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Abstract: Cloud computing is a new computing paradigm that consists of a large number of heterogeneous 

autonomous systems that have a flexible computational architecture, task scheduling is extremely significant, this 

process must schedule jobs on a virtual machine while minimizing time and cost. The task scheduling problem is 

classified as NP-hard. The use of an efficient scheduling approach improves and speeds up cloud computing services. 

In general, optimization strategies are employed to overcome cloud scheduling issues. In this paper, we first propose 

an optimization model based on a Multi-Objective Improved Cuckoo Search Algorithm (MOICS) to optimize task 

scheduling problems in a cloud environment this reduces both the time it takes to process the tasks and the overall cost. 

Then there's the discrete multi-objective task scheduling problem to solve, as well as automatically assigning work to 

cloud nodes. The suggested methodology allocates computational resources that can be used effectively on cloud nodes. 

After the implementation of the proposed method, the results show that our proposed work minimize the makespan 

and cost when compared to Modified Particle Swarm Optimization (MPSO), Bee Life Algorithm (BLA), A Time–

Cost aware Scheduling (TCaS) algorithm, and Round Robin (RR) algorithm. 
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1. Introduction 

When we consider the vast amount of data created 

by IoT devices, this becomes even more important. In 

smart city applications, as an example, these linked 

devices generate vast volumes of data, which must be 

collected, handled, and analyzed to extract 

meaningful insights, in addition, to correctly 

accessed by end-users and/or client apps. Alongside, 

the number and services and apps grow, needing 

computational powers that exceed the capability of 

even the absolute most powerful smart devices. 

Meantime, cloud computing, which offers 

dynamically scaled and often iterative services as an 

online service, can overcome these IoT-related issues 

[1]. Task scheduling is an essential problem in the 

cloud computing environment since it takes into 

account a variety of aspects such as completion time, 

the total cost of executing all users' activities, power 

consumption, resource utilization, and fault tolerance. 

Scheduling is a way of making decisions and plays an 

important role in most manufacturing and production 

systems as well as most of the information processing 

environments that are used daily in a variety of 

industrial settings [2, 3]. The task scheduler assigns 

compute resources to cloud nodes, while the load 

balancer distributes workloads over different 

computing resources [4]. Depending on their 

interrelationship between tasks may appear in 

different models. One kind of tasks can be processed 

in parallel on a single processing level by using bags 

of tasks (BoT), where the tasks do not depend on one 

another in any way. Conversely, workflow tasks can 

be interconnected by narrow pathways, so that the 

execution of one subtask can be dependent on the 

execution of one or more subtasks at a previous level 

[5].  

Since the cloud scheduling issue is non-

deterministic Polynomial-time hard (NP-hard) [6], 

which cannot be efficiently solved by classic methods. 

As a result, recent studies have increased the research 

into heuristic and metaheuristic algorithms in order to 
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optimize task scheduling due to their effectiveness in 

solving problems of high complexity and large size 

[7]. In several studies, the BoT scheduling problem 

has been formulated as a single objective problem to 

solve the problem of cost [8] and makespan [9] 

optimization under certain constraints, such as 

execution deadlines and task budgets. In addition, 

due to the  complex nature of workflow tasks, several 

multiobjective metaheuristic methods have been 

developed to find near optimal scheduling solutions 

by considering conflicted optimization goals, namely, 

costs and makespan [10].  

The focus of this research is on task scheduling 

challenges in the cloud, a highly distributed 

computing architecture for handling huge BoT 

applications. A multi-objective Improved Cuckoo 

Search (MOICS) algorithm is developed to address 

this problem. The main purpose of the MOICS 

algorithm is to achieve a fair balance between 

execution time and financial cost when completing a 

set of activities in the cloud system . Furthermore, 

this algorithm is flexible enough to adjust to the 

requirements of different users to meet their goals. 

