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Abstract: The adaptive Lévy flower pollination algorithm (ALFPA) is a recent addition to variants of flower 

pollination algorithm (FPA). Despite its excellent performance on single objective problem instances, it has shown 

inefficiency in the number of function evaluation (FE). Inspired by this, this paper proposed two algorithms extending 

ALFPA to solve multiple objective problem while also improving FE efficiency. The first algorithm proposed is 

ALFPA with non-dominated sorting denoted as MO-ALFPA alongside two variants which are proposed to improve 

its FE efficiency denoted as MO-ALFPAT and MO-ALFPAB. The second proposed algorithm, MOEA/D-ALFPA, 

uses decomposition strategy instead of non-dominated sorting on MO-ALFPA. The empirical study on two benchmark 

suits shows that MO-ALFPAT and MOEA/D-ALFPA performed better than other methods. Furthermore, MO-

ALFPAT and MOEA/D-ALFPA produced the best results in three benchmark instances, based on inverted 

generational distance indicator, and two and three best results based on the hypervolume indicator, respectively. 

Keywords: Adaptive Lévy mutation, Adaptive operator selection, Flower pollination algorithm, Multiple objective 

problem. 

 

 

1. Introduction 

Many design optimization problems in various 

fields are formulated into multiple objective problem 

(MOP) to address the existence of multiple and often 

conflicting objectives in real-world situation. For 

instances in engineering design [1], logistic [2, 3], 

economics [4, 5], and bioinformatics [6]. 

Multiple objective problem (MOP) can be 

formally described as follows. There are 𝐾 objective 

functions to consider simultaneously in a MOP. The 

objectives are formulated as 𝐹(�⃗�) =
(𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝐾(�⃗�)) with �⃗� ∈ Ω and Ω is the set 

of all feasible solutions. The formulation of MOP is 

given in Eq. (1). 

 

minimize 𝐹(�⃗�) 

subject to                               (1) 

𝑔𝑗(�⃗�) ≤ 0, 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝐻1 

ℎ𝑙(�⃗�) = 0, 𝑓𝑜𝑟 1 ≤ 𝑙 ≤ 𝐻2 

 

There are 𝐻1  inequality constraints and 𝐻2  equality 

constraints. The optimal solutions of MOP can be 

defined in terms of Pareto optimality [7]. 

A solution �⃗�∗  dominates another solution �⃗� 

( �⃗�∗ ≺ �⃗� ), if and only if 𝑓𝑖(�⃗�∗) ≤ 𝑓𝑖(�⃗�)  for every 

index 𝑖, and 𝑓𝑗(�⃗�∗) < 𝑓𝑗(�⃗�) for at least one index 𝑗 

with 1 ≤ 𝑖, 𝑗 ≤ 𝐾 . A solution �⃗�∗  is nondominated 

regarding to a set 𝑋′ ⊆ 𝑋 if and only if ∄�⃗� ∈ 𝑋′: �⃗� ≺
�⃗�∗. A set 𝑋′ ⊆ Ω is called Pareto optimal set if and 

only if there is not any solution ∀�⃗�′ ∈ 𝑋′ ∶  ∄𝑥 ∈ Ω ∶
 �⃗� ≺ �⃗�′.  The corresponding set of objective values 

from a Pareto optimal set is called Pareto optimal 

front (POF) [8]. The main task of solving MOP is to 

find a good set of solutions in terms of quality and 

spread that can best represent the POF. 

A significant number of multiple objective 

evolutionary algorithms (MOEA) have been 

developed. A common challenge faced by MOEAs is 

balancing the rate of exploration and exploitation, 
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which determines the quality and the spread of the 

resulted POF [9].  

Several methods are proposed to address this 

challenge. Firstly, one can specify the search 

neighborhood in each iteration by selecting potential 

parent solutions, e.g., by tournament selection based 

on dominance and crowdedness of the solutions in 

nondominated sorted genetic algorithm II (NSGA-II) 

[10] or by selecting a potential subproblem in 

decomposition-based MOEA (MOEA/D)[11] as 

done in MOEA/D-DRA [12]. The neighborhood size 

also affects the exploitation and exploration 

capability as empirically shown in [13] by varying the 

tournament size of NSGA-II, or by varying the 

neighborhood size in MOEA/D as shown in [14] and 

improving the performance by using an ensemble of 

neighborhood sizes as shown in ENS-MOEA/D [15]. 

Other studies have also been conducted on 

recombination and mutation operators to improve the 

performance of MOEA. In [16], a more general 

equation for DE operator is proposed, which can be 

derived into up to 57 DE operators. An SOP 

benchmarking study showed that each operator 

performs differently in different problem 

characteristics. Eight best performing operators at the 

end are selected based on the benchmarking study. A 

similar development can be observed in several other 

studies, e.g. considering Gaussian and Cauchy 

random walk in Cuckoo Search (CS) [17] and flower 

pollination algorithm (FPA) [18], using DE operators 

[19] or CS operators [20] in MOEA/D. 

The issue of varying operators is choosing the 

appropriate operator to use in a particular situation. 

Although using multiple operators at once and 

choosing the best result could perform well, as 

empirically shown in [18], this strategy is inefficient 

when the function evaluation (FE) is limited. The 

most common strategy is to use a controlling 

parameter of operator utilization. It is shown that the 

performance of MOEAs depends on the 

parameterization and the problem characteristic [20, 

21]. Therefore, parameters of MOEAs must be tuned 

for each specific problem to get the best result. 

However, for some problems, especially a dynamic 

problem, parameter tuning can be expensive and 

time-consuming [21]. This leads to the problem of 

finding algorithms that are robust to problem 

formulations so that more efforts can be made on 

problem modelling and analysis instead of parameter 

tuning or algorithm development [23]. 

Subsequently, several parameter selection 

methods are proposed for AOS. The most common is 

probability matching (PM) [24], with probability 

based on the normalized credits. However, an 

improvement of PM called adaptive pursuit (AP) [25] 

is proposed to help PM adapt faster to change of 

operator preference. Other deterministic alternatives 

to adapt to fast rewards dynamic are by using bandit 

based operator selector [26]. A recent AOS strategy 

based on the current solution status is called bicriteria 

assisted AOS (BAOS) [27]. By using the current 

solution state instead of the operator performance, 

BAOS does not need credit assignment, and therefore 

straightforward to be adopted into any MOEAs. 

Inspired by the above findings, this paper 

proposed to extend adaptive Lévy flower pollination 

algorithm (ALFPA) [18] to solve MOP. Based on the 

experimental study conducted, ALFPA showed 

superior performance on benchmark SOPs than 

several well-known algorithms. The reason for the 

better performance of ALFPA can be attributed to its 

three significant additions to the original FPA. 

There are three significant additions to the flower 

pollination algorithm (FPA) [28] proposed in ALFPA. 

Firstly, ALFPA enhances the exploration by using 

four recombination operators in the global random 

walk with step sizes drawn from symmetrical stable 

Lévy distribution with four different shapes. 

Secondly, the number of offspring generated by local 

random walk is increased to four to enhance the 

exploitation, thus balancing the exploration. Lastly, a 

dynamic strategy is applied to adjust the switching 

probability 𝑝 to balance exploration and exploitation. 

Despite being well-performing, a clear drawback of 

ALFPA is the inefficiency of the number of FE due 

to the number of candidate offspring generated. This 

drawback becomes prominent when the FE is 

expensive or limited. 

In this paper, two variants of multiple objective 

extensions of ALFPA are proposed. The first variant, 

denoted as MO-ALFPA, is a Pareto dominance based 

extension of ALFPA by incorporating survival 

selection mechanism employed NSGA-II [10] and 

replacing the NSGA-II crowdedness measure by 

harmonic average distance (HAD )[29]. Furthermore, 

two variants of MO-ALFPA other than the 

straightforward extension are proposed to solve the 

FE inefficiency of ALFPA. One variant employs a 

tournament parent selection mechanism similar to 

NSGA-II but with HAD as the crowdedness measure, 

denoted as MO-ALFPAT. The other variant, MO-

ALFPAB, with bicriteria adaptive operator selection 

(BAOS) [27] to choose the appropriate operator 

based on the current status of the solution. Both 

variants improve the performance of MO-ALFPA, 

especially MO-ALFPAT. 

