
Received: September 23, 2021. Revised: November 9, 2021. 295

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

An Automated Task Scheduling Model Using a Multi-objective Improved

Cuckoo Optimization Algorithm

Sajjad Jaber1* Yossra Ali1 Nuha Ibrahim1

1Department of Computer Science, University of Technology, Iraq

* Corresponding author’s Email: sajjad.sh.jaber@gmail.com

Abstract: Cloud computing is a new computing paradigm that consists of a large number of heterogeneous

autonomous systems that have a flexible computational architecture, task scheduling is extremely significant, this

process must schedule jobs on a virtual machine while minimizing time and cost. The task scheduling problem is

classified as NP-hard. The use of an efficient scheduling approach improves and speeds up cloud computing services.

In general, optimization strategies are employed to overcome cloud scheduling issues. In this paper, we first propose

an optimization model based on a Multi-Objective Improved Cuckoo Search Algorithm (MOICS) to optimize task

scheduling problems in a cloud environment this reduces both the time it takes to process the tasks and the overall cost.

Then there's the discrete multi-objective task scheduling problem to solve, as well as automatically assigning work to

cloud nodes. The suggested methodology allocates computational resources that can be used effectively on cloud nodes.

After the implementation of the proposed method, the results show that our proposed work minimize the makespan

and cost when compared to Modified Particle Swarm Optimization (MPSO), Bee Life Algorithm (BLA), A Time–

Cost aware Scheduling (TCaS) algorithm, and Round Robin (RR) algorithm.

Keywords: Task scheduling, Multi-objective optimization, Cuckoo search, Cloud computing.

1. Introduction

When we consider the vast amount of data created

by IoT devices, this becomes even more important. In

smart city applications, as an example, these linked

devices generate vast volumes of data, which must be

collected, handled, and analyzed to extract

meaningful insights, in addition, to correctly

accessed by end-users and/or client apps. Alongside,

the number and services and apps grow, needing

computational powers that exceed the capability of

even the absolute most powerful smart devices.

Meantime, cloud computing, which offers

dynamically scaled and often iterative services as an

online service, can overcome these IoT-related issues

[1]. Task scheduling is an essential problem in the

cloud computing environment since it takes into

account a variety of aspects such as completion time,

the total cost of executing all users' activities, power

consumption, resource utilization, and fault tolerance.

Scheduling is a way of making decisions and plays an

important role in most manufacturing and production

systems as well as most of the information processing

environments that are used daily in a variety of

industrial settings [2, 3]. The task scheduler assigns

compute resources to cloud nodes, while the load

balancer distributes workloads over different

computing resources [4]. Depending on their

interrelationship between tasks may appear in

different models. One kind of tasks can be processed

in parallel on a single processing level by using bags

of tasks (BoT), where the tasks do not depend on one

another in any way. Conversely, workflow tasks can

be interconnected by narrow pathways, so that the

execution of one subtask can be dependent on the

execution of one or more subtasks at a previous level

[5].

Since the cloud scheduling issue is non-

deterministic Polynomial-time hard (NP-hard) [6],

which cannot be efficiently solved by classic methods.

As a result, recent studies have increased the research

into heuristic and metaheuristic algorithms in order to

Received: September 23, 2021. Revised: November 9, 2021. 296

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

optimize task scheduling due to their effectiveness in

solving problems of high complexity and large size

[7]. In several studies, the BoT scheduling problem

has been formulated as a single objective problem to

solve the problem of cost [8] and makespan [9]

optimization under certain constraints, such as

execution deadlines and task budgets. In addition,

due to the complex nature of workflow tasks, several

multiobjective metaheuristic methods have been

developed to find near optimal scheduling solutions

by considering conflicted optimization goals, namely,

costs and makespan [10].

The focus of this research is on task scheduling

challenges in the cloud, a highly distributed

computing architecture for handling huge BoT

applications. A multi-objective Improved Cuckoo

Search (MOICS) algorithm is developed to address

this problem. The main purpose of the MOICS

algorithm is to achieve a fair balance between

execution time and financial cost when completing a

set of activities in the cloud system . Furthermore,

this algorithm is flexible enough to adjust to the

requirements of different users to meet their goals.

Some users prioritize execution times, while others

prioritize budgets. On a variety of datasets of

different sizes, our method was tested and compared

to the MPSO algorithm, BLA Algorithm, TCaS

Algorithm, and RR algorithm. The results

demonstrate that the proposed algorithm provided the

best Quality of Service and was faster and cheaper

than the other strategies. The contributions for the

MOICS algorithm are:

• Our approach formulates the task-scheduling

problem as a multi-objective optimization

problem in a cloud system, intending to reduce

total execution durations and costs by dynamic

allocating appropriate resources to present tasks.

• For discrete multi-objective optimization issues,

such as allocating specific compute nodes that

can't be allocated utilizing a continuous space, we

propose an enhanced Multi-Objective Cuckoo

search optimization model.