Some users prioritize execution times, while others 

prioritize budgets. On a variety of datasets of 

different sizes, our method was tested and compared 

to the MPSO algorithm, BLA Algorithm, TCaS 

Algorithm, and RR algorithm. The results 

demonstrate that the proposed algorithm provided the 

best Quality of Service and was faster and cheaper 

than the other strategies. The contributions for the 

MOICS algorithm are:  

 

• Our approach formulates the task-scheduling 

problem as a multi-objective optimization 

problem in a cloud system, intending to reduce 

total execution durations and costs by dynamic 

allocating appropriate resources to present tasks. 

• For discrete multi-objective optimization issues, 

such as allocating specific compute nodes that 

can't be allocated utilizing a continuous space, we 

propose an enhanced Multi-Objective Cuckoo 

search optimization model. 

 

The following is how the rest of the article is 

structured. The related works and background are 

presented in Section 2. Section 3 describes the 

formulation for the work scheduling problem in the 

Cloud computing context. Section 4 delves into the 

details of our proposed algorithm. The results of the 

experiments are presented in Section 5. Finally, 

Section 6 brings the article to a close and discusses 

potential work. 

 

2. Related work and background 

This part describes task scheduling and resource 

allocation principles and studies in a cloud setting, as 

well as multi-objective optimization and the Cuckoo 

search algorithm. 

2.1 Task scheduling 

Cloud computing resources must be allocated not 

just to meet user-specified QoS standards, but also to 

shorten the time to execute, lower costs, and increase 

service provider profitability. Scheduling and load 

balancing techniques are stringent for increasing 

Cloud computing efficiency while using limited 

resources [11, 12]. Dependent and independent 

approaches to task scheduling in computing 

platforms are widely categorized [13]. There are 

dependencies and communications when distributing 

and assign tasks to specific compute resources in the 

based methodologies. Individual tasks are distributed 

across computing exchequer in different ways, either 

in batch mode or in real-time [13]. Because it is more 

useful and closely matches the job arrival and 

allocation processes in the actual world, the online 

mode was chosen for our architecture. 

Work scheduling algorithms are essential in 

complicated environments for allocating batch mode 

jobs and coordinating the access time of each task 

scheduled for the resource management system. The 

task scheduling has to be expressed as being an NP-

hard issue [14, 15]. 

According to [16], a large group of Internet of 

Things units was published between 2016 to 2020, 

which led to the emergence of problems in cloud 

environments. Researchers tried to solve these 

problems through several types of research to assign 

tasks in cloud systems. [17] concentrated their efforts 

on reducing latency in edge Clouds. In Cloud–Fog 

computing, they proposed a work allocation problem. 

They did, however, calculate power consumption and 

latency using a simple model. In another study, [18] 

have been suggested the Bee Life Algorithm (BLA) 

as a task scheduling technique. The emphasis of the 

study is on key goals: memory and execution time. 

However, the connection with Cloud data centers is 

not mentioned in this article, and the approach has 

only been tested on small datasets. while in [19] a 

hybrid scheduling algorithm that mimics cuckoo's 

parasitic behaviour and the crow's food gathering 

behavior, named Cuckoo Crow Search Algorithm 

(CCSA), has been proposed to address cloud 

computing's task scheduling challenge. To optimize 

the performance of task scheduling, the hybrid CCSA 

incorporates several QoS parameters, including 

makespan and cost. however, the tests were restricted 
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because the algorithm was only tested on small 

datasets. In another study, [1] when scheduling large-

scale applications in such a platform, investigated the 

tradeoff between makespan and cloud cost and 

proposed the Cost-Makespan aware scheduling 

method. Despite the fact that their approach required 

a cost makespan barter, they linearized the tradeoff 

using a rational factor rather than Pareto optimization 

techniques. In [20] they formulated an associated 

task scheduling problem into a constraint to tackle the 

difficult task scheduling problem with some priority 

constraints of IoT applications while taking into 

account energy consumption and decreasing energy 

consumption under the condition of meeting the 

mixed deadline. To solve this problem, a laxity and 

ant colony system algorithm (LBP-ACS) is proposed. 

