
Received: September 8, 2021. Revised: October 20, 2021. 141

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Adaptive Lévy Flower Pollination Algorithm for Multiple Objective

Optimization

Gemilang Santiyuda1 Retantyo Wardoyo1* Afiahayati1

1Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences,

Universitas Gadjah Mada, Indonesia
* Corresponding author’s Email: rw@ ugm.ac.id

Abstract: The adaptive Lévy flower pollination algorithm (ALFPA) is a recent addition to variants of flower

pollination algorithm (FPA). Despite its excellent performance on single objective problem instances, it has shown

inefficiency in the number of function evaluation (FE). Inspired by this, this paper proposed two algorithms extending

ALFPA to solve multiple objective problem while also improving FE efficiency. The first algorithm proposed is

ALFPA with non-dominated sorting denoted as MO-ALFPA alongside two variants which are proposed to improve

its FE efficiency denoted as MO-ALFPAT and MO-ALFPAB. The second proposed algorithm, MOEA/D-ALFPA,

uses decomposition strategy instead of non-dominated sorting on MO-ALFPA. The empirical study on two benchmark

suits shows that MO-ALFPAT and MOEA/D-ALFPA performed better than other methods. Furthermore, MO-

ALFPAT and MOEA/D-ALFPA produced the best results in three benchmark instances, based on inverted

generational distance indicator, and two and three best results based on the hypervolume indicator, respectively.

Keywords: Adaptive Lévy mutation, Adaptive operator selection, Flower pollination algorithm, Multiple objective

problem.

1. Introduction

Many design optimization problems in various

fields are formulated into multiple objective problem

(MOP) to address the existence of multiple and often

conflicting objectives in real-world situation. For

instances in engineering design [1], logistic [2, 3],

economics [4, 5], and bioinformatics [6].

Multiple objective problem (MOP) can be

formally described as follows. There are 𝐾 objective

functions to consider simultaneously in a MOP. The

objectives are formulated as 𝐹(�⃗�) =
(𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝐾(�⃗�)) with �⃗� ∈ Ω and Ω is the set

of all feasible solutions. The formulation of MOP is

given in Eq. (1).

minimize 𝐹(�⃗�)

subject to (1)

𝑔𝑗(�⃗�) ≤ 0, 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝐻1

ℎ𝑙(�⃗�) = 0, 𝑓𝑜𝑟 1 ≤ 𝑙 ≤ 𝐻2

There are 𝐻1 inequality constraints and 𝐻2 equality

constraints. The optimal solutions of MOP can be

defined in terms of Pareto optimality [7].

A solution �⃗�∗ dominates another solution �⃗�

(�⃗�∗ ≺ �⃗�), if and only if 𝑓𝑖(�⃗�∗) ≤ 𝑓𝑖(�⃗�) for every

index 𝑖, and 𝑓𝑗(�⃗�∗) < 𝑓𝑗(�⃗�) for at least one index 𝑗

with 1 ≤ 𝑖, 𝑗 ≤ 𝐾 . A solution �⃗�∗ is nondominated

regarding to a set 𝑋′ ⊆ 𝑋 if and only if ∄�⃗� ∈ 𝑋′: �⃗� ≺
�⃗�∗. A set 𝑋′ ⊆ Ω is called Pareto optimal set if and

only if there is not any solution ∀�⃗�′ ∈ 𝑋′ ∶ ∄𝑥 ∈ Ω ∶
 �⃗� ≺ �⃗�′. The corresponding set of objective values

from a Pareto optimal set is called Pareto optimal

front (POF) [8]. The main task of solving MOP is to

find a good set of solutions in terms of quality and

spread that can best represent the POF.

A significant number of multiple objective

evolutionary algorithms (MOEA) have been

developed. A common challenge faced by MOEAs is

balancing the rate of exploration and exploitation,

Received: September 8, 2021. Revised: October 20, 2021. 142

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

which determines the quality and the spread of the

resulted POF [9].

Several methods are proposed to address this

challenge. Firstly, one can specify the search

neighborhood in each iteration by selecting potential

parent solutions, e.g., by tournament selection based

on dominance and crowdedness of the solutions in

nondominated sorted genetic algorithm II (NSGA-II)

[10] or by selecting a potential subproblem in

decomposition-based MOEA (MOEA/D)[11] as

done in MOEA/D-DRA [12]. The neighborhood size

also affects the exploitation and exploration

capability as empirically shown in [13] by varying the

tournament size of NSGA-II, or by varying the

neighborhood size in MOEA/D as shown in [14] and

improving the performance by using an ensemble of

neighborhood sizes as shown in ENS-MOEA/D [15].