The following is how the rest of the article is

structured. The related works and background are

presented in Section 2. Section 3 describes the

formulation for the work scheduling problem in the

Cloud computing context. Section 4 delves into the

details of our proposed algorithm. The results of the

experiments are presented in Section 5. Finally,

Section 6 brings the article to a close and discusses

potential work.

2. Related work and background

This part describes task scheduling and resource

allocation principles and studies in a cloud setting, as

well as multi-objective optimization and the Cuckoo

search algorithm.

2.1 Task scheduling

Cloud computing resources must be allocated not

just to meet user-specified QoS standards, but also to

shorten the time to execute, lower costs, and increase

service provider profitability. Scheduling and load

balancing techniques are stringent for increasing

Cloud computing efficiency while using limited

resources [11, 12]. Dependent and independent

approaches to task scheduling in computing

platforms are widely categorized [13]. There are

dependencies and communications when distributing

and assign tasks to specific compute resources in the

based methodologies. Individual tasks are distributed

across computing exchequer in different ways, either

in batch mode or in real-time [13]. Because it is more

useful and closely matches the job arrival and

allocation processes in the actual world, the online

mode was chosen for our architecture.

Work scheduling algorithms are essential in

complicated environments for allocating batch mode

jobs and coordinating the access time of each task

scheduled for the resource management system. The

task scheduling has to be expressed as being an NP-

hard issue [14, 15].

According to [16], a large group of Internet of

Things units was published between 2016 to 2020,

which led to the emergence of problems in cloud

environments. Researchers tried to solve these

problems through several types of research to assign

tasks in cloud systems. [17] concentrated their efforts

on reducing latency in edge Clouds. In Cloud–Fog

computing, they proposed a work allocation problem.

They did, however, calculate power consumption and

latency using a simple model. In another study, [18]

have been suggested the Bee Life Algorithm (BLA)

as a task scheduling technique. The emphasis of the

study is on key goals: memory and execution time.

However, the connection with Cloud data centers is

not mentioned in this article, and the approach has

only been tested on small datasets. while in [19] a

hybrid scheduling algorithm that mimics cuckoo's

parasitic behaviour and the crow's food gathering

behavior, named Cuckoo Crow Search Algorithm

(CCSA), has been proposed to address cloud

computing's task scheduling challenge. To optimize

the performance of task scheduling, the hybrid CCSA

incorporates several QoS parameters, including

makespan and cost. however, the tests were restricted

Received: September 23, 2021. Revised: November 9, 2021. 297

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

because the algorithm was only tested on small

datasets. In another study, [1] when scheduling large-

scale applications in such a platform, investigated the

tradeoff between makespan and cloud cost and

proposed the Cost-Makespan aware scheduling

method. Despite the fact that their approach required

a cost makespan barter, they linearized the tradeoff

using a rational factor rather than Pareto optimization

techniques. In [20] they formulated an associated

task scheduling problem into a constraint to tackle the

difficult task scheduling problem with some priority

constraints of IoT applications while taking into

account energy consumption and decreasing energy

consumption under the condition of meeting the

mixed deadline. To solve this problem, a laxity and

ant colony system algorithm (LBP-ACS) is proposed.

A task scheduling method in this algorithm takes into

considers not only a work's priority but also its

completed deadline. Further, they only tested their

proposed approach on tiny datasets. Where [21]

conducted a similar study and suggested the static

task graph scheduling inhomogeneous

multiprocessor environments, the predominant

technology used as mini-servers in fog computing, is

addressed using a high-performance approach based

on the Max-Min Ant System (MMAS), which is an

efficient variation in the family of ant colony

optimization algorithms. In [22] Hybrid Max-Min

Genetic Algorithms (HMMGA) have been proposed

that can be used to handle load balancing and task

scheduling issues in the cloud. HMMGA aims to

reduce the completion time of heterogeneous VMs

and complex scheduling decisions.In order to achieve

effective task scheduling and load balancing,

HMMGA defines two constraints, such as the earliest

finish time and the optimal completion time. [23]

presented a novel method for optimizing task

scheduling in a Cloud–Fog environment for Bag-of-

Tasks applications in terms of execution time and

operational expenses.

As previously mentioned, most current task

scheduling approaches are only relevant for small

datasets and only consider cost or makespan as a

single goal. Though some barter research has been

done in the past, it is unlikely that those tradeoffs

accurately reflect reality. Pareto optimization

techniques, also known as multi optimization

algorithms, are essential when dealing with two or

more competing goals. To solve a multi-objective

task scheduling problem, [24] suggested a hybrid

genetic-ACO algorithm to solve a multi-objective

task scheduling methodology.

The majority of today's task scheduling

approaches are multiobjective issues, which are more

workable than single-objective issues [25-27]. The

multi-objective problem requires a tradeoff between

several goals, to make the best decision possible. As

a result, this study suggests a multi-objective task

scheduling issue in cloud environments. To do so, we

build an updated MOICS algorithm that is capable of

solving multi-objective optimization problems

efficiently.