A task scheduling method in this algorithm takes into 

considers not only a work's priority but also its 

completed deadline. Further, they only tested their 

proposed approach on tiny datasets. Where [21] 

conducted a similar study and suggested the static 

task graph scheduling inhomogeneous 

multiprocessor environments, the predominant 

technology used as mini-servers in fog computing, is 

addressed using a high-performance approach based 

on the Max-Min Ant System (MMAS), which is an 

efficient variation in the family of ant colony 

optimization algorithms. In [22] Hybrid Max-Min 

Genetic Algorithms (HMMGA) have been proposed 

that can be used to handle load balancing and task 

scheduling issues in the cloud. HMMGA aims to 

reduce the completion time of heterogeneous VMs 

and complex scheduling decisions.In order to achieve 

effective task scheduling and load balancing, 

HMMGA defines two constraints, such as the earliest 

finish time and the optimal completion time. [23] 

presented a novel method for optimizing task 

scheduling in a Cloud–Fog environment for Bag-of-

Tasks applications in terms of execution time and 

operational expenses. 

As previously mentioned, most current task 

scheduling approaches are only relevant for small 

datasets and only consider cost or makespan as a 

single goal. Though some barter research has been 

done in the past, it is unlikely that those tradeoffs 

accurately reflect reality. Pareto optimization 

techniques, also known as multi optimization 

algorithms, are essential when dealing with two or 

more competing goals. To solve a multi-objective 

task scheduling problem, [24] suggested a hybrid 

genetic-ACO algorithm to solve a multi-objective 

task scheduling methodology. 

The majority of today's task scheduling 

approaches are multiobjective issues, which are more 

workable than single-objective issues [25-27]. The 

multi-objective problem requires a tradeoff between 

several goals, to make the best decision possible. As 

a result, this study suggests a multi-objective task 

scheduling issue in cloud environments. To do so, we 

build an updated MOICS algorithm that is capable of 

solving multi-objective optimization problems 

efficiently. 

2.2 Cuckoo search algorithm 

Cuckoo Search (CS) is a fascinating bird, not just 

because of its wonderful sound, but also because of 

its aggressive reproduction technique. [28] suggested 

the CS metaheuristic algorithm. The algorithm's 

theoretical inspiration came from the vigorous 

reproduction technique of the cuckoo bird. Yang and 

Deb use three ideal rules to apply this technique as an 

optimization method [26, 29]: 

 

• Each cuckoo lays one egg at a time and deposits 

it in a nest that is picked at random. 

• A portion of the high-quality egg mite (best 

solutions) will be passed on to the next 

generation. 

• The number of nests is set, and the host has a 

probability Pa  ∈(0,1) of discovering an outsider 

egg, which results in the host eliminating the egg 

or nest and constructing a completely new nest in 

another location. 
 

The key steps of the CS algorithm can be 

illustrated as the pseudocode shown in Algorithm 1 

using these three laws. Using levy flight, a new 

solution x(t + 1) for the ith cuckoo is produced as 

follows: 

 

Xi
(t+1) = xi

(t) + α  Levy(β)                  (1) 

 

The phase size that should be defined with the 

problem scales is α > 0. The majority of the time will 

use α =1. The term product ⊕  refers to entry-by-

entry multiplication. Levy flights essentially generate 

a random walk, with their random phase lengths 

drawn from the Levy distribution. 

 

Levy ~ u = t-β   (1 < β ≤ 3)                 (2) 

 
which has an endless number of options The 

sequential steps/jumping off a cuckoo are simply a 

random walk with a strong tail that follows a power 

law step-length distribution. A fraction Pa of the 

poorest nests can be removed using random walk, and 

new nests can be created in new locations. 

Since multi-objective optimization problems 

require simultaneous optimization of multiple 
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objective functions, and there is no additional 

information about the metaheuristic multiobjective 

issue to be solved, no single Pareto optimal solution 

can be viewed as superior to others [30]. As a result, 

the best solutions (decisions) must be decided as a 

barter among several goals, and the optimality of a 

solution varies depending on a variety of factors like 

the user preference, the issue description, and the 

context. 