An ALFPA extension as a variant of MOEA/D is 

proposed by incorporating the adaptive Lévy 

mutation operators and BAOS into MOEA/D,  
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Figure. 1 Comparison of the lévy probability distributions 

with 𝜆 = 1.3 and 𝜆 = 1.7, Cauchy distribution and 

Gaussian distribution. The value of 𝛾 = 1 for all 𝜆 

 

 

denoted as MOEA/D-ALFPA. The experimental 

study showed that MOEA/D-ALFPA and MO-

ALFPAT performed better than the compared 

methods. 

Lastly, this paper is organized as follows. A brief 

explanation of ALFPA is given in Chapter 2. The 

proposed multiple objective extension of ALFPA, 

namely MO-ALFPA, MO-ALFPAT, MO-ALFPAB 

and MOEA/D-ALFPA are given in Chapter 3. The 

details of the experimental study are given in Chapter 

4. The results of the experimental study are discussed 

in Chapter 5. Finally, the paper is concluded in 

Chapter 6. 

2. Adaptive lévy flower pollination 

algorithm 

Adaptive Lévy FPA (ALFPA) is a recent addition 

to the variants of FPA [28] proposed by Salgotra [18]. 

The ALFPA algorithm follows the same framework 

of FPA in which the algorithm starts with a 

population 𝑃 of 𝑛 randomly initialized solutions. The 

population is then updated for several generations 

until the terminal condition is met. In every 

generation, every solution has a chance to be updated. 

Based on the switching probability 𝑝, each solution is 

used to generate a candidate solution via  

global pollination or via local pollination update 

scheme. The global pollination update scheme 

generates a candidate solution which is the current 

solution shifted towards the current best solution in 

the population with step sizes drawn from Lévy 

distribution as given in Eq. (2). On the other hand,  

local pollination generates a candidate solution from 

the current population shifted by a directional vector  

 

Algorithm 1: ALFPA algorithm 

Initialize population 𝑃 of 𝑛 =
𝑁

4
 solutions 

Evaluate and set �⃗�∗ = argmin�⃗�∈𝑃 𝑓(�⃗�) 

Set initial switch probability 𝑝 ∈ [0, 1] 
while 𝑡 < 𝑡𝑚𝑎𝑥 

 Compute current 𝑝 by Eq. (11) 

 for 𝑖 ≔ 1 ∶ 𝑛 

  if 𝑟𝑎𝑛𝑑 < 𝑝 

   Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈  [1,4] with Eq. (3-6) 

  else 

   Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈  [1,4] with Eq. (3-6) 

  end if 

  Evaluate new solutions 

  �⃗�𝑖
𝑡+1 =

arg min{𝑓(�⃗�𝑖,1
𝑡+1), 𝑓(�⃗�𝑖,2

𝑡+1), 𝑓(�⃗�𝑖,3
𝑡+1), 𝑓(�⃗�𝑖,4

𝑡+1)}  

 end for 

 Update current best solution as �⃗�∗ 

 𝑡++ 

end while 

Return �⃗�∗ 

 

made of two random solutions in the current 

population. If the candidate solution improves the 

current solution, then the candidate solution will 

replace the current solution in the next generation. 

Finally, the best solution found is returned after the 

algorithm is terminated. 

In ALFPA, Salgotra [18] proposed using a 

candidate pool of four different distributions to 

generate new solutions in the global pollination 

instead of using the standard Lévy distribution only. 

This strategy is adopted from adaptive Lévy mutation 

strategy first proposed by Yao and Lee in 2001[30]. 

In ALFPA, there are four offspring generated for 

each solution in a generation. Each offspring is 

generated by probability density function which is 

derived from probability density function of 

symmetrical stable Lévy distribution with different 

value of 𝜆. 

 

𝑓Lévy(𝑦; 𝜆, 𝛾) =
1

𝜋
∫ 𝑒−𝛾 𝑞𝜆

∞

0

 cos (𝑞𝑦)𝑑𝑞         (2) 

 

The distribution has two parameters, scaling 

factor 𝛾  and 𝜆  which controls the shape of the 

probability distribution especially in the tail region as 

can be seen in Fig. 1. The scaling factor 𝛾 can be set 

to 1 without the loss of generality[30]. Therefore, the 

probability distribution with a fixed 𝛾 = 1  will be 

denoted as 𝑓𝐿é𝑣𝑦(𝑦; 𝜆, 1) = 𝑓𝐿é𝑣𝑦(𝑦; 𝜆). 

For 𝜆 = 1 , the distribution reduces to Cauchy 

distribution, and the distribution reduces to Gaussian 
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distribution for 𝜆 = 2. As shown in Fig. 1, Cauchy 

distribution has a very heavy tail indicating that that 

long step size has a high probability to be drawn, 

meanwhile Gaussian distribution gives higher 

probability to small step sizes. The other two 

distributions are Lévy distributions with 𝜆 = 1.3 and 

𝜆 = 1.7 . The Lévy distributions are employed to 

balance the extreme between Cauchy and Gaussian 

distributions. The four new solutions generated via 

global pollination are given as: 

 
�⃗�𝑖,1

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐶(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (3) 

 
�⃗�𝑖,2

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐿1(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (4) 

 
�⃗�𝑖,3

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐿2(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (5) 

 
�⃗�𝑖,4

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐺(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (6) 

 
With 𝛼 is the learning rate, 𝑔∗ is the current best 

solution, 𝐺(𝜆), 𝐶(𝜆), 𝐿1(𝜆)  and 𝐿2(𝜆)  corresponds 

to random step size drawn from Gaussian distribution, 

Cauchy distribution, Lévy with 𝜆 = 1.3, and Lévy 

with 𝜆 = 1.7  respectively. Four new solutions are 

also generated in the local pollination to even out the 

number of search equations in the global pollination. 

 

�⃗�𝑖,1
𝑡+1 = �⃗�𝑖

𝑡 + 𝜖 (𝜆)(�⃗�𝑗1

𝑡 − �⃗�𝑗2

𝑡 ) (7) 

 
�⃗�𝑖,2

𝑡+1 = �⃗�𝑖
𝑡 + 𝜖 (𝜆)(�⃗�𝑗3

𝑡 − �⃗�𝑗4

𝑡 ) (8) 

 
�⃗�𝑖,3

𝑡+1 = �⃗�𝑖
𝑡 + 𝜖 (𝜆)(�⃗�𝑗5

𝑡 − �⃗�𝑗6

𝑡 ) (9) 

 
�⃗�𝑖,4

𝑡+1 = �⃗�𝑖
𝑡 + 𝜖 (𝜆)(�⃗�𝑗7

𝑡 − �⃗�𝑗8

𝑡 ) (10) 

 
An obvious drawback from this strategy is the 

number of objective function evaluations (FE) which 

is four times the number of FE done in the standard 

FPA. If the same population size is employed, then 

ALFPA will either take longer computational time or 

terminate four times earlier than the FPA. Therefore, 

the population size employed is be reduced to 
𝑁

4
 so 

that the number of FE will be the same. The limit on 

number of FE then will also directly limit the 

population size which directly affects the 

performance of the algorithm as it has been shown 

that larger 𝑁 shown better performance as shown in 

the experiments conducted [18]. 

Besides employing adaptive Lévy mutation in the 

global pollination, Salgotra [18] also proposed to use 

dynamic value of switching probability 𝑝 instead of 

using a predetermined constant value. The general 

equation for the dynamic switch probability is given 

in Eq.(11). 

 

𝑝 =  𝑝0  −
𝑡𝑚𝑎𝑥 − 𝑡

𝑡𝑚𝑎𝑥
 (11) 

 

Here 𝑡𝑚𝑎𝑥  is the maximum generation until 

termination, and 𝑡  is the current generation. The 

initial value of the switching probability, 𝑝0 is set as 

0.8. The pseudocode for ALFPA is given in 

Algorithm 1. 

3. Multiple objective ALFPA 

3.1 MO-ALFPA 

The first proposed method, MO-ALFPA, is a 

straightforward extension of ALFPA to solve MOP 

by incorporating non-dominated as in NSGA-II as the 

survival selection mechanism. However, the 

crowding distance calculation in NSGA-II is replaced 

by archive truncation method based on HAD[29]. In 

addition, because there can be multiple optimal 

solutions in the population 𝑃𝑡  of the current 

generation 𝑡, therefore the best solution 𝑔∗ in Eq. (3-

6) is replaced by a random nondominated solutions 

regarding to 𝑃𝑡 . The generated offspring from 

population 𝑃𝑡 will be stored in the offspring set 𝑂𝑡. 

Afterwards, the solutions for the next generation 𝑃𝑡+1 

will be selected from 𝑃𝑡 ∪  𝑂𝑡.  

