸	3648	421.10	-21.20	GLN ⁴⁰⁴ , SER ⁵³⁹ , GLN ⁵³⁷ , GLY ⁵³⁸
8.	Helicase + Eupatorin	1 st	LYS ²⁸⁸ , PRO ²⁸⁴ , SER ²⁸⁹ , GLU ³⁷⁵ , ALA ³¹² , ALA ³¹³	4440	539.40	-104.88	HIS ³¹¹ , SER ³¹⁰ , GLU ³¹⁹ , LYS ³²⁰
9.	Helicase + Linonine	1 st	GLY ²⁸⁵ , PRO ²⁸⁴ , ARG ⁴⁴³	3122	355.20	-63.78	LYS ²⁸⁸ , GLY ²⁸⁷ , SER ²⁸⁹ , THR ²⁸⁶ , GLN ⁴⁰⁴
10.	Helicase + Pinene	1 st	TYR ¹⁸⁰ , LYS ¹³⁹ , GLU ¹⁴²	2840	314.70	-36.40	LYS ¹⁴⁶ , GLU ¹⁴³ , THR ⁴¹⁰ , ASN ¹⁷⁹
11.	Helicase + Rosmarininc acid	1 st	SER ⁵³⁹ , GLN ⁴⁰⁴ , GLY ²⁸⁵ , GLN ⁵³⁷ , ARG ⁴⁴³	4374	514.00	-71.90	ARG ⁴⁴² , LYS ²⁸⁸ , SER ²⁸⁹ , LYS ³²⁰

12.	Helicase + 1	st	TYR^{180} .	5664	606.50) -41.4	6	ASN ¹⁷⁶ , CYS ³⁰⁹ ,
	Rutin		LYS ¹⁴⁶ , GLU ¹⁴³ , TUD ³⁸⁰				-	ASP ³⁸³ , TYR ³⁸²
10	TT 1'	ot	1HR ³⁸⁰	(202		120	<i>c</i> 0	A D C178 CT (200
13.	Helicase + I	51	LYS^{139} ,	6292	//4.40) -139.	69	$ARG^{178}, CYS^{309},$
	remdesivir		SER ³¹⁰ ,					ME1 ³⁷⁸ , ASP ³⁸³ ,
			ASN ³⁰¹ ,					PRO ⁴⁰⁸
			THR ³⁸⁰					210 220
14.	Helicase + 1	st	GLY^{285} ,	4274	492.90	-45.1	5	GLU^{319}, LYS^{320}
	Hydroxychlo		GLY^{287} ,					
	roquine		LYS ²⁸⁸ ,					
			SER ²⁸⁹					
15.	Helicase + 1	st	CYS ³⁰⁹ ,	6816	847.60) -188.	33	ASN ¹⁷⁹ , VAL ¹⁸¹ ,
	Ivermectin		SER ³¹⁰ .					THR ³⁵⁹ , ASN ³⁶¹
			HIS ³¹¹					,
			AL A ³¹²					
D Resi	ults showing intera	ction of drug	s with snike (Cou	ma S2)				
S no	Decontor	Activo	A mino ocide	Score	Aroo	ACE	Otho	r currounding
5. 110.	Receptor +	Active	involved in	Score	Alta	ACL	void	i sui i oununig
	nganu	pocket	involved in				resia	ues
		Involveu	interaction					
1	0.11		TT ZD 558	2050	104.70	225.02	770.05	53 mxm 556 t mt 550
1.	Spike+	-	TYR^{556} ,	3958	484.70	-225.03	TRP	55 , TYR 550 , LEU 559 ,
	artemisinin		CYS^{584} ,				CYS ³	194
			SER ⁵⁹³ ,					
			ASP ⁶⁰⁰					
2.	Spike+	-	TYR^{547} ,	4182	541.4	-263.36	TYR	⁵⁵⁰ , ASP ⁵⁹⁸
	betaartether		SER ⁵⁸³ ,					
			CYS ⁵⁸⁴					
3.	Spike+	2 nd	HIS ³⁸⁹ ,	4780	549.60	-105.14	LYS ³	⁷⁹ , VAL ^{381,} GLY ⁴³⁴ ,
	artesunate		LYS ⁴⁴⁸				GLN ⁴	447
4.	Spike+	-	TYR ⁵⁵⁶	4176	513.90	-257.98	TYR	⁵⁵⁰ , TRP ⁵⁵⁵ , CYS ⁵⁸⁸ ,
	artemether						SER ⁵	⁹³ . CYS ⁵⁹⁴
5	Spike+	3rd	GL N ¹⁴⁵	4140	509 30	-201.86	LYS ¹	⁶⁶ GLN ²⁷⁶ LEU ¹⁶³
5.	Apigenin	5	ILE^{159} ILE^{272}	1110	207.20	201.00	215	, OLIV , LLC
6	Spike+Casticin	2nd	ΔSN^{145}	4868	584 20	-275 97	TYR	166 ARG ⁷⁶ I FU ¹⁶³
0.	SpikerCastieni	2	$CI V^{159}$	+000	504.20	-215.91	IIK	, AKO , LLO
			$U E^{272}$					
7	Spike Chryson	2nd	CVS584	3080	470.30	247.15	DUES	97 ACD600 CED593
7.	banol D	2	CIS, CED 583	3700	479.50	-247.15	THE	, ASI , SER
			SER , CVS ⁵⁹⁴					
			C15, C11599					
			ULU , TVD550					
0	Cuiles / Eventeri	and	1 I K I EI 1585	4520	501.40	225.16	CED5	93 CED 583 DUE 597
0.	Spike+Eupaton	2	LEU^{584} , CVC^{584}	4338	391.40	-525.10	SEK.	, SEK ^{aa} , PHE ^{arr}
	n		CYS^{504} ,					
			GLU ³⁹⁹ ,					
0	Cuiles I in an in a	and	ASP ⁷⁴	2416	290.50	140 77	ACNÍ	296 AT A 299 TVD 348
9.	spike+Linonine	2	$L15^{\circ}$, CLN115	3410	369.30	-142.//	ASIN	$^{\circ}$, ALA $^{\circ}$, I I K $^{\circ}$
			GLN^{11} ,					
10		and	ILE ^{III}	2200	2 (7.20)	107.00	CL LT	500 mp.p.555 t.p.t.550
10.	Spike+ Pinene	214	TYR^{330} ,	3308	367.20	-137.89	GLU	599 , TRP 555 , LEU 559
			ASP ⁵⁵⁸ ,					
		• d	TYR ³³⁰					50 501 517
11.	Spike+Rosmari	2^{nd}	LYS ⁵⁹⁶ ,	4930	592.10	-207.23	TYR	$^{550}, CYS^{584}, TYR^{547}$
	ninc acid		ASP^{600} ,					
		a nd	SER ⁵⁸⁵				<u> </u>	200
12.	Spike+Rutin	2 nd	SER ⁴⁵ ,	5802	665.60	-138.29	TYR	³⁸⁸ , GLY ²⁴⁹ , SER ³⁷⁸ ,
			GLU^{433} ,				VAL	40
			GLN ⁴⁴⁷ ,				1	
			LYS ³⁷⁹ ,					
	<u> </u>	ļ	ILE ²⁵⁰					
13.	Spike+	2 nd	GLY ²⁴⁹ ,	6550	806.10	-263.5	GLY	²⁵¹ , VAL ²⁵² , GLN ³⁷⁷ ,
	remdesivir		ILE ²⁵⁰ ,				SER ³	⁷⁸ , GLY ⁴³⁴ , ASN ⁴⁴⁹
			LYS ³⁷⁹ ,					
			TYR ³⁸⁸ ,				1	
			ARG ⁴³² ,				1	
			GLU ⁴³³ ,					
			GLN ⁴⁴⁷				1	