 

Algorithm 1. Cuckoo Search Algorithm 

1: begin 

2:    Objective function f(x), x=( x1,…., xn)T; 

3:    Initial a population of n host nests xi(i= 1,2,….,n); 

4:        while (t < Maximum Generation) or (stop 

criterion); 

5:            Get a cuckoo (say i) randomly and    generate 

a new solution by Levy flights; 

6:             Evaluate its quality/fitness Fi 

7:             Choose a nest among n (say j) randomly; 

8:             if (Fi > Fj) 

9:                   Replace j with a new solution; 

10:           end 

11:           Abandon a fraction (Pa) of worst nests; 

12:           Keep the best solutions (or nests with quality 

solutions); 

13:           Rank the solutions and find the current best; 

14:       end while 

 

15:       Post process results and visualization; 

16: end 

3. Formulation of task scheduling problem 

in cloud system 

Table 1. The symbols used in the work 

Symbol  Description 

Pi number machine i 

Tj number task j 

M 
the total amount of virtual machines 

available 

N the overall number of tasks 

Ti
j task j is processed by machine i 

I(Tj) total number of j task instructions 

RB(Tj) the required bandwidth for task j 

RM(Tj) required memory for task j 

Sr(Pi) computing average of machine i 

BWc(pi) cost of bandwidth usage for machine i 

Sc(pi) computing cost for machine i 

Mc(pi) cost of memory usage of machine i 

When BoT apps make requests to the cloud layer, 

they're broken down into small, autonomous tasks 

which can be treated by the cloud computing 

infrastructure. Every task has its collection of 

characteristics, like the size of the I/O files, the 

numeral of instructions, and the amount of memory 

required. 

Table 1 lists the notations for the majority of 

mathematical symbols. A typical task scheduling 

issue would aim to schedule all tasks to ensure that 

total execution times are as short as you can when 

using the fewest total costs of available resources. Let 

N be the number of tasks (T = T1, T2,..., Tj,..., TN) 

to be handled for an individual request, and M be the 

amount of accessible virtual machines (P = P1, P2,..., 

Pi,..., PM). Let I(Tj) denote the amount of 

instructions. 

Let Sr(Pi) function as the computing average, that 

will be the machine's ability to calculate a million 

directives in a second, S(Pi) computing node's cost, 

Mc(Pi) be the memory usage cost, and BWc(Pi) be 

the expense of bandwidth usage for every single 

machine (Pi). The collection of processors (P) and 

tasks (T) can be represented mathematically using the 

following vectors: P = {P1, P2, P3,..., PM}, T = {T1, 

T2, T3,..., TN}. Also if Tij signifies that task j is 

treated by virtual machine i the solution can be given 

as follows: 

 

        Sol = {Ti
1 , T

i
2 , T

i
3 , ..., T

i
j , ..., T

M
N }         (3) 

 

Using the mathematical model below, the task 

scheduling issue could be a stated multiobjective 

optimization problem: 

 

Minimize : ∑ (𝑚𝑎𝑥 1 ≤ 𝑗 ≤ 𝑁 (
𝐼(𝑇𝑗)

𝑆𝑟(𝑝𝑖)
) , ∀𝑇𝑗 ∈𝑀

𝑖=1

𝑝𝑖) (4) 

 

Minimize :∑ (∑ (𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑇𝑗∈𝑃𝑖

𝑀
𝑖=1 (𝑇𝑗

𝑖)))    (5) 

 

where (
𝐼(𝑇𝑗)

𝑆𝑟(𝑝𝑖)
)  is the time it takes node i to 

complete task j, which might be calculated by divide 

the quantity of instructions in task j (I) by node i's 

processing unit rate (Sr), The overall computational 

cost of Pi, memory, and bandwidth resource utilized 

by node i to handle task j is calculated as 

TotalCost(Tij), and it can be calculated by adding the 

three combinations together: 

 

TotalCost(Ti
j) =Sc(Ti

j) + Mc(Ti
j) + Bc(Ti

j)     (6) 
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The following three formulae can be used to 

compute each cost separately. The equations show 

the computational, RAM, and bandwidth expenses 

that node i will incur to complete task j. 