The survival selection is done by first partitioning 

the set of solutions into several fronts of 

nondominated solutions 𝐴𝑖  with 𝐴1  is the non-

dominated solutions of 𝑃𝑡 ∪  𝑂𝑡 ,and 𝐴𝑖+1 is the non-

dominated solutions of (𝑃𝑡 ∪ 𝑂𝑡) ∖  (∪𝑗=1
𝑖 𝐴𝑗). 

After the solutions are partitioned into fronts, the 

solutions are inserted into 𝑃𝑡+1 starting from 𝐴1 until 

|𝑃𝑡+1| = 𝑁. Suppose that the last front to be inserted 

into 𝑃𝑡+1  is 𝐴𝑚  with 𝑚 ≥ 1 . If |𝐴𝑚 ∪  𝑃𝑡+1|  > N, 

then the solutions in 𝐴𝑚  will be truncated starting 

with the one with the lowest HAD will be removed 

from 𝐴𝑚 until |𝐴𝑚 ∪  𝑃𝑡+1| ≤  𝑁 as in Algorithm 2. 

The calculation of HAD is given in Eq. (12) with 

𝐵(�⃗⃗�) is set of 𝑘-nearest solutions of �⃗� in the objective 

space and 𝑑(�⃗⃗�, �⃗�) is the Euclidean distance between 

solution �⃗�  and �⃗�  in the objective space. Note that 

�⃗�  ∉  𝐵(�⃗�). Similar to crowding distance in NSGA-II, 

the solution with lower value of HAD is more 

crowded than the solution with a higher value of 

HAD. 
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Algorithm 2: Archive truncation algorithm 

Given 𝐴𝑚 

while |∪𝑗=1
𝑚 𝐴𝑗 |  >  𝑁 

 �⃗�′  = arg min
∀𝑥∈ 𝐴𝑚

HAD(�⃗�) 

 𝐴𝑚 =  𝐴𝑚 ∖ �⃗�′ 

end while 

 

Algorithm 3: MO-ALFPA algorithm 

Initialize population 𝑃 of 𝑁 solutions 

Evaluate initial solutions 

Set initial switch probability 𝑝0 ∈  [0,1] 
while 𝑡 < 𝑡𝑚𝑎𝑥 

 Update 𝑝 by Eq. (11) 

 𝑂𝑡  =  {} 

 𝑄𝑡 = 𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡)  
 for 𝑥𝑖

𝑡 ∈  𝑄𝑡 

  if 𝑟𝑎𝑛𝑑 < 𝑝 

   Get a random non-dominated solution �⃗�∗ ∈
 𝑃𝑡 

   Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈  [1,4] with Eq. (3)-(6) 

   PolynomialMutation(𝑥𝑖,𝑗
𝑡+1), ∀ 𝑗 ∈  [1,4] 

  else 

   Generate 𝑥𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈  [1,4] with Eq. (3)-(6) 

  end if 

  Evaluate new solutions 

  Insert new solutions to 𝑂𝑡 

 end for 

 𝑃𝑡+1  =  𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡 ∪ 𝑂𝑡) 

 𝑡 =  𝑡 + 1 

end while 

Return 𝑃𝑡 

 

HAD(�⃗�) =
|𝐵(𝑥)|

∑
1

𝑑(𝑥,�⃗⃗�)�⃗⃗� ∈𝐵(𝑥)

(12) 

 

Lin et al. [27] argued that HAD can reflect the 

crowdedness of each solution in the local search 

space. In addition, it is also shown in [29] that 

crowding distance in NSGA-II is sensitive to outlier 

and therefore may not accurately reflect the actual 

crowdedness of solutions in the population. On the 

other hand, the influence of outlier existence is 

overcome by using HAD. 

Besides that, two variants of MO-ALFPA are 

proposed to handle the FE inefficiency of ALFPA. 

The first variant, MO-ALFPAT, only chooses 
𝑁

4
 

parent solutions from 𝑃𝑡  to be explored in every 

generation. In this variant, the parent is chosen by 

binary tournament selection based on Pareto crowded 

comparison as in NSGA-II with HAD replacing the 

 

Algorithm 4: MO-ALFPAT algorithm 

Initialize population 𝑃 of 𝑛 =
𝑁

4
 solutions 

Evaluate initial solutions 

Set initial switch probability 𝑝0 ∈  [0,1] 
while 𝑡 < 𝑡𝑚𝑎𝑥 

 Update 𝑝 by Eq. (11)  

 𝑂𝑡  =  { } 

 for 𝑖 = 1 to 𝑛 

  if 𝑟𝑎𝑛𝑑 < 𝑝 

   Get a random non-dominated solution �⃗�∗ ∈
 𝑃𝑡 

   Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈  [1,4] with Eq. (3)-(6)  

   PolynomialMutation(�⃗�𝑖,𝑗
𝑡+1), ∀ 𝑗 ∈  [1,4] 

  else 

   Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈  [1,4] with Eq. (3)-(6)  

  end if 

  Evaluate new solutions 

  Insert new solutions to 𝑂𝑡 

 end for 

 𝑃𝑡+1  =  𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡 ∪ 𝑂𝑡) 

 𝑡 =  𝑡 + 1 

end while 

Return 𝑃𝑡 

 

original crowding distance. The crowdedness 

comparison operator (≺𝑛) is given as follows. Let 

�⃗⃗�1 ∈  𝐴𝑖  and �⃗⃗�2 ∈  𝐴𝑗  with 𝐴𝑖, 𝐴𝑗 ⊆  𝑃𝑡 , �⃗⃗�1 ≺𝑛  �⃗⃗�2  if 

and only if 𝑖 < 𝑗 or 𝑖 = 𝑗 and 𝐻𝐴𝐷(𝑥1) > 𝐻𝐴𝐷(𝑥2). 
The pseudocode of MO-ALFPAT is given in 

Algorithm 4.  

The second variant, MO-ALFPAB, select an 

appropriate operator to explore a solution instead of 

selecting the appropriate solution to explore as in 

MO-ALFPA. An adaptive operator selection called 

bi-criteria adaptive operator selection (BAOS) 

proposed by Lin et al. [27] is used in MO-ALFPAB. 

The two criteria in selecting the appropriate 

operator are whether the solution is a non-dominated 

solution and the solution's crowdedness compared to 

another randomly selected solution in the population. 

HAD[29] is used as the crowdedness measure as 

given in Eq.(12). 

To use BAOS, the adaptive Lévy mutation 

operators are arranged into two operator pools 𝐴𝐿1 

and 𝐴𝐿2. Each operator pool has two operators. The 

first operator pool 𝐴𝐿1 is selected when the solution 

is a non-dominated solution, otherwise 𝐴𝐿2  is 

selected. If 𝑥  is a non-dominated solution, then 

optimal solutions near 𝑥  should be found by 

exploitation. Otherwise, if 𝑥 is a dominated solution, 

then more exploration is needed to find non-

dominated solutions in unexplored area. 
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Algorithm 5: BAOS algorithm 

Compute 𝐵(𝑥)  

Select a solution �⃗� ∈  𝑃𝑡 randomly 

if �⃗� is non-dominated in regard to 𝑃𝑡 

 𝑃𝑜𝑜𝑙 =  𝐴𝐿1 

else  

 𝑃𝑜𝑜𝑙 =  𝐴𝐿2 

end if 

if 𝐻𝐴𝐷(�⃗�)  >  𝐻𝐴𝐷(�⃗�) 

 Return operator 𝑃𝑜𝑜𝑙1 

else if 𝐻𝐴𝐷(�⃗�)  >  𝐻𝐴𝐷(�⃗�) 

 Return operator 𝑃𝑜𝑜𝑙2 

else 

 Return random operator from 𝑃𝑜𝑜𝑙 
end if 

 

 
Algorithm 6: MO-ALFPAB algorithm 

Initialize population 𝑃 of 𝑁 solutions 

Evaluate initial solutions 

while 𝑡 < 𝑡𝑚𝑎𝑥 

 𝑂𝑡 = {}  
 for 𝑖 = 1 to 𝑁 

  Operator 𝑜𝑝 =  𝐵𝐴𝑂𝑆(�⃗�𝑖
𝑡) 

  Get a random non-dominated solution �⃗�∗ ∈  𝑃𝑡 

  Generate �⃗�𝑖
𝑡+1 by 𝑜𝑝 

  PolynomialMutation(�⃗�𝑖
𝑡+1) 

  Evaluate �⃗�𝑖
t+1 

  Insert �⃗�𝑖
𝑡+1 to 𝑂𝑡 

 end for 

 𝑃𝑡+1  =  SurvivalSelection(𝑃𝑡 ∪  𝑂𝑡) 

 𝑡 = 𝑡 + 1 

end while 

 

Based on this, Gaussian operator Eq. (6)is in 𝐴𝐿1 

because it has a higher probability to search with 

small step sizes as shown in Fig. 1 and has been 

shown to perform well for local search. On the other 

hand, the Cauchy operator Eq. (3)is well suited to 

search at large area of search space and therefore will 

be included in 𝐴𝐿2. Compared to 𝐿2 operator Eq. (5) 

𝐿1 operator Eq. (4) has a heavier tail as shown in Fig. 