2.2 Cuckoo search algorithm

Cuckoo Search (CS) is a fascinating bird, not just

because of its wonderful sound, but also because of

its aggressive reproduction technique. [28] suggested

the CS metaheuristic algorithm. The algorithm's

theoretical inspiration came from the vigorous

reproduction technique of the cuckoo bird. Yang and

Deb use three ideal rules to apply this technique as an

optimization method [26, 29]:

• Each cuckoo lays one egg at a time and deposits

it in a nest that is picked at random.

• A portion of the high-quality egg mite (best

solutions) will be passed on to the next

generation.

• The number of nests is set, and the host has a

probability Pa ∈(0,1) of discovering an outsider

egg, which results in the host eliminating the egg

or nest and constructing a completely new nest in

another location.

The key steps of the CS algorithm can be

illustrated as the pseudocode shown in Algorithm 1

using these three laws. Using levy flight, a new

solution x(t + 1) for the ith cuckoo is produced as

follows:

Xi
(t+1) = xi

(t) + α  Levy(β) (1)

The phase size that should be defined with the

problem scales is α > 0. The majority of the time will

use α =1. The term product ⊕ refers to entry-by-

entry multiplication. Levy flights essentially generate

a random walk, with their random phase lengths

drawn from the Levy distribution.

Levy ~ u = t-β (1 < β ≤ 3) (2)

which has an endless number of options The

sequential steps/jumping off a cuckoo are simply a

random walk with a strong tail that follows a power

law step-length distribution. A fraction Pa of the

poorest nests can be removed using random walk, and

new nests can be created in new locations.

Since multi-objective optimization problems

require simultaneous optimization of multiple

Received: September 23, 2021. Revised: November 9, 2021. 298

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

objective functions, and there is no additional

information about the metaheuristic multiobjective

issue to be solved, no single Pareto optimal solution

can be viewed as superior to others [30]. As a result,

the best solutions (decisions) must be decided as a

barter among several goals, and the optimality of a

solution varies depending on a variety of factors like

the user preference, the issue description, and the

context.

Algorithm 1. Cuckoo Search Algorithm

1: begin

2: Objective function f(x), x=(x1,…., xn)T;

3: Initial a population of n host nests xi(i= 1,2,….,n);

4: while (t < Maximum Generation) or (stop

criterion);

5: Get a cuckoo (say i) randomly and generate

a new solution by Levy flights;

6: Evaluate its quality/fitness Fi

7: Choose a nest among n (say j) randomly;

8: if (Fi > Fj)

9: Replace j with a new solution;

10: end

11: Abandon a fraction (Pa) of worst nests;

12: Keep the best solutions (or nests with quality

solutions);

13: Rank the solutions and find the current best;

14: end while

15: Post process results and visualization;

16: end

3. Formulation of task scheduling problem

in cloud system

Table 1. The symbols used in the work

Symbol Description

Pi number machine i

Tj number task j

M
the total amount of virtual machines

available

N the overall number of tasks

Ti
j task j is processed by machine i

I(Tj) total number of j task instructions

RB(Tj) the required bandwidth for task j

RM(Tj) required memory for task j

Sr(Pi) computing average of machine i

BWc(pi) cost of bandwidth usage for machine i

Sc(pi) computing cost for machine i

Mc(pi) cost of memory usage of machine i

When BoT apps make requests to the cloud layer,

they're broken down into small, autonomous tasks

which can be treated by the cloud computing

infrastructure. Every task has its collection of

characteristics, like the size of the I/O files, the

numeral of instructions, and the amount of memory

required.

Table 1 lists the notations for the majority of

mathematical symbols. A typical task scheduling

issue would aim to schedule all tasks to ensure that

total execution times are as short as you can when

using the fewest total costs of available resources. Let

N be the number of tasks (T = T1, T2,..., Tj,..., TN)

to be handled for an individual request, and M be the

amount of accessible virtual machines (P = P1, P2,...,

Pi,..., PM). Let I(Tj) denote the amount of

instructions.

Let Sr(Pi) function as the computing average, that

will be the machine's ability to calculate a million

directives in a second, S(Pi) computing node's cost,

Mc(Pi) be the memory usage cost, and BWc(Pi) be

the expense of bandwidth usage for every single

machine (Pi). The collection of processors (P) and

tasks (T) can be represented mathematically using the

following vectors: P = {P1, P2, P3,..., PM}, T = {T1,

T2, T3,..., TN}. Also if Tij signifies that task j is

treated by virtual machine i the solution can be given

as follows:

 Sol = {Ti
1 , T

i
2 , T

i
3 , ..., T

i
j , ..., T

M
N } (3)

Using the mathematical model below, the task

scheduling issue could be a stated multiobjective

optimization problem:

Minimize : ∑ (𝑚𝑎𝑥 1 ≤ 𝑗 ≤ 𝑁 (
𝐼(𝑇𝑗)

𝑆𝑟(𝑝𝑖)
) , ∀𝑇𝑗 ∈𝑀

𝑖=1

𝑝𝑖) (4)