 

Sc (T
i
j) = Sc(Pi) × (

𝐼(𝑇𝑗)

𝑆𝑟(𝑝𝑖)
)                (7) 

 

Mc(T
i
j) = Mc(Pi) × RM(Tj)                (8) 

 

Bc(T
i
j) = BWc(Pi) × RB(Tj)                (9) 

 

The first objective function in the model in Eq. 

(4), which reduces the overall response time required 

by way of a system to answer users' requests. Eq. (5) 

depicts the 2nd objective function, which seeks to 

reduce the full total cost of resource utilization. 

4. Proposed work 

4.1 Proposed model 

This part discusses how an improved CS 

algorithm was used to create the proposed task 

scheduling model. Since continuous values generated 

by the Continuous CS algorithm cannot be allocated 

to appropriate computing nodes, the operators are 

ineffective for task scheduling in dynamic cloud 

environments. Levy Flight applied for continuous 

space. As a result, have been some changes to the 

Levy flight equation to solve this problem by 

searching in discrete space, as shown in Fig. 1. 

4.2 Initial population and solution representation 

The original population may be the collection of 

all individuals utilized by the CS to discover the best 

solution. Believe that the populace is N individuals. 

The N people are initialized randomly to find out 

many locations in the search space, in addition, to 

make sure the variety of the people in the initial 

generation. Individuals are chosen from the initial 

population and some operations are performed in it to 

produce the following generation. The solution is 

represented as a vector that includes the tasks to be 

performed by the available processors Fig. 2 depicts 

one possible candidate solution. 

4.3 Fitness evaluation 

After the generation of the initial solution, each 

individual's fitness value is evaluated and saved for 

future reference. Eqs. (4) and (5) can be used to 

define the fitness function. We employed a multi-

objective function that took into consideration cost 

and makespan in this case. As shown in Eq. (4), the  
 

 
Figure. 1 Digram of Multi-objective improved cuckoo 

search (MOICS) algorithm 

 

Tasks T1 T2 T3 T4 T5 T6 T7 

Nodes 3 1 3 2 2 1 3 

Figure. 2 Initial solution format 

 
minimum fitness function value is set by the 

minimum cost, minimal makespan by used Eq. (5). 

4.4 Levy flights 

It has the potential to conduct a comprehensive 

search near the solution, which can be followed by a 

large footstep in the lengthy run. It's aforesaid that 

Levy flights are used to efficiently look for a new best 

solution in most optimization problems [31]. Levy 

Flight applied to continued space. As a result, have 

suggested some changes to the Levy flight equation 

to allow for discrete space searching. 

 
stop 

 

 fi(x)<=fk(x) 

 Initialize the objective function fi(x) 

start 

 

 Initialize a random population of n host nests 

 

 Get cuckoo (i) randomly by Levy Flight 

and evaluate its fitness f(xi) 

 Choose a nest among n(i) randomly with 

fitnees f(xi) 

 Check the K solutions for nest i 

 Fi >Fj 

no yes 
 Replace j by 

new solution 
 Let j the 

solution 

 

 Abandon Pa of worse nest and bulid new 

ones at new location by Levy Flights 

 

 Keep the best solution (nest) 

 t < max iteration 
yes 

 Rank the solutions and find the current best pareto 

optimal objective (best nest) f(xi) 

 

no 
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4.5 Pareto optimum solutions 

If none of the objective functions could be 

improved without worsening a few of the other 

objective values, the solution is recognized as Pareto 

optimum. 

4.6 Multiobjective improved cuckoo search 

(MOICS) algorithm 

CS algorithm uses the three idealized rules listed 

in Section 2.2 to deal with a single optimization 

function, changed only the 1st and 3rd rules to combine 

the criteria of multiobjective optimization with kth 

various objectives. 