1, and therefore 𝐿2 operator is included in 𝐴𝐿1 and 

𝐿1 operator is in 𝐴𝐿2. 

 

𝐴𝐿1 = {Gaussian operator, 𝐿2 operator} (13) 

 

𝐴𝐿2 = {𝐿1operator, Cauchy operator} (14) 

 

Afterwards, an operator will be picked from the 

chosen operator pool based on the crowdedness of 

solution 𝑥. The pseudocode of the BAOS is given in 

Algorithm 5. 

Algorithm 7: MOEA/D-ALFPA algorithm 

Initialize weight vectors 𝑊 =  {�⃗⃗⃗�1, … , �⃗⃗⃗�𝑁} 

Initialize population 𝑃 of 𝑁 solutions 

Initialize neighbourhood 𝐵(�⃗�𝑖), ∀ �⃗�𝑖 ∈  𝑃 

Evaluate initial solutions 

Initialize 𝑧, 𝑧𝑚  = min
∀ 𝑥𝑖∈ 𝑃

𝑓𝑚(�⃗�𝑖)  ∀ 𝑚 ∈

{1, … , 𝐾}  
while 𝑡 < 𝑡𝑚𝑎𝑥 

 for 𝑖 = 1 to 𝑛 

  𝐸 = 𝑃 

  if 𝑟𝑎𝑛𝑑 < 𝑝 

   𝐸 = 𝐵(�⃗�𝑖) 

  end if 

  Operator 𝑜𝑝 =  𝐵𝐴𝑂𝑆(�⃗�𝑖) 

  Get a random solution �⃗�∗ ∈  𝐸 

  Generate �⃗�′ by 𝑜𝑝 

  PolynomialMutation(�⃗�′) 

  Evaluate �⃗�′ 
  𝑧𝑚 = min{𝑓𝑚(�⃗�′), 𝑧𝑚}, ∀𝑚 ∈ {1, … , 𝐾} 

  𝑐𝑟  =  0 

  while 𝑐𝑟  <  𝑛𝑟 and 𝐸 is not empty 

   Select solution �⃗�𝑗 ∈  𝐸 

   Calculate 𝑔𝑡𝑒(�⃗�𝑗|�⃗⃗⃗�𝑗, 𝑧) and 𝑔te(�⃗�′|�⃗⃗⃗�𝑗, 𝑧) 

   if 𝑔𝑡𝑒(�⃗�′|�⃗⃗⃗�𝑗, 𝑧) <  𝑔𝑡𝑒(�⃗�𝑗|�⃗⃗⃗�𝑗, 𝑧) 

    Replace �⃗�𝑗 = �⃗�′ in the population 𝑃 

    𝑐𝑟 =  𝑐𝑟 +  1 

   end if 

   𝐸 =  𝐸 ∖ �⃗�𝑗 

  end while 

 end for 

 𝑡 =  𝑡 + 1 

end while     

Return 𝑃 

 

 

By using BAOS, each solution in the population 

𝑃𝑡 will be explored and will generate one offspring 

with the appropriate operator based on its Pareto 

dominance and crowdedness. Besides that, the 

exploitation done by local random walk will be 

replaced by operator pool 𝐴𝐿1 , and therefore the 

switching probability 𝑝 is not needed anymore. The 

generated offspring will be perturbed by polynomial 

mutation before evaluated and collected in 𝑂𝑡  until 

the end of generation and the population for the next 

generation will be selected by survival selection used 

in NSGA-II from 𝑃𝑡 ∪ 𝑂𝑡 , similar to MO-ALFPA. 

The pseudocode for MO-ALFPAB is given in 

Algorithm 6. 
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Table 1. Properties of the benchmark problems 

Problem Properties 

WFG1 separable, deceptive, mixed 

WFG2 nonseparable, unimodal, discontinuous 

WFG3 nonseparable, unimodal, degenerate 

WFG4 separable, multimodal, concave 

WFG5 separable, deceptive, concave 

WFG6 nonseparable, unimodal, concave 

WFG7 separable, unimodal, concave 

WFG8 nonseparable, unimodal, concave 

WFG9 nonseparable, multimodal, concave 

ZDT1 separable, unimodal, convex 

ZDT2 separable, unimodal, conceive 

ZDT3 separable, multimodal, discontinuous 

ZDT4 separable, multimodal, convex 

ZDT6 separable, multimodal, convex 

3.2 MOEAD-ALFPA 

The second proposed method, MOEA/D-ALFPA, 

differs from the MO-ALFPA in following the well-

known multiple objective evolutionary algorithm 

based on decomposition framework MOEA/D-DE 

[19]. MOEA/D-DE is a variant of MOEA/D [11] 

framework which uses DE operators and polynomial 

mutation.  

The bottom line of MOEA/D framework is to 

solve several single objective subproblems 

decomposed from the original MOP. In this paper, the 

scalarization method used is Tchebycheff 

method[31] as given in Eq. (15). The utopia point, 

denoted by 𝑧∗ , is the best value of all objectives, 

𝑧𝑚
∗ = min

∀ 𝑥∈Ω
𝑓𝑚 (𝑥) , ∀𝑚 ∈ {1, … , 𝐾}.  However, the 

utopia point might not be known beforehand and it is 

often the case that finding the utopia point will be 

time consuming. Therefore, an approximation of the 

utopian point can be used in the calculation by using 

the current best-known values of all objectives, 

denoted by 𝑧, 𝑧𝑚 = min
∀�⃗� ∈ 𝑃𝑡

{𝑧𝑚, 𝑓𝑚(�⃗⃗�)} with 𝑃𝑡  is the 

population in the current generation 𝑡 and the initial 

𝑧𝑚 = min
∀�⃗� ∈ 𝑃1

𝑓𝑚(�⃗⃗�). 

 

minimize gte(�⃗�|�⃗⃗⃗�, 𝑧∗) = max
1≤𝑖≤𝐾

𝑤𝑖|𝑓𝑖(𝑥 ) − 𝑧𝑖
∗| (15) 

 

An optimal solution for Eq. (15) is also a member 

of Pareto optimal set, and for each solution 𝑥∗ in the 

Pareto optimal set, there is at least one weight vector 

w so that 𝑥∗ is the optimal solution for Eq. (15)(15). 

Therefore, one can solve MOP by solving Eq. (15) 

with different weight vectors and thus finding 

different Pareto optimal solutions to approximate 

POF. 

In MOEA/D, each solution in the population is 

assigned a different weight vector and solve a 

different subproblem. New solutions are generated 

each generation by means of crossover and mutation 

operator. However, the mating pool of each solution 

�⃗�𝑖, with associated weight vector �⃗⃗⃗�𝑖, is limited to a 

neighbourhood 𝐵(�⃗�𝑖) , with 𝐵(�⃗�𝑖)  is set of 𝑘 

solutions in the current population which weight 

vectors are the 𝑘-nearest weight vectors to �⃗⃗⃗�𝑖. 

This mating restriction is employed as an 

exploitation-exploration rate. Small 𝑘  makes the 

solution only consider similar subproblems, therefore 

emphasizing exploitation. On the other hand, large 𝑘 

will emphasize more on the exploration. To adopt the 

mating restriction in the MOEA/D, the adaptive Lévy 

mutation operators in Eqs. (3-6) are modified so that 

�⃗�∗ is not a non-dominated solution in regards to 𝑃𝑡 

anymore, but a random solution selected from the 

mating pool. 