Minimize :∑ (∑ (𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑇𝑗∈𝑃𝑖

𝑀
𝑖=1 (𝑇𝑗

𝑖))) (5)

where (
𝐼(𝑇𝑗)

𝑆𝑟(𝑝𝑖)
) is the time it takes node i to

complete task j, which might be calculated by divide

the quantity of instructions in task j (I) by node i's

processing unit rate (Sr), The overall computational

cost of Pi, memory, and bandwidth resource utilized

by node i to handle task j is calculated as

TotalCost(Tij), and it can be calculated by adding the

three combinations together:

TotalCost(Ti
j) =Sc(Ti

j) + Mc(Ti
j) + Bc(Ti

j) (6)

Received: September 23, 2021. Revised: November 9, 2021. 299

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

The following three formulae can be used to

compute each cost separately. The equations show

the computational, RAM, and bandwidth expenses

that node i will incur to complete task j.

Sc (T
i
j) = Sc(Pi) × (

𝐼(𝑇𝑗)

𝑆𝑟(𝑝𝑖)
) (7)

Mc(T
i
j) = Mc(Pi) × RM(Tj) (8)

Bc(T
i
j) = BWc(Pi) × RB(Tj) (9)

The first objective function in the model in Eq.

(4), which reduces the overall response time required

by way of a system to answer users' requests. Eq. (5)

depicts the 2nd objective function, which seeks to

reduce the full total cost of resource utilization.

4. Proposed work

4.1 Proposed model

This part discusses how an improved CS

algorithm was used to create the proposed task

scheduling model. Since continuous values generated

by the Continuous CS algorithm cannot be allocated

to appropriate computing nodes, the operators are

ineffective for task scheduling in dynamic cloud

environments. Levy Flight applied for continuous

space. As a result, have been some changes to the

Levy flight equation to solve this problem by

searching in discrete space, as shown in Fig. 1.

4.2 Initial population and solution representation

The original population may be the collection of

all individuals utilized by the CS to discover the best

solution. Believe that the populace is N individuals.

The N people are initialized randomly to find out

many locations in the search space, in addition, to

make sure the variety of the people in the initial

generation. Individuals are chosen from the initial

population and some operations are performed in it to

produce the following generation. The solution is

represented as a vector that includes the tasks to be

performed by the available processors Fig. 2 depicts

one possible candidate solution.

4.3 Fitness evaluation

After the generation of the initial solution, each

individual's fitness value is evaluated and saved for

future reference. Eqs. (4) and (5) can be used to

define the fitness function. We employed a multi-

objective function that took into consideration cost

and makespan in this case. As shown in Eq. (4), the

Figure. 1 Digram of Multi-objective improved cuckoo

search (MOICS) algorithm

Tasks T1 T2 T3 T4 T5 T6 T7

Nodes 3 1 3 2 2 1 3

Figure. 2 Initial solution format

minimum fitness function value is set by the

minimum cost, minimal makespan by used Eq. (5).

4.4 Levy flights

It has the potential to conduct a comprehensive

search near the solution, which can be followed by a

large footstep in the lengthy run. It's aforesaid that

Levy flights are used to efficiently look for a new best

solution in most optimization problems [31]. Levy

Flight applied to continued space. As a result, have

suggested some changes to the Levy flight equation

to allow for discrete space searching.

stop

 fi(x)<=fk(x)

 Initialize the objective function fi(x)

start

 Initialize a random population of n host nests

 Get cuckoo (i) randomly by Levy Flight

and evaluate its fitness f(xi)

 Choose a nest among n(i) randomly with

fitnees f(xi)

 Check the K solutions for nest i

 Fi >Fj

no yes
 Replace j by

new solution
 Let j the

solution

 Abandon Pa of worse nest and bulid new

ones at new location by Levy Flights

 Keep the best solution (nest)

 t < max iteration
yes

 Rank the solutions and find the current best pareto

optimal objective (best nest) f(xi)

no

Received: September 23, 2021. Revised: November 9, 2021. 300

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

4.5 Pareto optimum solutions

If none of the objective functions could be

improved without worsening a few of the other

objective values, the solution is recognized as Pareto

optimum.

4.6 Multiobjective improved cuckoo search

(MOICS) algorithm

CS algorithm uses the three idealized rules listed

in Section 2.2 to deal with a single optimization

function, changed only the 1st and 3rd rules to combine

the criteria of multiobjective optimization with kth

various objectives.

Mathematically, the first rule is randomly

transformed to create a new, random solution using

Levi's trip or random walk, where a random switch

occurs on the solutions, while the second law remains

the same in principle to ensure that the best solutions

are provided to the next generation, and the third law

is applied to the transformation process and in this

way solutions are rejected the worst. The MOICS

algorithm's efficiency is ensured by these one-of-a-

kind functions.

- In the MOICS algorithm, the below parameters

are utilized.

- Pa ∈ [0, 1] The probability that a bad nest is

likely to be abandoned.

- α > 0 step size, which should be related to the

magnitude of the attention issue. In the vast

majority of cases, α > 1.

- λ random step length.