Mathematically, the first rule is randomly 

transformed to create a new, random solution using 

Levi's trip or random walk, where a random switch 

occurs on the solutions, while the second law remains 

the same in principle to ensure that the best solutions 

are provided to the next generation, and the third law 

is applied to the transformation process and in this 

way solutions are rejected the worst. The MOICS 

algorithm's efficiency is ensured by these one-of-a-

kind functions. 

- In the MOICS algorithm, the below parameters 

are utilized. 

- Pa ∈ [0, 1]  The probability that a bad nest is 

likely to be abandoned. 

- α > 0 step size, which should be related to the 

magnitude of the attention issue. In the vast 

majority of cases, α > 1. 

- λ random step length. 

In the process of creating new solutions to replace 

old ones. The worst solutions were replaced by 

randomly generating solutions in the state space in 

the standard CS generating solution. This can make 

convergence to an optimal solution more difficult. 

wherefore, has been proposed splitting the abandoned 

nests into two parts, with the first half being replaced 

by random solution generation and the second being 

created by taking the vector that represents the 

solution and performing the mutation procedure as 

shown in Algorithm. 2 and Algorithm. 3, while the 

MOICS algorithm's flow is depicted in Algorithm. 1.  

 

Algorithm 2. Multi-Objective Improved Cuckoo 

Search (MOICS) 

Input: Population of the problem, pa  

Output: Sbest 

1 Initialize the objective functions f1(x),f2(x) 

…. Fk(x), x = (x1, … , xd)T; 

2 Initial a population of  n host nests xi (i = 1, 

2, ..., n), 

3 Probability Pa  ∈[0,1] and Maximum number 

of iteration Maxitr; 

4 while : ((t < Maxitr) or (Stop Condition)) do 

5 Get a Cuckoo (say i) randomly by Levy 

flights; // new solution xi
(t+1) 

6 Evaluate its quality/fitness Fi; // Fi = 

f(xi
(t+1)) 

7 Choose a nest among n (say j) 

randomly; //old solution xi
t 

8 Evaluate the K solutions for nest j 

9 if (Fi > Fj) then             // xi
(t+1) > xi

t 

10       Replace Fj ← Fi; // old solution xi
t 

with new solution xi
(t+1) 

11 end if 

12 A percentage (Pa)/2 of the worst nests 

are abandoned, and new ones are 

constructed at random;  

13 A fraction (Pa)/2 of worse nests are 

abandoned and new 

14 ones are built by call mutation procedure  

15 Keep the best solutions (or nests with 

quality solutions); 

16 Rank the solutions and find the current 

best Pareto optimal                solutions; 

17 t← t+1; 

18 end while 

19 return Sbest; 

end 

 

To maintain robust randomization in exploring 

the country space, we held a random generation of 

solutions replacing abandoned solutions. 

In single optimization situations where one egg 

occurs in a nest with regards to the worth of the 

objective function, ranking the nests on the basis of 

the quality of the solution is simple. However, 

ranking the nests is a substantial task in multi-

objective situations with multiple eggs in each nest. 

The strategy of contrasting the solutions is dependant 

on objective function principles, which will be wrong 

and results in an incorrect evaluation. It could happen 

if your objectives are in dispute with each other. 

Nests are separated into two classes using Pareto 

dominance to accomplish this. Non-dominated nests 

with Pareto optimal solutions are of interest to the 

first collection, while dominated nests with non-

Pareto optimal dominated solutions are of interest to 

the second set. 

 

Algorithm 3. Generate a new solution from an 

abandoned nest  

Input: D : (pa)/2. 

Output: New Nests.  

1  for i=1 to D  

2  Generate a new solution by call 

mutation procedure 

3 End for  
 



Received:  September 23, 2021.     Revised: November 9, 2021.                                                                                     301 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.27 

 

5. Result and comparison 

The simulation setup and evaluation of the 

proposed algorithm are described in the following 

sections based on the results of the conducted 

experiments. 

5.1 Bee life algorithm (BLA) 

As a novel meta-heuristic approach, the artificial 

bee life algorithm [32] was created in 2005.Modeling 

honey bees' smart foraging behavior in a search 

process for solving real-parameter optimization 

problems [33] is based in part on the hybrid foraging 

behavior of honey bees. 