14	Spike+	2 nd	PHE ^{164} ,	4360	477.70	-178.73	PRO ²⁰⁴ , LEU ²⁰⁶ , THR ²⁰⁷ ,					
	uine		$\begin{array}{c} \text{ALA}^{-1},\\ \text{PHE}^{174},\\ \text{LYS}^{176} \end{array}$				ASE					
145	Spike+ Ivermectin	2 nd	ILE ⁵ , PRO ⁶ , ILE ⁷ , GLY ⁸	6664	869.10	-256.89	ASN ²⁰ , SER ²¹ , PRO ²² , ARG ²³					
E. Resu	E. Results showing interaction of drugs with spike receptor (Glycoprotein)											
S. no.	Receptor + ligand	Active pocket involved	Amino acids involved in interaction	Score	Area	ACE	Other surrounding residues					
1.	Spike receptor + artemisinin	Rather than pocket	SER ¹¹⁰ , SER ¹⁸¹	3806	452.20	-175.57	PHE ¹⁹ , TRP ¹⁰⁸ , LEU ¹¹³					
2.	Spike receptor + betaartether	Rather than pocket	TRP ¹⁰⁸ , LEU ¹¹³	4312	518.80	-181.79	SER ¹¹⁰ , ASP ¹¹⁴ , SER ¹⁸¹					
3.	Spike receptor + artesunate	Rather than pocket	SER ¹¹⁰ , SER ¹⁸¹	4838	548.90	-209.07	PHE ¹⁴ , TRP ¹⁰⁸ , ASN ¹¹²					
4.	Spike receptor + artemether	Rather than pocket	TRP ¹⁰⁸	4148	479.00	-171.70	ASN ¹⁰⁹ , SER ¹¹⁰ , LEU ¹¹³					
5.	Spike receptor + Apigenin	1 st	SER ¹⁴¹ , TYR ¹⁴⁵	3800	415.00	-189.53	PRO ¹⁶³ , ASP ¹³⁹ , THR ¹⁴²					
6.	Spike receptor +Casticin	1 st	TRP ¹⁴³ , LEU ¹⁵⁹	4604	564.40	-235.73	SER ¹²⁰ , ASP ¹⁴³ , SER ¹⁹²					
7.	Spike receptor +Chrysophanol D	1 st	PHE ¹⁴ , SER ¹⁸¹ , ALA ⁴⁴	4042	454.40	-183.23	ALA ¹⁶ , ASN ¹⁵ , ALA ⁴⁴ , SER ¹¹⁰					
8.	Spike receptor +Eupatorin	1 st	THR ¹⁷ , ASN ¹²² , ASP ¹¹⁴ , TYR ¹²³ , SER ¹⁸¹	4226	508.60	-126.76	PHE ¹⁴ , TRP ¹⁰⁸ , LEU ¹¹³					
9.	Spike receptor + Limonene	1 st	$\frac{\text{SER}^{18}}{\text{PHE}^{14}},$ $\frac{\text{SER}^{110}}{\text{SER}^{110}}$	3048	345.60	-128.55	ASP ¹¹⁴ , SER ¹¹⁰ , ASN ¹⁵					
10.	Spike receptor + Pinene	1 st	LEU ¹¹³ , TRP ¹⁰⁸ , SER ¹¹⁰	2926	332.60	-120.91	PHE ¹⁹ , THR ¹⁷ , ALA ¹⁶					
11.	Spike receptor +Rosmarininc acid	2 nd	SER ¹⁸ , ALA ⁴⁴ , TRP ¹⁰⁸ , PHE	4604	564.00	-229.61	TYR ⁴¹ , ASN ⁴² , ASP ¹¹⁴ , ALA ¹⁶					
12.	Spike receptor +Rutin	2 nd	TYR ⁴¹ , ASN ⁴² , ASN ¹⁵ , ASN ¹⁶ , THR ¹⁷ , SER ¹⁸¹	5392	689.50	-301.22	PHE ¹⁴ , PHE ¹⁹ , TRP ¹⁰⁸ , ALA ⁴⁴					
13.	Spike receptor + remdesivir			6270	783.30	-398.75						
14	Spike receptor + hydroxychloroq uine	2 nd	$\begin{array}{c} PHE^{10},\\ ASN^{11},\\ ALA^{12},\\ THR^{14},\\ PHE^{16} \end{array}$	4462	523.60	-255.38	TYR ³⁷ , ASN ³⁸ , SER ³⁹ , ALA ⁴⁰					
15	Spike receptor + Ivermectin	2 nd	PHE ¹⁰ , ASN ¹¹ , ALA ¹² , THR ¹⁴ , SER ¹⁵ , PHE ¹⁶	6164	859.10	-393.73	TYR ³⁷ , ASN ³⁸ , SER ³⁹ , ALA ⁴⁰					
			THE									