In the process of creating new solutions to replace

old ones. The worst solutions were replaced by

randomly generating solutions in the state space in

the standard CS generating solution. This can make

convergence to an optimal solution more difficult.

wherefore, has been proposed splitting the abandoned

nests into two parts, with the first half being replaced

by random solution generation and the second being

created by taking the vector that represents the

solution and performing the mutation procedure as

shown in Algorithm. 2 and Algorithm. 3, while the

MOICS algorithm's flow is depicted in Algorithm. 1.

Algorithm 2. Multi-Objective Improved Cuckoo

Search (MOICS)

Input: Population of the problem, pa

Output: Sbest

1 Initialize the objective functions f1(x),f2(x)

…. Fk(x), x = (x1, … , xd)T;

2 Initial a population of n host nests xi (i = 1,

2, ..., n),

3 Probability Pa ∈[0,1] and Maximum number

of iteration Maxitr;

4 while : ((t < Maxitr) or (Stop Condition)) do

5 Get a Cuckoo (say i) randomly by Levy

flights; // new solution xi
(t+1)

6 Evaluate its quality/fitness Fi; // Fi =

f(xi
(t+1))

7 Choose a nest among n (say j)

randomly; //old solution xi
t

8 Evaluate the K solutions for nest j

9 if (Fi > Fj) then // xi
(t+1) > xi

t

10 Replace Fj ← Fi; // old solution xi
t

with new solution xi
(t+1)

11 end if

12 A percentage (Pa)/2 of the worst nests

are abandoned, and new ones are

constructed at random;

13 A fraction (Pa)/2 of worse nests are

abandoned and new

14 ones are built by call mutation procedure

15 Keep the best solutions (or nests with

quality solutions);

16 Rank the solutions and find the current

best Pareto optimal solutions;

17 t← t+1;

18 end while

19 return Sbest;

end

To maintain robust randomization in exploring

the country space, we held a random generation of

solutions replacing abandoned solutions.

In single optimization situations where one egg

occurs in a nest with regards to the worth of the

objective function, ranking the nests on the basis of

the quality of the solution is simple. However,

ranking the nests is a substantial task in multi-

objective situations with multiple eggs in each nest.

The strategy of contrasting the solutions is dependant

on objective function principles, which will be wrong

and results in an incorrect evaluation. It could happen

if your objectives are in dispute with each other.

Nests are separated into two classes using Pareto

dominance to accomplish this. Non-dominated nests

with Pareto optimal solutions are of interest to the

first collection, while dominated nests with non-

Pareto optimal dominated solutions are of interest to

the second set.

Algorithm 3. Generate a new solution from an

abandoned nest

Input: D : (pa)/2.

Output: New Nests.

1 for i=1 to D

2 Generate a new solution by call

mutation procedure

3 End for

Received: September 23, 2021. Revised: November 9, 2021. 301

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

5. Result and comparison

The simulation setup and evaluation of the

proposed algorithm are described in the following

sections based on the results of the conducted

experiments.

5.1 Bee life algorithm (BLA)

As a novel meta-heuristic approach, the artificial

bee life algorithm [32] was created in 2005.Modeling

honey bees' smart foraging behavior in a search

process for solving real-parameter optimization

problems [33] is based in part on the hybrid foraging

behavior of honey bees.

By using the bee swarm algorithm, in [18] authors

improve task scheduling utilizing fog computing. The

goal is to find the right balance between CPU

execution time and allocated memory.

5.2 Round robin algorithm

In round robin, regardless of the load on the VM,

the next VM in queue gets assigned tasks.Neither

resource capabilities, priorities, nor task duration is

taken into account in the Round Robin strategy.Due

to this, higher priority tasks and longer tasks require

longer response times [34, 35].

5.3 Modified particle swarm optimization

An evolutionary algorithm, known as particle

swarm optimization, developed by Kennedy and

Eberhart [36], simulates the collective behavior of

flocks of birds or groups of fish taking a course

towards their destination. In modified particle swarm

optimization (MPSO) [10], which can adapt to the

proposed model, this is accomplished by adding or

removing layers to the PSO algorithm while

maintaining the concept of PSO. Based on the best

experment (pBest) and leader (gBest), particle

velocities are updated daily.

5.4 Experimental settings

The tests in this study were conducted out on a

PC running Windows 10, with a 2.8 GHz Core i7

processor and 16 GB of RAM, and using Python 3.8.5

software. Has been solved 11 separate task-

scheduling problems with varying numbers of tasks

to assess the efficiency of the proposed MOICS (40

to 500 tasks). The computing power and resource

consumption costs of cloud nodes are different. Each

node is presumed to have its processing power, as

calculated by MIPS (million instructions per second),

as well as Processor, memory, and bandwidth usage

costs. The Cloud system was built with thirteen

Table 2. The cloud infrastructure's characteristics

Parameters Cloud tier Unit

Number of nodes 13 node

CPU usage cost [0.1, 1.0] G$/s

Memory usage cost [0.01, 0.05] G$/MB

Bandwidth usage

cost
[0.01, 0.1] G$/MB

CPU rate [500, 5000] MIPS

Table 3. Attributes of tasks

Property Value Unit

Input file size [10, 100] MB

Memory required [50, 200] MB

Output file size [10, 100] MB

Number of

instructions
[1, 100] 109 instructions

processing nodes, which have the characteristics

described in Table 2. Servers or virtual computers in

high-performance data centers undertake tasks at the

Cloud tier. As a result, Cloud nodes process data

significantly more quickly. The price of consuming

energy in the Cloud is higher, and these charges are

measured in Grid Dollars (G$) [23], a currency unit

utilized in the simulation to substitute actual money.