The complete algorithm of MOEA/D-ALFPA is 

given in Algorithm 7. Firstly, a uniformly distributed 

set of weight vectors 𝑊 = {�⃗⃗⃗�1, … , �⃗⃗⃗�𝑁}  are 

initialized. The chosen method to generate the weight 

vectors are Das and Dennis method [32]. Afterwards, 

initial population is initialized and each solution �⃗�𝑖 is 

associated with a neighbourhood 𝐵(�⃗�𝑖) of size 𝑘. In 

every generation 𝑡, every solution �⃗�𝑖
𝑡 will generate a 

new offspring �⃗�𝑖
𝑡+1  by an adaptive Lévy mutation 

operator selected with BAOS explained in subsection 

MO-ALFPAB. A mating pool 𝐸  will be selected 

randomly from 𝐵(𝑥𝑖
𝑡) with probability 𝑝 or from the 

whole population 𝑃𝑡  with probability 1 − 𝑝 . A 

random solution �⃗�∗  will be selected from 𝐸  as the 

parent to create a new solution by the selected 

operator. 

Afterwards, the new solution is evaluated and the 

utopian point estimation is updated 𝑧𝑚 =
min{𝑓𝑚 (�⃗�𝑖

𝑡+1 ), 𝑧𝑚}. All solutions' quality, based on 

their associated subproblem, in the chosen mating 

pool 𝐸  are recalculated with the new 𝑧  value and 

compared to the new solution. Random solution from 

𝐸 will be compared to the new solution one by one, 

and will be replaced with the new solution if the new 

solution is more optimal in regard to the associated 

subproblem. This will continue until at most 𝑛𝑟 

solutions from 𝐸 is replaced by the new solution or 

until all solutions from 𝐸 have been compared. 

4. Experimental study 

The first experimental study is conducted to 

examine the performance of the variants of the first 

proposed method, MO-ALFPA. The second 

experimental study is conducted to compare the three 

proposed methods with several well-known multiple 

objective evolutionary algorithms. The performance 
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of the proposed algorithms are assessed based on 

their respective inverted generational distance (IGD) 

[33] value and hypervolume indicator (HV) [34] 

value on benchmark instances. 

4.1 Test instances 

Two sets of continuous MOPs are used in the 

conducted experimental studies. The two sets of 

MOPs are from WFG [35], and ZDT [8].  These 

problem sets are widely used in experimental studies 

to compare the performance of MOEAS [20], [23], 

[36], [37]. The properties of the problem instances 

provided by Chen et al. [20] is given in Table 1. 

The number of objectives is two for all of the 

problems. The numbers of position-related and 

distance-related decision variables for WFG 

problems were set to eight and two respectively. The 

number of decision variables is 30 for ZDT1-ZDT3 

and ZDT6, and 10 for ZDT4. 

4.2 Experimental settings 

For all the employed algorithms, the population 

size 𝑁 is set to 100, and the algorithm is terminated 

if maximum number of FE is done, with  𝐹𝐸𝑚𝑎𝑥 =
25 ×  103. The value of the maximum iteration 𝑡max, 

which is needed for MO-ALFPA's dynamic 

switching probability, can be calculated by Eq. (16) 

with 𝐹𝐸𝑖𝑡𝑒𝑟 is the number of FE done per generation 

which equals to the population size in MO-ALFPA. 

 

𝑡𝑚𝑎𝑥  = ⌈
𝐹𝐸𝑚𝑎𝑥

𝐹𝐸𝑖𝑡𝑒𝑟
 ⌉ (16) 

 

Other parameter settings of the employed 

algorithms are given in Table 2. The parameter 

settings are set with values recommended by the 

corresponding literatures. The values of 𝜂𝑐  and 𝜂𝑚 

are the distribution index of SBX and polynomial 

mutation respectively. The probability of polynomial 

mutation is set to 𝑝𝑚 =
1

𝑑
, with 𝑑  is the size of 

decision variables. 𝐹  and 𝐾  are both scaling step 

sizes used in DE operators, while 𝐶𝑅 is the crossover 

rate in DE. 𝑘  denotes the neighbourhood size in 

MOEA/D variants, and the number of closest 

solutions to be considered in HAD calculation in 

MO-ALFPAB. The probability that controls the 

neighbourhood choice in MOEA/D variants is set to 

𝑝 = 0.9 . The value of LP is the number of 

generations to update the selection probability in 

ENS-MOEA/D, and the possible neighbourhood 

sizes are 30, 60, 90 and 120. The value of 𝐶, 𝑊 and 

𝐷 are parameters for bandit-based AOS in MOEA/D-

FRRMAB and MOEA/D-CS. The value of 𝛼 and 𝜆 

are the scaling step size and the parameter for Lévy 

distribution in MOEA/D-CS and MOFPA. Lastly, the 

initial switching probability of MO-ALFPA is 

denoted by 𝑝0. 

The experiments are done with PlatEMO[38], a 

MATLAB-based evolutionary multiple objective 

platform. Besides MOFPA, MOEA/D-CS and the 

proposed methods, the other methods are available in 

PlatEMO. 

Each algorithm is run for thirty independent runs, 

and the mean and standard deviation of IGD and HV 

are collected. The best average results of IGD and HV 

are highlighted in boldface. Wilcoxon's rank sum test 

at a 0.05 significance level is applied to further 

compare the differences between the compared 

algorithms. 

5. Results and discussion 

Several well-known MOEAs are considered in 

the performance comparison with the proposed 

algorithms. Seven competitive and relatively new 

MOEA/D variants, MOEA/D [11], MOEA/D-DE 

[19], MOEA/D-DRA [12], ENS-MOEA/D [15], 

MOEA/D-FRRMAB[26], and MOEA/D-CS without 

the angle based selection [20] are considered 

alongside NSGA-II [10], and MOFPA [39]. The 

variant of MOEA/D-CS without angular selection is 

selected because the average results produced 

outperform MOEA/D-CS with angular selection in 

the original paper. All MOEA/D variants considered 

use Tchebycheff scalarization method given in Eq. 

(15). 

Table 3 shows the average ranks of the compared 

algorithms across problem instances based on IGD 

and HV values. For IGD values, MO-ALFPAT has 

the best average rank followed by MOEA/D-ALFPA 

and MOEA/D-CS. However, regarding HV values, 

MOEA/D-ALFPA has the best average rank 

followed by MOEA/D-CS and MO-ALFPAT. 

Afterwards, based on the average rank on both IGD 

and HV values, the next best performing algorithms 

are a tie between ENS-MOEA/D and MOEA/D-

FRRMAB, MO-ALFPAB, MO-ALFPA, NSGA-II, 

MOFPA, MOEA/D-DE, followed by MOEA/D, and 

the last is MOEA/D-DRA. 

Based solely on the average ranking, the proposed 

MO-ALFPA variants show a competitive 

performance for the given problem instances, 

performing better than the other algorithms including 

other MOEA/D variants i.e., MOEA/D-DE, 

MOEA/D and MOEA/D-DRA. Moreover, MO-

ALFPAT outperforms all other algorithms in term of 

average ranking of IGD values and only perform 
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Table 2. Parameter settings 

Algorithm Parameters 

MOEA/D 𝜂𝑐   =  20,  𝑛𝑟 =  ∞ 

MOEA/D-DE 
𝐹 = 0.5,  𝐶𝑅 = 1, 

𝑘 =
 𝑁

10
,  𝑛𝑟 = 2 

MOEA/D-DRA 
𝐹 = 0.5,  𝐶𝑅 = 1, 

𝑘 =
𝑁

10
,  𝑛𝑟 =

𝑁

100
 

ENS-MOEA/D 
𝐹 = 0.5,  𝐶𝑅 = 1, 

𝑛𝑟 =
𝑁

100
,  𝐿𝑝 = 50 

MOEA/D-FRRMAB 

𝐹 = 0.5, 𝐾 = 0.5 , 

𝐶𝑅 = 1, 𝑘 =
𝑁

2
,  𝑛𝑟 = 2,   

𝐶 = 5, 𝑊 =
𝑁

2
, 𝐷 = 1 

MOEA/D-CS 

𝐹 = 0.5,  𝐾 = 0.5,  𝐶𝑅
= 1, 

𝑘 =
𝑁

2
,  𝑛𝑟 = 2,  𝐶 = 5,   

𝑊 =
𝑁

2
, 𝐷 = 1,  𝛼 = 1, 

 𝜆 = 1.5 

NSGA-II 𝜂𝑚 = 20 

MOFPA 
𝜆 = 1.5,  𝑝𝑎 = 0.8,  𝛼

= 0.01 

MO-ALFPA 𝑘 = 5,  𝛼 = 0.05 

MO-ALFPAT 𝑘 = 5,  𝛼 = 0.05 

MO-ALFPAB 𝑘 = 3,  𝛼 = 0.05 

MOEA/D-ALFPA 𝑛𝑟 = 10,  𝑘 =
𝑁

10
,  𝛼 = 1 

 

worse than MOEA/D-ALFPA and MOEA/D-CS in 

term of average ranking of HV values. It can also be 

seen that incorporating tournament selection in MO-

ALFPAT as well as BAOS operator selection in 

BAOS not only improve the FE inefficiency of MO-

ALFPA but also improve the performance of MO-

ALFPA. Similarly, MOEA/D-ALFPA outperforms 

other algorithms in term of average ranking of HV 

values and only worse than MO-ALFPAT in term of 

average ranking of IGD values.  