T. Kesu						_	
S. no.	Receptor + ligand	Active pocket involved	Amino acids involved in interaction	Score	Area	ACE value	Other surrounding residues
1.	ACE2 + artemisinin	1 st	ASN ¹⁰³ , GLN ¹⁰² , TYR ¹⁹⁶	3548	385.10	-113.74	ALA ¹⁹³ , ASN ¹⁹⁴ , TYR ²⁰²
2.	ACE2 + betaartether	1 st	ALA ⁵⁶² , TYR ⁵²¹ , ASN ⁵⁶³	4204	452.80	-152.21	VAL ²⁰⁹ , TYR ²⁰⁷ , ALA ³⁹⁶ , PHE ⁴⁰⁰
3.	ACE2 + artesunate	1 st	GLN ⁴⁴² , LEU ³⁷⁰ , PHE ⁴³⁸ ,	4628	532.30	-29.42	MET ³⁶⁶ , LYS ⁴⁴¹ , ILE ²⁹¹
4.	ACE2 + artemether	1 st	HIS ¹⁹⁵ , TYR ¹⁹⁶ , GLN ⁹⁸	3670	414.00	-100.63	TYR ²⁰² , GLN ¹⁰¹ , ASN ¹⁰³ , GLN ⁸¹
5.	ACE2 + Casticin	1 st	ASN ²⁷² , ILE ²⁷³ , MET ³⁴⁹ , HIS ³⁵⁶	4588	536.50	-46.37	HIS ³⁶⁰ , GLU ³⁸⁴ , GLU ³⁸⁸ , ALA ³⁹⁵
6.	ACE2 + Chrysophanol D	1 st	$\begin{array}{c} \text{GLN}^{81},\\ \text{GLN}^{102} \end{array}$	3652	387.00	-99.55	ALA ⁹⁹ . ASN ¹⁰³ , ASN ¹⁹⁴
7.	ACE2 +Eupatorin	1 st	$\begin{array}{c} {\rm PHE}^{438},\\ {\rm GLN}^{442},\\ {\rm GLU}^{406} \end{array}$	4666	544.90	-59.64	LYS ⁴⁴¹ , THR ⁴⁴⁵ , ARG ⁵¹⁸
8.	ACE2 + Pinene	1 st	LYS ⁴⁴¹ , MET ³⁶⁶ , PHE ⁴³⁸	2370	338.90	-84.68	LEU ³⁷⁰ , ALA ⁴¹³ , GLN ⁴⁴²
9.	ACE2 + Rosmarinic acid	1 st	$\begin{array}{c} \rm HIS^{374},\\ \rm ILE^{291},\\ \rm ASN^{290},\\ \rm SER^{409} \end{array}$	4406	494.20	-113.63	LEU ³⁷⁰ , ALA ⁴¹³ , MET ³⁶⁶ , LYS ⁴⁴¹
10.	ACE2 + Apigenin	1 st	TYR ²⁰⁷ , TYR ⁵²¹ , PHE ⁴⁰⁰ , ASN ³⁹⁷ , VAL ⁵⁶¹	3796	418.60	-160.86	VAL ⁵⁶¹ , PHE ⁵²⁵ , VAL ⁵⁵⁹ , ALA ⁵⁶²
11.	ACE2 + Linonene	1 st	ILE ²⁹¹ , LEU ³⁷⁰ , PHE ⁴³⁸	2934	346.10	-59.89	GLN ⁴⁴² , ASN ²⁹⁰ , ALA ⁴¹³
12.	ACE2 + Rutin	1 st	TYR ²⁰⁷ , ALA ⁵⁶² , VAL ⁵⁶¹ , ASN ⁵⁶³ , ARG ⁵⁶⁰ , LEU ⁵⁶⁴	5348	647.70	-388.24	TYR ²¹⁷ , VAL ⁵⁵⁹ , GLN ⁵²⁴
13.	ACE2 + Remdesivir	1 st	TYR ¹⁸⁴ , GLY ¹⁸⁷ , ASP ¹⁸⁸ , TYR ¹⁸⁹ , GLU ¹⁹⁰	6564	812.60	-318.63	LEU ³⁷³ , LEU ³⁷⁴ , ARG ³⁷⁵ , ASN ³⁷⁶ , GLY ³⁷⁷
14	ACE2 + Hydroxychloroq uine	1 st	TYR ¹⁸⁹ , VAL ¹⁹¹ , TYR ¹⁹⁹ ,	4134	466.80	-208.38	HIS ³⁶⁰ , ALA ³⁷⁹ , MET ³⁸⁰
15	ACE2 + Ivermectin	1 st	$LEU^{77},$ $GLU^{80},$ $ALA^{81},$ GLU^{84}	6768	770.80	-245.70	TYR ¹⁸⁴ , GLY ¹⁸⁸ , ASP ¹⁸⁹ , GLU ¹⁹⁰