By using the bee swarm algorithm, in [18] authors 

improve task scheduling utilizing fog computing. The 

goal is to find the right balance between CPU 

execution time and allocated memory. 

5.2 Round robin algorithm 

In round robin, regardless of the load on the VM, 

the next VM in queue gets assigned tasks.Neither 

resource capabilities, priorities, nor task duration is 

taken into account in the Round Robin strategy.Due 

to this, higher priority tasks and longer tasks require 

longer response times [34, 35]. 

5.3 Modified particle swarm optimization 

An evolutionary algorithm, known as particle 

swarm optimization, developed by Kennedy and 

Eberhart [36], simulates the collective behavior of 

flocks of birds or groups of fish taking a course 

towards their destination. In modified particle swarm 

optimization (MPSO) [10], which can adapt to the 

proposed model, this is accomplished by adding or 

removing layers to the PSO algorithm while 

maintaining the concept of PSO. Based on the best 

experment (pBest) and leader (gBest), particle 

velocities are updated daily. 

5.4 Experimental settings 

The tests in this study were conducted out on a 

PC running Windows 10, with a 2.8 GHz Core i7 

processor and 16 GB of RAM, and using Python 3.8.5 

software. Has been solved 11 separate task-

scheduling problems with varying numbers of tasks 

to assess the efficiency of the proposed MOICS (40 

to 500 tasks). The computing power and resource 

consumption costs of cloud nodes are different. Each 

node is presumed to have its processing power, as 

calculated by MIPS (million instructions per second), 

as well as Processor, memory, and bandwidth usage 

costs. The Cloud system was built with thirteen  
 

Table 2. The cloud infrastructure's characteristics 

Parameters Cloud tier Unit 

Number of nodes 13 node 

CPU usage cost [0.1, 1.0] G$/s 

Memory usage cost [0.01, 0.05] G$/MB 

Bandwidth usage 

cost 
[0.01, 0.1] G$/MB 

CPU rate [500, 5000] MIPS 

 
Table 3. Attributes of tasks 

Property Value Unit 

Input file size [10, 100] MB 

Memory required [50, 200] MB 

Output file size [10, 100] MB 

Number of 

instructions 
[1, 100] 109 instructions 

 

processing nodes, which have the characteristics 

described in Table 2. Servers or virtual computers in 

high-performance data centers undertake tasks at the 

Cloud tier. As a result, Cloud nodes process data 

significantly more quickly. The price of consuming 

energy in the Cloud is higher, and these charges are 

measured in Grid Dollars (G$) [23], a currency unit 

utilized in the simulation to substitute actual money. 

All user queries are routed through the cloud 

system. Each request is dissected into numerous tasks, 

which are then assessed and the resources required 

determined. The quantity of memory required the 

amount of instructions, how big is the I/O file are all 

assumed to be features of each task. With regards to 

the demand, the number of tasks directed at each 

request may differ significantly. The attributes listed 

in Table 3 were used to define the roles for every 

dataset at random. The experiment may cover 

numerous situations, with some requiring plenty of 

computing and others demanding more bandwidth 

utilization or memory because several distinct forms 

of jobs were constructed.  

5.5 Experimental results 

As part of this analysis, we will assess how well 

MOICS performs in a cloud computing environment 

by solving the task scheduling problem. Table 4 

summarizes the parameter settings that have an 

impact on algorithm execution. 