Wilcoxon's rank sum test is done to further 

determine the performance difference between the 

compared algorithms. As shown by Table 4, 

MOEA/D-ALFPA performs better in 7 problem 

instances compared to MO-ALFPAT while 

performing worse in 3 problem instances in regard to 

IGD values. A similar case can be seen in regard to 

HV values as shown in Table 5, MOEA/D-ALFPA 

performs better in 6 problem instances compared to 

MO-ALFPAT while perform worse in 4 problem 

instances. In addition, compared to the pareto 

dominance-based algorithms, MOEA/D-ALFPA 

performs better in 9 and 10 problem instances 

 

Table 3. The average rank of the compared algorithms 

based on the average IGD and HV values 

 IGD HV 

MO-ALFPAT 4.0 4.8 

MOEA/D-ALFPA 4.6 4.5 

MOEA/D-CS 5.6 4.7 

MOEA/D-FRRMAB 5.9 6.5 

ENS-MOEA/D 5.9 6.5 

MO-ALFPAB 6.2 6.4 

MO-ALFPA 6.8 6.2 

NSGAII 6.9 6.6 

MOEA/D-DE 7.4 7.8 

MOFPA 8.1 7.4 

MOEA/D 8.2 8.1 

MOEA/D-DRA 8.3 8.3 

 

compared to NSGA-II and MOFPA respectively. In 

regard to HV values, MOEA/D-ALFPA performs 

better in 8 and 10 problem instances compared to 

NSGA-II and MOFPA respectively. 

6. Conclusion and future work 

 This paper proposed two methods to extend 

ALFPA to solve MOP. The first proposed method 

denoted as MO-ALFPA is a simple extension of 

ALFPA by incorporating a similar framework as 

NSGA-II. To solve the FE inefficiency of ALFPA, a 

tournament selection is used to select the solutions to 

update every generation. However, the crowdedness 

measure in NSGA-II is replaced by HAD in both the 

tournament selection and the non-dominated sorting 

which is shown to improve the performance of MO-

ALFPA. In addition, another proposed method 

denoted as MO-ALFPAB is similar to MO-ALFPA 

but uses AOS to solve ALFPA FE inefficiency. The 

last proposed method denoted as MOEA/D-ALFPA 

is a decomposition based multi objective extension of 

ALFPA with BAOS to choose the appropriate 𝜆 of 

the adaptive Lévy mutation operator based on the 

solution's dominance and crowdedness. Based on the 

obtained results for the bi-objective WFG and ZDT 

problem instances, the proposed ALFPA extension to 

solve MOP, MO-ALFPAT and MOEA/D-ALFPA, 

perform better than the compared algorithms. The 

results also showed that MO-ALFPAT and MO-

ALFPAB performed better than MO-ALFPA while 

improving the FE inefficiency of ALFPA. However, 

the proposed methods perform only slightly better 

compared the relatively novel MOEA/D-CS with 

FRRMAB adaptive operator selection. 

In our future work, we intend to extend the study 

to exploring other AOS strategies to choose the 

appropriate 𝜆  for the adaptive Lévy mutation 

operator, including a strategy that does not discretize 
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Table 4. Comparative results of the compared algo regarding the mean (std) of IGD values. "+", "-", and "=" 

respectively shows that the corresponding algorithm performs better, worse, and similar compared to MOEA/D-ALFPA 

according to wilcoxon's rank sum test with 0.05 significance level. The best mean and standard deviation results are 

highlighted in boldface 

Probl

em 
NSGA

II 
MOF

PA 
MOE

A/D 
MOEA

/D-DE 

MOEA

/D-

DRA 

ENS-

MOE

A/D 

MOEA

/D-

FRRM

AB 

MOEA

/D-CS 

MO-

ALFP

A 

MO-

ALFP

AB 

MO-

ALFP

AT 

MOEA

/D-

ALFP

A 

WFG

1 

1.858×

10-1 

(3.09×

10-1)- 

1.606×

10-2 

(8.49×

10-4)- 

5.416×

10-1 

(4.25×

10-1)- 

2.903×

10-2 

(2.74×1

0-1)- 

3.398×

10-2 

(3.20×1

0-2)- 

2.286×

10-2 

(2.18×

10-2)- 

3.721×

10-2 

(3.54×1

0-2)- 

8.572×

10-2 

(4.03×1

0-1)- 

1.484×

10-2 

(8.13×

10-4)- 

1.490×

10-2 

(6.35×

10-4)- 

1.256×

10-2 

(1.36×

10-4)- 

1.203×

10-2 

(4.29×

10-5) 

WFG

2 

4.954×

10-1 

(2.19×

10-1)- 

8.580×

10-2 

(9.76×

10-2)+ 

6.308×

10-1 

(2.43×

10-1)- 

2.657×

10-1 

(1.93×1

0-1)- 

3.926×

10-1 

(2.27×1

0-1)- 

2.746×

10-1 

(2.11×

10-1)- 

1.733×

10-1 

(1.61×1

0-1)- 

1.778×

10-1 

(1.27×1

0-1)= 

1.361×

10-2 

(3.39×

10-3) + 

1.263×

10-2 

(1.58×

10-3)+ 

1.740×

10-1 

(7.68×

10-2)- 

1.412×

10-1 

(9.52×1

0-2) 

WFG

3 

1.524×

10-2 

(1.11×

10-3)- 

1.530×

10-2 

(8.99×

10-4)- 

3.879×

10-2 

(2.19×

10-2)- 

1.324×

10-2 

(5.66×1

0-5)- 

1.349×

10-2 

(5.93×1

0-4)- 

1.129×

10-2 

(9.37×

10-4)+ 

1.364×

10-2 

(1.58×1

0-3)- 

1.141×

10-2 

(5.10×1

0-5)+ 

1.521×

10-2 

(5.61×

10-4) - 

1.525×

10-2 

(7.74×

10-4)- 

1.264×

10-2 

(2.60×

10-4)- 

1.145×

10-2 

(1.16×1

0-4) 

WFG

4 

1.666×

10-2 

(9.36×

10-4)= 

2.453×

10-2 

(3.29×

10-3)- 

1.74×1

0-2 

(3.92×

10-3)= 

2.353×

10-2 

(3.29×1

0-3)- 

2.664×

10-2 

(7.99×1

0-3)- 

2.262×

10-2 

(4.31×

10-3)- 

3.047×

10-2 

(7.33×1

0-3)- 

1.419×

10-2 

(1.17×

10-3)+ 

3.052×

10-2 

(5.94×

10-3)- 

2.852×

10-2 

(6.00×

10-3)- 

1.997×

10-2 

(2.43×

10-3) - 

1.762×

10-2 

(2.87×1

0-3) 

WFG

5 

7.163×

10-2 

(6.50×

10-4)- 

8.223×

10-2 

(1.39×

10-2)- 

7.480×

10-2 

(4.27×

10-3)- 

7.022×

10-2 

(2.86×1

0-4)+ 

6.990×

10-2 

(1.46×1

0-4)+ 

7.061×

10-2 

(8.70×

10-4)= 

7.039×

10-2 

(3.17×1

0-4)+ 

7.067×

10-2 

(4.11×1

0-3)+ 

7.294×

10-2 

(9.69×

10-3)- 

7.787×

10-2 

(3.29×

10-3)- 

6.838×

10-2 

(8.11×

10-3)= 

7.077×

10-2 

(7.48×1

0-4) 

WFG

6 

2.385×

10-2 

(8.73×

10-3)+ 

1.634×

10-2 

(8.91×

10-4)+ 

4.238×

10-2 

(1.68×

10-2)- 

4.847×

10-2 

(1.93×1

0-2)- 

3.937×

10-2 

(1.59×1

0-2)- 

4.476×

10-2 

(2.25×

10-2)= 

3.128×

10-2 

(3.16×1

0-2)+ 

2.707×

10-2 

(2.87×1

0-2) = 

1.610×

10-2 

(7.90×

10-4)+ 

1.627×

10-2  

(7.70×

10-4)+ 

1.396×

10-2 

(2.42×

10-3)+ 

3.680×

10-2 

(4.20×1

0-2) 