In the present study, we first dissected the genome into 5 parts: (1) whole CDS (ORF1a), (2) helicase, (3) RNA polymerase, (4) spike protein, and (5) glycoprotein portion of SARS 2019-nCov, and analyzed the interaction of some major bioactive compounds of *A. annua* along with antimalarial compound artemisinin and its derivatives with each subset of ORFs (Fig. 1). The ORF 1a (nucleotide 266

to 13,468) is responsible for coding *papain-like proteinase* (*PLpro*) that cleaves N-terminus of the replicase polyprotein to release Nsp1, Nsp2 and Nsp3 for correcting virus replication and *3C-like main protease* (*3CLpro*) that facilitates the maturation of Nsps, which is needed for the virulent life cycle of the coronavirus (Wang *et al.*, 2020). Both of them are attractive targets for anti-coronavirus drug

development. Another ORF 1b includes expression of RNA-dependent RNA polymerase (RdRp) (starting from nucleotide13,442 to 16,236 also known as Nsp12, a highly conserved protein of coronavirus replication/transcription complex and Helicase (Nsp13), a multi-functional protein, include N-terminal metal-binding domain and helicase domain which is a necessary component for the replication of coronavirus (Kirchdoerfer and Ward, 2019). Besides this, in our study, another target that has been selected here is a virus structural spike protein (nucleotide 21,563 to 25,384) that interacts with the host cell receptors and causing virus invasion into the host. Spike structural integrity and its activated cleavage play a crucial deciding role in virulence capacity.

Structural Modelling and Validation

Sequence analysis and model validation through MSA and phylogenetic analysis revealed the close homologues of SARS-nCoV (Fig. 3). All the five modeled protein qualities were validated using RAMAPAGE and PROCHECK analysis which confirm the superiority of model proteins with 98.0%,92.2%,95.3%, 79.1%, and 94.5% residues were present in favoured region of Corona peptidase, RNA dependent RNA polymerase (RdRp), helicase, spike, and glycoprotein respectively (Fig. 10; Table 3). Further, active site prediction and molecular docking analysis revealed the actual active sites of the receptor proteins which is involved in the interaction with ligands by covalent or non-covalent interactions (Subissi et al., 2014). The result of Metapocket 2.0 server identified the pockets sharing same amino acid residues along with interacting residues which are as-Pocket 1st- HIS2352, MET2360, LEU2361, HIS2352, ASN2453, GLY²⁴⁵⁴, CYS²⁴⁵⁶, HIS²⁴⁷⁴, HIS²⁴⁷⁵, MET²⁴⁷⁶, and GLU²⁴⁷⁷ for the whole peptidase, Pocket 4th - PHE206, GLY207, PHE²⁰⁹, ASP²⁰⁸, ILE¹⁸⁸, ALA¹⁸⁶, GLN²¹¹, PHE¹⁷⁹, ALA¹⁸², and MET¹⁸³, and Pocket 6th - LEU²⁵⁷, LEU²⁵⁸, LYS²⁵⁹, TYR²⁶⁰, LEU³¹⁶, THR³³¹, GLY³³², VAL³⁴⁰, VAL³⁴¹, HIS³⁴², SER³¹⁸, TYR³³³, VAL³¹⁷, PRO³¹⁵, SER³¹², THR³¹¹, ASP²⁵⁶, PHE³¹³, GLY³¹⁴, and PRO³¹⁰ for RNA dependent RNA Besides these, polymerase. 611-**TPHLMGWDYPKCDRAM-626** 753and FSMMILSDDAVVCFN-767 are also involved in the interaction (Gao et al., 2020). From helicase receptor, Pocket 1st - LYS¹³⁹, SER³¹⁰, ASN³⁶¹, THR³⁸⁰, and HIS⁵⁵⁴ and pocket 2nd - ASN⁵⁵⁷ were involved in the interaction. Further, active site in spike protein, sharing interaction with the ligands were found as Pocket 2nd - GLY²⁴⁹, ILE²⁵⁰, LYS³⁷⁹, TYR³⁸⁸, HIS³⁸⁹, ARG⁴³², GLU⁴³³, GLN⁴⁴⁷, andLYS⁴⁴⁸. However, analysis of active sites of glycoprotein domain showed no pockets were involved in the interaction, as all the interacting residues were found to be other than the pockets (Table 2).