All user queries are routed through the cloud

system. Each request is dissected into numerous tasks,

which are then assessed and the resources required

determined. The quantity of memory required the

amount of instructions, how big is the I/O file are all

assumed to be features of each task. With regards to

the demand, the number of tasks directed at each

request may differ significantly. The attributes listed

in Table 3 were used to define the roles for every

dataset at random. The experiment may cover

numerous situations, with some requiring plenty of

computing and others demanding more bandwidth

utilization or memory because several distinct forms

of jobs were constructed.

5.5 Experimental results

As part of this analysis, we will assess how well

MOICS performs in a cloud computing environment

by solving the task scheduling problem. Table 4

summarizes the parameter settings that have an

impact on algorithm execution.

In Table 5 and 6, the results of MOICS, MPSO,

BLA, TCAS and RR for 3 systems are shown, each

with ten runs. Each run includes tasks m=[40, 80, 120,

160, 200, 250, 300, 350, 400, 450, 500] and the cloud

system model with nC=13. Competitie results are

highlighted in bold. The makespan function is shown

in Table 5, while the cost function is shown in Table

6.

Received: September 23, 2021. Revised: November 9, 2021. 302

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

Table 4. Settings used for testing the efficiency of the

proposed algorithms

Parameter

name
Acronym Possible settings

Number of

systems
nSystem 10

Number of

Runs
nRun 3

Number of

node
nC 13

Number of

Tasks
m

{40,80,120,160,200,250,

300,350,400,450,500}

Population

Size
I 100

Number of

Generation
Maxg 500

Table 5. Comparison of the five algorithms' makespan

and overall cost

Makespan

No.

of

Task

MOICS TCAS* BLA* MPSO* RR*

40 151.461 191.44 207.57 215.27 456.11

80 337.907 394.69 416.09 445.35 963.08

120 489.144 607.71 654.92 686.2 1495.66

160 724.244 819.97 917.67 932.33 1912.08

200 906.207 940.87 1067.49 1065.94 1905.7

250 1137.66 1270.96 1490.65 1479.84 3054.8

300 1388.24 1473.79 1765.49 1712.76 3309.14

350 1642.56 1949.04 2010.74 1911.27 3638.19

400 1829.65 1944.58 2421.98 2300.51 4347.64

450 2177.56 2235.16 2840.79 2751.29 5350.35

500 2371.17 2503.09 3174.39 3067.26 6023.74

* Results of these algorithms from the research paper for

Nguyen et al [23].

Table 6. Comparison of the five algorithms' overall cost

Cost

No.

of

Task

MOICS TCAS* BLA* MPSO* RR*

40 605.244 733.85 730.88 740.38 755.98

80 1377.27 1540.23 1540.85 1533.4 1581.82

120 2052.76 2363.37 2367.59 2381.2 2418.9

160 2927.76 3176.17 3183.8 3197 3246.69

200 3692.46 3755.21 3767.37 3778.3 3835.4

250 4617.60 4988.94 5017.17 5007.6 5079.06

300 5657.33 5832.69 5877.41 5862.5 5935.94

350 6604.98 6607.52 6653.37 6632.4 6738.39

400 7473.85 7738.56 7816.04 7760 7875.39

450 8673.28 8845.9 8926.57 8876.3 9016.59

500 9538.44 9902.64 9995.97 9921.8 10097.7

* Results of these algorithms from the research paper for

Nguyen et al [23].

Figure. 3 Total cost comparison of the five algorithms

Figure. 4 Make-Span comparison of the five algorithms

Total–cost for five strategies is compared in Fig.

3. Every dataset with a high average fitness showed

that our suggested algorithm, MOICS, dominated the

first place. Meanwhile, Fig. 4 compares the

Makespan of the proposed model MOICS algorithm

to the four others while the number of tasks changed,

demonstrating that our suggested MOICS algorithm

outperforms the others. Based on the results, our

suggested method, MOICS, could achieve the best

barter among make-span and overall cost than the

other four algorithms, as well as demonstrating the

supremacy of time optimization.

6. Conclusion and future work

In this work, we addressed tasks scheduling

problems for BoT applications in cloud computing

environments. The MOICS algorithm can solve the

problem as a multi-objective optimization problem to

reach a good trade-off between cost and execution

times when completing a set of tasks in a Cloud

system. In this case, swarm algorithms are used to

solve the problem. In order to solve the problem, a

swarm algorithms is adopted. In a comparison of 11

sets of tasks in a Cloud system, MOICS performed

better than the MPSO, TCAS, BLA, and RR methods

Received: September 23, 2021. Revised: November 9, 2021. 303

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

in terms of the trade-off between makespan and cost

execution.