WFG

7 

1.097×

10-1 

(2.97×

10-2)- 

1.862×

10-2 

(8.41×

10-3)- 

9.624×

10-2 

(3.38×

10-2)- 

6.062×

10-2 

(3.39×1

0-2)- 

6.666×

10-2 

(2.28×1

0-2)- 

4.240×

10-2 

(1.79×

10-2)- 

4.085×

10-2 

(2.52×1

0-2)- 

1.823×

10-2 

(1.37×1

0-2)- 

1.610×

10-2 

(7.32×

10-4)- 

1.567×

10-2 

(7.82×

10-4)- 

3.266×

10-2 

(1.73×

10-2)- 

1.233×

10-2 

(1.19×

10-4) 

WFG

8 

9.116×

10-2 

(1.32×

10-2)- 

9.653×

10-2 

(3.47×

10-2)- 

2.648×

10-1 

(2.04×

10-1)- 

5.062×

10-2 

(5.21×

10-2)+ 

5.679×

10-2 

(5.04×1

0-2)- 

5.967×

10-2 

(5.28×

10-2) - 

6.156×

10-2 

(5.29×1

0-2)= 

6.781×

10-2 

(4.84×1

0-2)- 

1.419×

10-1 

(2.83×

10-2) - 

9.094×

10-2  

(1.96×

10-2)- 

5.187×

10-2  

(1.02×

10-2)= 

5.355×

10-2  

(9.75×1

0-3) 

WFG

9 

2.503×

10-2 

(2.03×

10-3) - 

2.999×

10-2 

(3.30×

10-3)- 

4.430×

10-2 

(2.03×

10-2)- 

2.461×

10-2 

(2.55×1

0-3)- 

2.556×

10-2 

(5.41×1

0-3)- 

2.311×

10-2 

(2.51×

10-3)= 

2.414×

10-2 

(1.98×1

0-3)- 

2.254×

10-2 

(1.86×

10-3) = 

3.127×

10-2  

(3.67×

10-3)- 

3.168×

10-2  

(3.30×

10-3)- 

2.346×

10-2  

(2.57×

10-3)= 

2.302×

10-2 

(2.69×1

0-3) 

ZDT1 

4.816×

10-3 

(1.86×

10-4)- 

5.866×

10-3 

(5.20×

10-4)- 

4.364×

10-3 

(5.75×

10-4)- 

2.343×

10-2 

(7.45×1

0-3)- 

8.512×

10-3 

(6.02×1

0-3)- 

3.962×

10-3 

(1.74×

10-3)- 

4.154×

10-3 

(4.20×1

0-4)- 

3.930×

10-3 

(2.75×1

0-5)- 

5.178×

10-3 

(2.14×

10-4)- 

5.316×

10-3 

(2.30×

10-4)- 

4.906×

10-3 

(3.05×

10-4)- 

3.915×

10-3 

(2.57×

10-5) 

ZDT2 

4.956×

10-3 

(2.45×

10-4)= 

5.881×

10-3 

(4.61×

10-4)= 

4.214×

10-3 

(5.77×

10-4)= 

1.494×

10-2 

(4.69×1

0-3)= 

2.852×

10-2 

(2.48×1

0-2)= 

5.839×

10-3 

(6.44×

10-3)+ 

4.152×

10-3 

(3.52×

10-4)= 

4.482×

10-1 

(2.73×1

0-1)- 

5.039×

10-3 

(2.21×

10-4)= 

5.172×

10-3  

(2.10×

10-4)= 

4.744×

10-3 

(2.60×

10-4) = 

2.461×

10-1  

(3.02×1

0-1) 

ZDT3 

6.442×

10-3 

(5.33×

10-3)+ 

7.644×

10-3 

(9.02×

10-4)+ 

1.300×

10-2 

(1.01×

10-2)+ 

3.957×

10-2 

(1.77×1

0-2)- 

1.046×

10-1 

(4.69×1

0-2)- 

2.854×

10-2 

(1.69×

10-2)+ 

1.950×

10-2 

(8.19×1

0-3)+ 

7.002×

10-3 

(8.69×1

0-5)= 

5.915×

10-3  

(6.41×

10-4)+ 

5.725×

10-3  

(2.50×

10-4)+ 

5.686×

10-3  

(2.77×

10-4)+ 

3.408×

10-2 

(1.48×1

0-1) 

ZDT4 

6.504×

10-3 

(1.64×

10-3)+ 

6.4327 

(6.95)- 

9.094×

10-3 

(3.11×

10-3)+ 

3.542×

10-2 

(1.90×1

0-1)+ 

2.015 

(2.24)= 
3.7616 

(2.05)- 

8.904×

10-1 

(8.67×1

0-1)= 

5.4668 

(6.92) - 
8.040 

(5.25)- 

1.229  

(7.86×

10-1)= 

3.460×

10-1 

(2.14×

10-1)+ 

7.939×

10-1  

(2.62×1

0-1) 

ZDT6 

1.228×

10-1 

(2.10×

10-2)- 

7.862×

10-1 

(7.45×

10-1)- 

3.018×

10-2 

(6.27×

10-3) - 

5.688×

10-1 

(3.94×1

0-1)- 

1.879×

10-1 

(1.83×1

0-1)- 

5.123×

10-3 

(8.19×

10-3)+ 

6.174×

10-3 

(1.54×1

0-2)+ 

3.945×

10-2 

(1.38×1

0-1)- 

7.259×

10-2 

(1.17×

10-1)- 

9.734×

10-3 

(1.84×

10-2)+ 

6.675×

10-1 

(1.70×

10-1)- 

2.048×

10-2 

(9.45×1

0-2) 
+/-/= 3/9/2 3/10/1 2/10/2 3/10/1 1/11/2 4/7/3 4/7/3 3/7/4 3/10/1 4/8/2 3/7/4  
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Table 5. Comparative results of the compared algo regarding the mean (std) of HV values. "+", "-", and "=" respectively 

shows that the corresponding algorithm performs better, worse, and similar compared to MOEA/D-ALFPA according to 

wilcoxon's rank sum test with 0.05 significance level. The best mean and standard deviation results are highlighted in 

boldface 

Probl

em 
NSGA

II 
MOF

PA 
MOE

A/D 
MOEA

/D-DE 

MOEA

/D-

DRA 

ENS-

MOE

A/D 

MOEA

/D-

FRRM

AB 

MOEA

/D-CS 

MO-

ALFP

A 

MO-

ALFP

AB 

MO-

ALFP

AT 

MOEA

/D-

ALFP

A 

WFG

1 

6.138×

10-1 

(1.43×

10-1)- 

6.954×

10-1 

(2.84×

10-4)- 

4.533×

10-1  

(1.89×

10-1)- 

6.882×

10-1 

(1.13×1

0-2)- 

6.864×

10-1 

(1.37×

10-2)- 

6.904×

10-1 

(9.53×

10-3)- 

6.837×

10-1  

(1.83×

10-2)- 

6.729×

10-1  

(1.27×

10-1)= 

6.958×

10-1  

(2.17×

10-4)- 

6.958×

10-1  

(1.80×

10-4)- 

6.964×

10-1  

(4.82×

10-5)+ 

6.962×

10-1 

(1.72×

10-5) 

WFG

2 

5.669×

10-1 

(3.51×

10-2)- 

6.260×

10-1 

(9.89×

10-3)+ 

5.416×

10-1  

(4.22×

10-2)- 

6.018×

10-1 

(3.01×1

0-2)- 

5.831×

10-1  

(3.59×

10-2)- 

6.005×

10-1  

(3.19×

10-2)- 

6.143×

10-1  

(2.24×

10-2)- 

6.151×

10-1  

(1.69×

10-2)= 

6.330×

10-1 

(3.89×

10-4)+ 

6.332×

10-1  

(3.73×

10-4)+ 

6.167×

10-1  

(7.60×

10-3)- 

6.200×

10-1 

(9.40×

10-3) 

WFG

3 

5.793×

10-1 

(1.30×

10-3)- 

5.804×

10-1 

(3.13×

10-4)- 

5.679×

10-1  

(7.54×

10-3)- 

5.817×

10-1  

(1.75×1

0-4)- 

5.812×

10-1  

(7.61×

10-4)- 

5.821×

10-1 

(1.07×

10-3)+ 

5.812×

10-1  

(1.13×

10-3)- 

5.822×

10-1  

(1.21×

10-4)+ 

5.799×

10-1  

(3.67×

10-4)- 

5.798×

10-1 

(4.11×

10-4)- 

5.808×

10-1  

(2.99×

10-4)- 

5.821×

10-1  

(1.31×

10-4) 