Fig. 3: Phylogenetic tree depicting the closer homologues of SARS-CoV-2

S. no.	Type of protein studied	Result of Ram (No. of amino	apage quality acid residues i	Results of Prosa server	GRAVY score	
		favoured region	allowed region	outlier region	Z- score	
1.	Corona peptidase (nsp3, 4, and 6)	98.0%	1.3%	0.7%	-6.61	0.024
2.	CoronaRNAdependentRNApolymerase (nsp12)	92.2%	5.8%	1.9%	-11.06	-0.135
3.	Corona helicase protein	95.3%	3.8%	0.8%	-9.6	-0.004
4.	Corona spike protein	79.1%	11.7%	9.2%	-6.7	-0.182
5.	Corona glycoprotein	94.5%	4.4%	1.1%	-5.39	0.036

Table 3: Quantitative and qualitative assessment of modelled proteins

Fig. 4: Patchdock analysis showing the interactions of ligands to the protease residue of SARS-CoV-2. A-O are the interactions of protease with Artemisinin, Betaartether, Artesunate, Artemether, Rosmarininc acid, Rutin, Linonene, Pienen, Eupatorin, Chrysophanol D, Casticin, Apigenin, Remdesivir, Ivermectin, Hydroxychloroquine respectively. Remdesivir, Ivermectin and Hydroxychloroquine are the control ligand.

Fig. 5: Patchdock analysis showing the interactions of ligands to the RNA Polymerase (Whole nsp12) residue of SARS-CoV-2. A-O are the interactions of RNA Polymerase with Artemisinin, Betaartether, Artesunate, Artemether, Rosmarininc acid, Rutin, Linonene, Pienen, Eupatorin, Chrysophanol D, Casticin, Apigenin, Remdesivir, Ivermectin and Hydroxychloroquine respectively. Remdesivir, Ivermectin and Hydroxychloroquine are the control ligand.

Fig. 6: Patchdock analysis showing the interactions of ligands to the Helicase residue of SARS-CoV-2. A-O are the interactions of Helicase residue with Artemisinin, Betaartether, Artesunate, Artemether, Rosmarininc acid, Rutin, Linonene, Pienen, Eupatorin, Chrysophanol D, Casticin, Apigenin, Remdesivir, Ivermectin and Hydroxychloroquine respectively. Remdesivir, Ivermectin and Hydroxychloroquine are the control ligand.

Fig. 7: Patchdock analysis showing the interactions of ligands to the Spike residue of SARS-CoV-2. A-O are the interactions are the interactions of Spike residue with Artemisinin, Betaartether, Artesunate, Artemether, Rosmarininc acid, Rutin, Linonene, Pienen, Eupatorin, Chrysophanol D, Casticin, Apigenin, Remdesivir, Ivermectin and Hydroxychloroquine respectively. Remdesivir, Ivermectin and Hydroxychloroquine are the control ligand.

Fig. 8: Patchdock analysis showing the interactions of ligands to the Glycocapsid residue of SARS-CoV-2. A-O are the interactions of Glycocapsid with Artemisinin, Betaartether, Artesunate, Artemether, Rosmarininc acid, Rutin, Linonene, Pienen, Eupatorin, Chrysophanol D, Casticin, Apigenin, Remdesivir, Ivermectin and Hydroxychloroquine respectively. Remdesivir, Ivermectin and Hydroxychloroquine are the control ligand.

Fig. 9: Patchdock analysis showing the interactions of ligands to the Human ACE 2 protein. A-O are the interactions of Human ACE 2 with Artemisinin, Betaartether, Artesunate, Artemether, Rosmarininc acid, Rutin, Linonene, Pienen, Eupatorin, Chrysophanol D, Casticin, Apigenin, Remdesivir, Ivermectin and Hydroxychloroquine respectively. Remdesivir, Ivermectin and Hydroxychloroquine are the control ligand.

Fig. 10: Quantitative and qualitative analysis of (1) whole CDS (ORF1a), (2) helicase, (3) RNA polymerase, (4) spike protein, and (5) glycoprotein portion of SARS 2019-nCov.