In Table 5 and 6, the results of MOICS, MPSO, 

BLA, TCAS and RR for 3 systems are shown, each 

with ten runs. Each run includes tasks m=[40, 80, 120, 

160, 200, 250, 300, 350, 400, 450, 500] and the cloud 

system model with nC=13. Competitie results are 

highlighted in bold. The makespan function is shown 

in Table 5, while the cost function is shown in Table 

6. 
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Table 4. Settings used for testing the efficiency of the 

proposed algorithms 

Parameter 

name 
Acronym Possible settings 

Number of 

systems 
nSystem 10 

Number of 

Runs 
nRun 3 

Number of 

node 
nC 13 

Number of 

Tasks 
m 

{40,80,120,160,200,250, 

300,350,400,450,500} 

Population 

Size 
I 100 

Number of 

Generation 
Maxg 500 

 

Table 5. Comparison of the five algorithms' makespan 

and overall cost 

Makespan 

No. 

of 

Task 

MOICS TCAS* BLA* MPSO* RR* 

40 151.461 191.44 207.57 215.27 456.11 

80 337.907 394.69 416.09 445.35 963.08 

120 489.144 607.71 654.92 686.2 1495.66 

160 724.244 819.97 917.67 932.33 1912.08 

200 906.207 940.87 1067.49 1065.94 1905.7 

250 1137.66 1270.96 1490.65 1479.84 3054.8 

300 1388.24 1473.79 1765.49 1712.76 3309.14 

350 1642.56 1949.04 2010.74 1911.27 3638.19 

400 1829.65 1944.58 2421.98 2300.51 4347.64 

450 2177.56 2235.16 2840.79 2751.29 5350.35 

500 2371.17 2503.09 3174.39 3067.26 6023.74 

* Results of these algorithms from the research paper for 

Nguyen et al [23]. 
 

Table 6. Comparison of the five algorithms' overall cost 

Cost 

No. 

of 

Task 

MOICS TCAS* BLA* MPSO* RR* 

40 605.244 733.85 730.88 740.38 755.98 

80 1377.27 1540.23 1540.85 1533.4 1581.82 

120 2052.76 2363.37 2367.59 2381.2 2418.9 

160 2927.76 3176.17 3183.8 3197 3246.69 

200 3692.46 3755.21 3767.37 3778.3 3835.4 

250 4617.60 4988.94 5017.17 5007.6 5079.06 

300 5657.33 5832.69 5877.41 5862.5 5935.94 

350 6604.98 6607.52 6653.37 6632.4 6738.39 

400 7473.85 7738.56 7816.04 7760 7875.39 

450 8673.28 8845.9 8926.57 8876.3 9016.59 

500 9538.44 9902.64 9995.97 9921.8 10097.7 

* Results of these algorithms from the research paper for 

Nguyen et al [23]. 

 
Figure. 3 Total cost comparison of the five algorithms 

 

 
Figure. 4 Make-Span comparison of the five algorithms 

 

Total–cost for five strategies is compared in Fig. 

3. Every dataset with a high average fitness showed 

that our suggested algorithm, MOICS, dominated the 

first place. Meanwhile, Fig. 4 compares the 

Makespan of the proposed model MOICS algorithm 

to the four others while the number of tasks changed, 

demonstrating that our suggested MOICS algorithm 

outperforms the others. Based on the results, our 

suggested method, MOICS, could achieve the best 

barter among make-span and overall cost than the 

other four algorithms, as well as demonstrating the 

supremacy of time optimization.  

6. Conclusion and future work 

In this work, we addressed tasks scheduling 

problems for BoT applications in cloud computing 

environments. The MOICS algorithm can solve the 

problem as a multi-objective optimization problem to 

reach a good trade-off between cost and execution 

times when completing a set of tasks in a Cloud 

system. In this case, swarm algorithms are used to 

solve the problem. In order to solve the problem, a 

swarm algorithms is adopted. In a comparison of 11 

sets of tasks in a Cloud system, MOICS performed 

better than the MPSO, TCAS, BLA, and RR methods 



Received:  September 23, 2021.     Revised: November 9, 2021.                                                                                     303 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.27 

 

in terms of the trade-off between makespan and cost 

execution. 

In the foreseeable future more algorithms, 

particularly metaheuristic algorithms will be 

researched, improved, and used to solve scheduling 

problems. We also intend to broaden the scope of the 

scheduling issues by focuses on a variety of other 

objectives, like waiting time, throughput, and energy 

consumption, to meet the needs of users. For greater 

practicality, budget, deadline, and resource 

constraints can be added. 
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