In the foreseeable future more algorithms,

particularly metaheuristic algorithms will be

researched, improved, and used to solve scheduling

problems. We also intend to broaden the scope of the

scheduling issues by focuses on a variety of other

objectives, like waiting time, throughput, and energy

consumption, to meet the needs of users. For greater

practicality, budget, deadline, and resource

constraints can be added.

Conflicts of Interest

No conflict of interest.

Author Contributions

The paper conceptualization, methodology,

software, validation, formal analysis, investigation,

resources, data curation, writing—original draft

preparation, writing—review and editing,

visualization, have been done by 1st author. The

supervision and project administration, have been

done by 2nd and 3rd authors.

References

[1] X. Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai,

and E. N. Huh, “A cost-and performance-

effective approach for task scheduling based on

collaboration between cloud and fog

computing”, International Journal of

Distributed Sensor Networks, Vol. 13, No. 11, p.

1550147717742073, 2017.

[2] A. T. S. A. Obaidi and S. A. Hussein, “Two

improved cuckoo search algorithms for solving

the flexible job-shop scheduling problem”,

International Journal on Perceptive and

Cognitive Computing., Vol. 2, No. 2, 2016.

[3] A. T. S. A. Obaidi and H. S. Abdullah, “Camel

herds algorithm: A new swarm intelligent

algorithm to solve optimization problems”,

International Journal on Perceptive and

Cognitive Computing., Vol. 3, No. 1, 2017.

[4] S. Basu, M. Karuppiah, K. Selvakumar, K. C. Li,

S. H. Islam, M. M. Hassan, and M. Z. A.

Bhuiyan, “An intelligent/cognitive model of task

scheduling for IoT applications in cloud

computing environment”, Future Generation

Computer Systems., Vol. 88, pp. 254-261, 2018.

[5] D. Chahal, B. Mathew, and M. Nambiar,

“Simulation based job scheduling optimization

for batch workloads”, In: Proc. of the 2019

ACM/SPEC International Conf on Performance

Engineering, pp. 313-320, 2019.

[6] D. Rahbari and M. Nickray, “Scheduling of fog

networks with optimized knapsack by symbiotic

organisms search”, In: Proc .of 2017 21st

Conference of Open Innovations Association, pp.

278-283, 2017.

[7] D. Vasiljevic, “Classical and evolutionary

algorithms in the optimization of optical

systems”, Springer Science & Business Media,

2012.

[8] N. Soltani, B. Soleimani, and B. Barekatain,

“Heuristic Algorithms for Task Scheduling in

Cloud Computing: A Survey.”, International

Journal of Computer Network & Information

Security., Vol. 9, No. 8, 2017.

[9] P. Sun, Z. Cai, and D. Liu, “Budget Constraint

Bag-of-Task Based Workflow Scheduling in

Public Clouds”, In: Proc. of CCF Conference on

Computer Supported Cooperative Work and

Social Computing, pp. 243-260, 2019.

[10] S. Abdi, S. A. Motamedi, and S. Sharifian, “Task

scheduling using modified PSO algorithm in

cloud computing environment”, In: Proc. of

International Conference on Machine Learning,

Electrical and Mechanical Engineering, Vol. 4,

No. 1, pp. 8-12, 2014.

[11] R. K. Jena, “Multi objective task scheduling in

cloud environment using nested PSO

framework”, Procedia Computer Science., Vol.

57, pp. 1219-1227, 2015.

[12] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and

X. S. Shen, “Cost-efficient resource

provisioning for dynamic requests in cloud

assisted mobile edge computing”, IEEE

Transactions on Cloud Computing, 2019.

[13] L. Liu, D. Qi, N. Zhou, and Y. Wu, “A task

scheduling algorithm based on classification

mining in fog computing environment”,

Wireless Communications and Mobile

Computing., Vol. 2018, 2018.

[14] C. Tang, “A mobile cloud based scheduling

strategy for industrial internet of things”, IEEE

Access, Vol. 6, pp. 7262-7275, 2018.

[15] C. W. Tsai, W. C. Huang, M. H. Chiang, M. C.

Chiang, and C. S. Yang, “A hyper-heuristic

scheduling algorithm for cloud”, IEEE

Transactions on Cloud Computing., Vol. 2, No.

2, pp. 236-250, 2014.

[16] R. Z. Naeem, S. Bashir, M. F. Amjad, H. Abbas,

and H. Afzal, “Fog computing in internet of

things: Practical applications and future

directions”, Peer-to-Peer Networking and

Applications., Vol. 12, No. 5, pp. 1236-1262,

2019.

[17] X. Guo, R. Singh, T. Zhao, and Z. Niu, “An

index based task assignment policy for

Received: September 23, 2021. Revised: November 9, 2021. 304

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.27

achieving optimal power-delay tradeoff in edge

cloud systems”, In: Proc. of 2016 IEEE

International Conference on Communications,

pp. 1-7, 2016.