Fig. 11: Schematic representation of different processes that are stimulated upon viral infection and countermeasures adopted by cells to eliminate the threat and simultaneously boosting immunity with in the body.

Molecular Docking and Interaction

After the analysis of active sites, molecular docking of receptors and ligands was done by Patchdock server, and results with the highest score were analyzed further. All the interacting residues, area, score, and ACE values of the interactions are compiled in Table 2A-2E, which shows that majority of amino acid residues taking part in interaction

with ligands, were common to those within binding sites as depicted by Metapocket. The docking results indicated that remdesvir, hydroxychloroquine and ivermectin interacted strongly with protease ORF1a by GLY, SER and LEU (binding score -263.46 – 422.56) residues where as HIS, MET and TYR residues were also involved in stabilizing the interaction by covalently interacting with the former residues (Table 2A; Fig. 6). These interacting amino acids were also found to be common in artemisinin, beta-arteether and casticin suggesting the strong conservation of these amino acid residues (binding score -176.24 to -256.33). Similarly, docking results of all the ligands with RNA dependent RNA polymerase (RdRp) is shown in Fig. 5. The RdRp was found to be in interaction with HCQ and ivermectin with conserved ASN, LYS, TYR and PHE residues with the docking score of -216.9 to -266.44 which indicate a strong bnding of these componds to the receptor complex (Table 2B; Fig. 5). Other phytocomponds which also showed interaction with RdRp with similar core amino acid residues along with other residues (VAL and ASP) were artmesisnin, artesunate, eupatorin and rosamrininc acid (Fig. 2B). It is already reported by Gao et. al. that RdRp make a hydrogen bond with remdesivir and other phytocompounds by THR, SER, and ASP which is in accordance with the results of the present study.

The control ligands viz., remdesvir, HCQ and ivermectin interacted with helicase receptor with conserved GLY, SER, LYS and ASN amino acid residues along with other supporting amino acid residues with the docked score of -45.15 to -188.33 indicating strong interaction with the helicase receptor (Table 2C; Fig. 6). On the contrary, the phytocompounds that were in interaction with helicase domain with similar conserved amino acid residues were artemisinin, apigenin, chrysophanol D, eupatorin and pinene with the docked score of -21.2 to -130.3 thus validating the effectiveness of these residues (Imbert et al., 2006).Molecular interaction of spike protein with control ligands reveals strong interaction with control ligands viz., remdesvir, HCQ and ivermectin via PHE, PRO, ILE and LYS amino acid residues with docking score of -178.7 to -263.5 and these residues were also responsible for the interaction with artesunate, apigenin and limonene with spike receptor with docking score of -105.1 to -201.1 (Table 2D; Fig. 7). Furthermore, remdesvir, HCQ and ivermectin also exhibited good score and most negative ACE values of docked complex showing PHE, ASN, ALA and THR were the core amino acid residues involved in the interaction (Table 2E; Fig. 8). Among phytocompounds that showed interaction with glycoprotein with similar amino acid residues were chrysophanol D, eupatorin and rutin whereas artemisinin and its derivatives showed interaction with SER, TRP and LEU residues which may be due to the point mutation that have alter the binding of these compounds thus affecting their ability to bind with SARSnCoV inhibitors. Furthermore, human ACE-2 protein interated with the HCQ via TYR and VAL residues whereas ivermectin exbhited interaction with ACE-2 protein via GLU, ALA and LEU residues (Table 2F; Fig. 9). On the contrary, remdesviralong with artemisinin, beta-artether and rosmarinic acid interacted with core amino acid residues viz., TYR, GLY, ASP and ASN (Table 2F). Several independent research groups investigated that

SARS-nCoV also utilizes ACE-2 as a cellular entry receptor in humans. The ACE-2 receptor is a vital element for regulating processes such as wound healing inflammation and blood pressure by the renin-angiotensinaldosterone system (RAAS) pathway (Imbert et al., 2006). It can be hypothesized that treating patients with ACE inhibitor (ACE_i) can reduce the Angiotensin₂ accumulation which is the substrate for ACE-2 by preventing ACE mediated cleavage of Angiotensin_{1to7} thereby having potential to negatively regulate RAAS. The ACE-2 have shown a protective function in the cardiovascular system and other organs also. The modulation of RAAS activation through the ACE2/Ang₁₋₇ pathway should be considered for treatment of COVID-19 disease. The bioactive compounds artemisinin, β arteether, rosmarnic acid, rutin and apigenin have shown ACEi potential in this study.