WFG

4 

3.429×

10-1 

(9.60×

10-4)+ 

3.373×

10-1 

(1.55×

10-3)- 

3.407×

10-1 

(2.32×

10-3)= 

3.369×

10-1 

(1.62×1

0-3)- 

3.356×

10-1  

(3.82×

10-3)- 

3.375×

10-1  

(1.82×

10-3)- 

3.340×

10-1  

(2.79×

10-3)- 

3.431×

10-1  

(1.29×

10-3)+ 

3.35×1

0-1 

(2.23×

10-3)- 

3.358×

10-1 

(2.62×

10-3)- 

3.389×

10-1  

(1.49×

10-3)- 

3.405×

10-1  

(1.96×

10-3) 

WFG

5 

3.064×

10-1 

(4.43×

10-4)= 

3.040×

10-1 

(5.09×

10-3)- 

3.045×

10-1  

(1.66×

10-3)- 

3.063×

10-1 

(2.17×1

0-4)- 

3.066×

10-1  

(1.21×

10-4)= 

3.065×

10-1 

(3.75×

10-4)= 

3.062×

10-1  

(2.33×

10-4)- 

3.066×

10-1  

(2.32×

10-3)+ 

3.068×

10-1  

(5.28×

10-3)+ 

3.037×

10-1  

(9.77×

10-4)- 

3.079×

10-1  

(4.44×

10-3)= 

3.065×

10-1  

(4.18×

10-4) 

WFG

6 

3.386×

10-1 

(4.17×

10-3)- 

3.462×

10-1 

(3.14×

10-4)+ 

3.301×

10-1  

(4.94×

10-3)- 

3.292×

10-1 

(5.64×1

0-)- 

3.322×

10-1 

(6.76×

10-3)- 

3.313×

10-1  

(8.80×

10-3)- 

3.387×

10-1 

(1.14×

10-2)+ 

3.406×

10-1  

(1.01×

10-2)= 

3.46×1

0-1 

(2.47×

10-4)+ 

3.457×

10-1  

(2.92×

10-4)+ 

3.454×

10-1  

(2.32×

10-3)+ 

3.386×

10-1 

(1.34×

10-2) 

WFG

7 

3.143×

10-1 

(4.99×

10-3)- 

3.446×

10-1 

(4.69×

10-3)- 

3.161×

10-1  

(6.03×

10-3)- 

3.286×

10-1  

(1.09×1

0-2)- 

3.256×

10-1 

(5.77×

10-3)- 

3.333×

10-1 

(7.79×

10-3)- 

3.344×

10-1  

(9.88×

10-3)- 

3.443×

10-1  

(6.40×

10-3)- 

3.460×

10-1 

(2.42×

10-4)- 

3.460×

10-1 

(2.42×

10-4)- 

3.367×

10-1  

(7.95×

10-3)- 

3.470×

10-1 

(1.49×

10-4) 

WFG

8 

3.119×

10-1 

(3.59×

10-3)- 

3.099×

10-1 

(8.71×

10-3)- 

2.720×

10-1  

(4.20×

10-2)- 

3.255×

10-1 

(2.11×1

0-2)- 

3.228×

10-1 

(2.01×

10-2)= 

3.214×

10-1 

(2.07×

10-2)= 

3.211×

10-1  

(2.04×

10-2)= 

3.244×

10-1 

(7.90×

10-3)= 

2.934×

10-1 

(7.84×

10-3)- 

3.100×

10-1  

(6.03×

10-3)- 

3.248×

10-1  

(3.26×

10-3)= 

3.260×

10-1  

(3.16×

10-3) 

WFG

9 

3.386×

10-1 

(6.48×

10-4)= 

3.36×1

0-1 

(1.15×

10-3)- 

3.283×

10-1  

(9.28×

10-3)- 

3.378×

10-1 

(9.74×1

0-4)- 

3.369×

10-1  

(2.32×

10-3)- 

3.386×

10-1  

(7.43×

10-4)= 

3.378×

10-1 

(6.08×

10-4)- 

3.389×

10-1  

(5.90×

10-4)= 

3.362×

10-1 

(9.88×

10-4)- 

3.363×

10-1  

(8.33×

10-4)- 

3.387×

10-1 

(7.69×

10-4)= 

3.384×

10-1  

(1.03×

10-3) 

ZDT1 

7.188×

10-1 

(2.62×

10-4)- 

7.164×

10-1 

(9.97×

10-4)- 

7.194×

10-1  

(8.31×

10-4)- 

6.917×

10-1 

(9.58×1

0-3)- 

7.094×

10-1  

(1.37×

10-2)- 

7.190×

10-1  

(3.55×

10-3)= 

7.192×

10-1 

(9.58×

10-4)- 

7.200×

10-1 

(1.12×

10-4)= 

7.178×

10-1 

(4.21×

10-4)- 

7.174×

10-1 

(4.27×

10-4)- 

7.178×

10-1  

(5.98×

10-4)- 

7.200×

10-1 

(1.34×

10-4) 

ZDT2 

4.435×

10-1 

(3.18×

10-4)= 

4.408×

10-1 

(8.29×

10-4)= 

4.439×

10-1  

(1.06×

10-3)= 

4.214×

10-1  

(8.43×1

0-3)= 

4.201×

10-1  

(2.29×

10-2)= 

4.421×

10-1  

(7.45×

10-3)+ 

4.438×

10-1  

(7.06×

10-4)= 

1.849×

10-1 

(1.59×

10-1)- 

4.429×

10-1 

(3.44×

10-4)= 

4.423×

10-1  

(4.23×

10-4)= 

4.424×

10-1  

(5.75×

10-4)= 

3.033×

10-1  

(1.76×

10-1) 

ZDT3 

6.022×

10-1 

(1.62×

10-2)+ 

5.968×

10-1 

(1.59×

10-3)+ 

5.974×

10-1 

(7.57×

10-3)+ 

5.853×

10-1  

(1.51×1

0-2)+ 

5.030×

10-1 

(4.86×

10-2)- 

5.752×

10-1  

(1.63×

10-2)- 

5.837×

10-1  

(9.29×

10-3)+ 

5.992×

10-1 

(2.20×

10-4)= 

5.982×

10-1  

(7.71×

10-4)+ 

5.987×

10-1  

(5.38×

10-4)+ 

5.980×

10-1  

(7.16×

10-4)+ 

5.822×

10-1 

(9.28×

10-2) 

ZDT4 

7.151×

10-1 

(2.72×

10-3)+ 

4.057×

10-3 

(1.67×

10-2)- 

7.109×

10-1 

(4.67×

10-3)+ 

3.258×

10-1 

(1.60×1

0-1)+ 

1.116×

10-1  

(1.53×

10-1)= 

1.038×

10-2 

(4.41×

10-2)- 

1.222×

10-1 

(1.37×

10-1)= 

7.389×

10-2 

(1.76×

10-1)- 

0.000 

(0.00)- 

5.289×

10-2 

(9.78×

10-2)- 

3.401×

10-1  

(1.92×

10-1)+ 

1.253×

10-1 

(1.49×

10-1) 

ZDT6 

2.471×

10-1 

(2.11×

10-2)- 

9.867×

10-2 

(1.54×

10-1)- 

3.498×

10-1  

(7.65×

10-3)- 

8.758×

10-2 

(1.40×1

0-1)- 

2.563×

10-1  

(1.09×

10-1)- 

3.865×

10-1 

(8.84×

10-3)= 

3.855×

10-1 

(1.66×

10-2)+ 

3.655×

10-1 

(8.80×

10-2)= 

3.187×

10-1  

(1.12×

10-1)- 

3.803×

10-1  

(2.45×

10-2)+ 

9.384×

10-3 

(1.47×

10-2)- 

3.780×

10-1  

(5.86×

10-2) 
+/-/= 3/8/3 3/10/1 2/10/2 2/11/1 0/10/4 2/7/5 3/8/3 3/3/8 4/9/1 4/9/1 4/6/4  
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the choice of 𝜆. Moreover, based on the promising 

performances of the proposed methods which are 

verified by the empirical findings, we will extend the 

study to solve many-objective optimization problems 

(MaOP). 
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