[18] S. Bitam, S. Zeadally, and A. Mellouk, “Fog

computing job scheduling optimization based on

bees swarm”, Enterprise Information Systems.,

Vol. 12, No. 4, pp. 373-397, 2018.

[19] P. Krishnadoss, N. Pradeep, J. Ali, M.

Nanjappan, P. Krishnamoorthy, and V. K.

Poornachary, “CCSA: Hybrid cuckoo crow

search algorithm for task scheduling in cloud

computing”, International Journal of Intelligent

Engineering and Systems., Vol. 14, No. 4, pp.

241-250, 2021.

[20] J. Xu, Z. Hao, R. Zhang, and X. Sun, “A method

based on the combination of laxity and ant

colony system for cloud-fog task scheduling”,

IEEE Access, Vol. 7, pp. 116218-116226, 2019.

[21] H. R. Boveiri, R. Khayami, M. Elhoseny, and M.

Gunasekaran, “An efficient Swarm-Intelligence

approach for task scheduling in cloud-based

internet of things applications”, Journal of

Ambient Intelligence and Humanized

Computing., Vol. 10, No. 9, pp. 3469-3479,

2019.

[22] S. Kodli and S. Terdal, “Hybrid max-min

genetic algorithm for load balancing and task

scheduling in cloud environment”, International

Journal of Intelligent Engineering and Systems.,

Vol. 14, No. 1, pp. 63-71, 2021.

[23] B. M. Nguyen, H. T. T. Binh, and B. D. Son,

“Evolutionary algorithms to optimize task

scheduling problem for the IoT based bag-of-

tasks application in cloud-fog computing

environment”, Applied Sciences., Vol. 9, No. 9,

p. 1730, 2019.

[24] A. M. S. Kumar and M. Venkatesan, “Multi-

objective task scheduling using hybrid genetic-

ant colony optimization algorithm in cloud

environment”, Wireless Personal

Communications., Vol. 107, No. 4, pp. 1835-

1848, 2019.

[25] W. Wu, H. R. Maier, and A. R. Simpson,

“Single-objective versus multiobjective

optimization of water distribution systems

accounting for greenhouse gas emissions by

carbon pricing”, Journal of Water Resources

Planning and Management., Vol. 136, No. 5, pp.

555-565, 2010.

[26] Y. Sun, F. Lin, and H. Xu, “Multi-objective

optimization of resource scheduling in fog

computing using an improved NSGA-II”,

Wireless Personal Communications., Vol. 102,

No. 2, pp. 1369-1385, 2018.

[27] Y. Chen, J. Huang, C. Lin, and X. Shen, “Multi-

objective service composition with QoS

dependencies”, IEEE Transactions on Cloud

Computing., Vol. 7, No. 2, pp. 537-552, 2016.

[28] X. S. Yang and S. Deb, “Cuckoo search via Lévy

flights”, In: Proc. of 2009 World Congress on

Nature & Biologically Inspired Computing, pp.

210-214, 2009.

[29] H. Zheng and Y. Zhou, “A novel cuckoo search

optimization algorithm based on Gauss

distribution”, Journal of Computational

Information Systems., Vol. 8, No. 10, pp. 4193-

4200, 2012.

[30] B. T. B. Khoo, B. Veeravalli, T. Hung, and C. W.

S. See, “A multi-dimensional scheduling

scheme in a Grid computing environment”,

Journal of Parallel and Distributed Computing.,

Vol. 67, No. 6, pp. 659-673, 2007.

[31] A. F. Kamaruzaman, A. M. Zain, S. M. Yusuf,

and A. Udin, “Levy flight algorithm for

optimization problems-a literature review”, In:

Applied Mechanics and Materials. Trans Tech

Publications Ltd, Vol. 421, pp. 496-501, 2013.

[32] D. Karaboga, “An idea based on honey bee

swarm for numerical optimization”, Technical

Report-tr06, Erciyes University, Engineering

Faculty, Computer Engineering Department,

2005.

[33] D. Karaboga and B. Basturk, “A powerful and

efficient algorithm for numerical function

optimization: artificial bee colony (ABC)

algorithm”, Journal of Global Optimization.,

Vol. 39, No. 3, pp. 459-471, 2007.

[34] D. C. Devi and V. R. Uthariaraj, “Load

balancing in cloud computing environment

using improved weighted round robin algorithm

for nonpreemptive dependent tasks”, The

Scientific World Journal., Vol. 2016, 2016.

[35] P. Pradhan, P. K. Behera, and B. N. B. Ray,

“Modified round robin algorithm for resource

allocation in cloud computing”, Procedia

Computer Science., Vol. 85, pp. 878-890, 2016.

[36] J. Kennedy and R. Eberhart, “Particle swarm

optimization”, In: Proc. of ICNN’95-

International Conf, on Neural Networks, Vol. 4,

pp. 1942-1948, 1995.