Overall, the present study identified potential, non-toxic natural bioactive compounds that showed strong interaction with helicase domain, RdRp receptor and spike protein receptor of SARS-nCoV (Table 2 and Fig. S2-S7). Among these screened phytochemicals, artemisnin, beta-artether, artesunate, and eupatorin exhibited highest binding affinity with docking score ranging from -21.2 to -130.3 as well as significant binding with the spike protein and RdRp receptor proteins (Table 2A-2F, Fig. 4-9). Artimisinin and its derivatives has been proven superior to quinine and other malarial drugs in endemic regions of malaria and the drug is currently recommended as the first-line treatment for severe malaria by the World Health Organization (WHO, 2020; Zhou et al., 2005) which has also been reported in Chinese medical reportire.In addition, eupatorine is a natural flavonoid and has been reported for its anticancerous and anti-inflammatory properties (Razak et al., 2019; Laavola et al., 2012). Eupatorin has the ability to modulate immune system and hence, was probably found to have strong affinity with the viral proteins thus strengthening its potential as a candidate drug against SARS-nCoV.). Another bioactive compound apigenin have potential to activate B cells and inactivate nuclear factor kappa-light-chain-enhancer in human cell culture. It decreases the expression of adhesion molecules, which is a defensive strategy against oxidative stress. It also promotes different anti-inflammatory pathways, have capability to reduce COX-2 activity along with preventive role in the IKB degradation and nuclear translocation of the NF-κB. Our screened phytocompounds specially artemisnin, betaartether, artesunate, and eupatorin showed strong binding energies, docking scores and close interaction with core amino acid residues equivalently to remdesvir, HCO and ivermectin against SARS-nCOV.

Recently, the researcher tested *in vitro* antiviral activities of *A. annua* whole plants herbal preparations against SARS-nCoV for prophylaxis and treatment of COVID-19. In China, most of the infected patient receiving traditional

Chinese medicine for treatment of COVID-19 and few evidences have already demonstrated that the herbal preparation of *A. annua* is effective against SARS-nCoV infectious diseases (Yang *et al.*, 2020). Our *in-silico* results of the present study suggested that these naturally derived phytochemicals of *A. annua* can be useful candidates for SARS-nCoV drug therapy (Fig. 2 and Fig. 11). Though properties of *A. annua* bioactive compounds are appreciable *in-silico* studies, the *in-vitro* and clinical trials dealing with SARS-nCoV should be considered for further studies.

Conclusion

Artemisinin and its derivatives are known as potential antimalarial agents due to their high efficiency and lower toxicity. Besides its excellent antimalarial activity, artemisinin and its conjugates also possess immunomodulatory functions and are experimentally used to treat viral and autoimmune diseases. We summarized here the recent possibilities of artemisinin and /or its conjugatives in treating COVID-19 and other inflammatory disorders. We conclude that artemisinin along with its derivatives showed good interaction with SARSnCoV and have potential to perform as good antiviral agent primarily by down regulating T& B cell activation, inhibiting antibody production, and expanding the function of regulatory T cells.In the present study, molecular docking analysis revealed that all the ligands become activated and exert immunoregulatory response after possible interaction with protease, helicase, RDRP, spike and glycoprotein domain by His, Met, Glu, Leu, Val, Asp, Phe, Tyr, Val, Gly, Ile, Lys, Arg, Glu, and Gln residues as compared to control remdesvir, HCQ and ivermectin where the interacting domains were also Val, Asp, Phe, Tyr, Val, Gly, Ile, Lys, Arg, Glu His, Met and Glu suggesting strong condensed nature of core amino acid residues involved in effective anti-inflammatory triggering and immunoregulatory mechanism of action. We believe that, as anti-inflammatory/ antiviral agents, artemisinin and its derivatives are much more potent capable of acting on various frontiers within the viral cascade, thereby reducing virulence activity with discrimination for stimulated T cells, to produce a synergistic effective treatment on disease activity. Thus, this artemisinin, its derivatives and various other bioactive components present in A. annua leaf may be promising candidates for the treatment of inflammation, immunomodulatory disorders and other symptoms induced by a viral infection in COVID-19.

Authors' Contribution

All authors have contributed equally to the manuscript.

Conflict of Interest

The authors declare that there is no conflict of interest with present publication

Acknowledgement

The authors are thankful to DST (Department of Science and Technology), and DBT-ISLS facility, BHU, Govt. of India (Grant No. DST/BHU/PURSE 2017-18 and DST/BHU/FIST 2016-17) for financial support. The authors declare that they do not have any other affiliations or financial involvement with any other organization or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

References

- Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MU and Khan K (2020) Pneumonia of Unknown Etiology in Wuhan, China: Potential for International Spread Via Commercial Air Travel. J Travel Med 27(5): taaa008. DOI: <u>10.1093/jtm/taaa008</u>.
- Caly L, Druce JD, Catton MG, Jans DA and Wagstaff KM (2020) The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. *Antiviral Res* **178**: 104787. DOI: <u>10.1016/j.antiviral.2020.104787</u>.
- Chen M, Kappel M, Lemnge M, Bygbjerg IC and Theander TG (1994) In vitro effects of artesunate and other antimalarial agents on the function of human lymphocytes and neutrophils. *In Transplantation Proceedings* **26(6)**: 3172-3174. PMID: 7998107.
- Duhovny D, Nussinov R and Wolfson HJ (2002) September. Efficient unbound docking of rigid molecules. In: International workshop on algorithms in bioinformatics. Springer, Berlin, Heidelberg, pp. 185-200. DOI: <u>10.1007/3-540-45784-4_14</u>.
- GaoY, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L and Ge J (2020) Structure of the RNAdependent RNA polymerase from COVID-19 virus. *Science* 368 (6492): 779-782. DOI: <u>10.1126/science.abb7498</u>.
- Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD and Bairoch A (2003) ExPASy: the proteomics server for indepth protein knowledge and analysis. *Nucleic Acids Res* 31(13): 3784-3788. DOI: <u>10.1093/nar/gkg563</u>.
- Ho WE, Cheng C, Peh HY, Xu F, Tannenbaum SR, Ong CN and Wong WF (2012) Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. *Free RadicBiol Med* 53(3): 498-507. DOI: <u>10.1016/j.freeradbiomed.2012.05.021</u>.
- Huang B (2009) MetaPocket: a meta-approach to improve protein ligand binding site prediction, OMICS 13(4): 325-330. DOI: <u>10.1089/omi.2009.0045</u>.
- Hui DS, Azhar EE, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C and Zumla A (2020) The continuing epidemic threat of novel coronaviruses to global health-the latest novel coronavirus outbreak in Wuhang, China. Int J Infect Dis. DOI: <u>10.1016/j.ijid.2020.01.009</u>.

- Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE and Canard B (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS Coronavirus. *EMBO J* 25(20): 4933-4942. DOI: 10.1038/sj.emboj.7601368.
- Kelley LA, Mezulis S, Yates CM, Wass MN and Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. *Nat. Protoc* **10(6)**: 845. DOI: <u>10.1038/nprot.2015.053</u>.
- Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B and Zaslavsky L (2019) PubChem 2019 update: improved access to chemical data. *Nucleic Acids Res* 47(D1): D1102-D1109. DOI: <u>10.1093/nar/gky1033</u>.
- Kirchdoerfer RN and Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. *Nat Commun* **10(1)**: 1-9. DOI: <u>10.1038/s41467-019-</u> <u>10280-3</u>.
- Laavola M, Nieminen R, Yam MF, Sadikun A, Asmawi MZ, Basir R, Welling J, Vapaatalo H, Korhonen R and Moilanen E (2012) Flavonoids eupatorin and sinensetin present in *Orthosiphon stamineus* leaves inhibit inflammatory gene expression and STAT1 activation. *Planta Med* 78(8): 779-86. DOI: <u>10.1055/s-0031-1298458</u>.
- Li G and De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). *Nat Rev Drug Discov* **19**: 149-150. DOI: <u>10.1038/d41573-020-00016-0</u>.
- Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, Lin YJ, Kung SH and Lin CW (2016) SARS coronavirus papainlike protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. *Int J Mol Sci* **17(5)**: 678 (2016). DOI: <u>10.3390/ijms17050678</u>.
- Liu Y, Wong VKW, Ko BCB, Wong MK and Che CM (2005) Synthesis and cytotoxicity studies of artemisinin derivatives containing lipophilic alkyl carbon chains. *Org Lett* **7(8)**: 1561-1564. DOI: <u>10.1021/ol050230o</u>.
- Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, Yan C, Yang Z and Wang X (2018) Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. *Antiviral Res* 59: 55-62. DOI: <u>10.1016/j.antiviral.2018.09.010</u>.
- Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K and Yeap SK (2019) Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. *Sci Rep* 9(1): 1514. DOI: <u>10.1038/s41598-018-37796-w</u>.
- Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. *Biotechniques* **28(6)**: 1102-1104. DOI: <u>10.2144/00286ir01</u>.
- Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E and Canard B (2014) SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as

antiviral targets. *Antiviral Res* **101**: 122-130. DOI: <u>10.1016/j.antiviral.2013.11.006</u>.

- Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res* **30**(**3**): 269-271. DOI: <u>10.1038/s41422-020-0282-0</u>.
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R and Lepore R (2018) SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids Res* 46(W1): W296-W303. DOI: 10.1093/nar/gky427.
- Wiederstein M and Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. *Nucleic Acids Res* 35: W407-W410. DOI: <u>10.1093/nar/gkm290</u>.
- World Health Organization (2020) Infection Prevention and Control During Health Care When Novel Coronavirus (nCoV) Infection Is Suspected. *Interim Guidance* 1-5.
- Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X and Zheng M (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. *Acta Pharm Sin B* 10(5): 766-788. DOI: <u>10.1016/j.apsb.2020.02.008</u>.
- Xu D and Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. *Biophy J* 101(10): 2525-2534. DOI: 10.1016/j.bpj.2011.10.024.
- Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, Li SB, Wang HY, Zhang S, Gao HN and Sheng JF (2020) Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. *BMJ* 368: 606. DOI: <u>10.1136/bmj.m606</u>.
- Yang Y, Islam MS, Wang J, Li Y and Chen X (2020) Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. *Int J Biol Sci* 16(10): 1708–1717. DOI: 10.7150/ijbs.45538.
- Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W and Liu D (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). *Clin Infect Dis* **71**(15): 732-739. DOI: <u>10.1093/cid/ciaa237</u>.
- Zhou D, Dai SM and Tong Q (2020) COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, JAntimicrob Chemother 75(7): 1667-1670. DOI: <u>10.1093/jac/dkaa114</u>.
- Zhou G, Sirichaisinthop J, Sattabongkot J, Jones J, Bjornstad ON, Yan G and Cui L (2005) Spatio-temporal distribution of *Plasmodium falciparum* and *P. vivax* malaria in Thailand. *Am J Trop Med Hyg* **72**: 256-262. DOI: <u>10.4269/ajtmh.2005.72.256</u>.