Other studies have also been conducted on

recombination and mutation operators to improve the

performance of MOEA. In [16], a more general

equation for DE operator is proposed, which can be

derived into up to 57 DE operators. An SOP

benchmarking study showed that each operator

performs differently in different problem

characteristics. Eight best performing operators at the

end are selected based on the benchmarking study. A

similar development can be observed in several other

studies, e.g. considering Gaussian and Cauchy

random walk in Cuckoo Search (CS) [17] and flower

pollination algorithm (FPA) [18], using DE operators

[19] or CS operators [20] in MOEA/D.

The issue of varying operators is choosing the

appropriate operator to use in a particular situation.

Although using multiple operators at once and

choosing the best result could perform well, as

empirically shown in [18], this strategy is inefficient

when the function evaluation (FE) is limited. The

most common strategy is to use a controlling

parameter of operator utilization. It is shown that the

performance of MOEAs depends on the

parameterization and the problem characteristic [20,

21]. Therefore, parameters of MOEAs must be tuned

for each specific problem to get the best result.

However, for some problems, especially a dynamic

problem, parameter tuning can be expensive and

time-consuming [21]. This leads to the problem of

finding algorithms that are robust to problem

formulations so that more efforts can be made on

problem modelling and analysis instead of parameter

tuning or algorithm development [23].

Subsequently, several parameter selection

methods are proposed for AOS. The most common is

probability matching (PM) [24], with probability

based on the normalized credits. However, an

improvement of PM called adaptive pursuit (AP) [25]

is proposed to help PM adapt faster to change of

operator preference. Other deterministic alternatives

to adapt to fast rewards dynamic are by using bandit

based operator selector [26]. A recent AOS strategy

based on the current solution status is called bicriteria

assisted AOS (BAOS) [27]. By using the current

solution state instead of the operator performance,

BAOS does not need credit assignment, and therefore

straightforward to be adopted into any MOEAs.

Inspired by the above findings, this paper

proposed to extend adaptive Lévy flower pollination

algorithm (ALFPA) [18] to solve MOP. Based on the

experimental study conducted, ALFPA showed

superior performance on benchmark SOPs than

several well-known algorithms. The reason for the

better performance of ALFPA can be attributed to its

three significant additions to the original FPA.

There are three significant additions to the flower

pollination algorithm (FPA) [28] proposed in ALFPA.

Firstly, ALFPA enhances the exploration by using

four recombination operators in the global random

walk with step sizes drawn from symmetrical stable

Lévy distribution with four different shapes.

Secondly, the number of offspring generated by local

random walk is increased to four to enhance the

exploitation, thus balancing the exploration. Lastly, a

dynamic strategy is applied to adjust the switching

probability 𝑝 to balance exploration and exploitation.

Despite being well-performing, a clear drawback of

ALFPA is the inefficiency of the number of FE due

to the number of candidate offspring generated. This

drawback becomes prominent when the FE is

expensive or limited.

In this paper, two variants of multiple objective

extensions of ALFPA are proposed. The first variant,

denoted as MO-ALFPA, is a Pareto dominance based

extension of ALFPA by incorporating survival

selection mechanism employed NSGA-II [10] and

replacing the NSGA-II crowdedness measure by

harmonic average distance (HAD)[29]. Furthermore,

two variants of MO-ALFPA other than the

straightforward extension are proposed to solve the

FE inefficiency of ALFPA. One variant employs a

tournament parent selection mechanism similar to

NSGA-II but with HAD as the crowdedness measure,

denoted as MO-ALFPAT. The other variant, MO-

ALFPAB, with bicriteria adaptive operator selection

(BAOS) [27] to choose the appropriate operator

based on the current status of the solution. Both

variants improve the performance of MO-ALFPA,

especially MO-ALFPAT.

An ALFPA extension as a variant of MOEA/D is

proposed by incorporating the adaptive Lévy

mutation operators and BAOS into MOEA/D,

Received: September 8, 2021. Revised: October 20, 2021. 143

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Figure. 1 Comparison of the lévy probability distributions

with 𝜆 = 1.3 and 𝜆 = 1.7, Cauchy distribution and

Gaussian distribution. The value of 𝛾 = 1 for all 𝜆

denoted as MOEA/D-ALFPA. The experimental

study showed that MOEA/D-ALFPA and MO-

ALFPAT performed better than the compared

methods.

Lastly, this paper is organized as follows. A brief

explanation of ALFPA is given in Chapter 2. The

proposed multiple objective extension of ALFPA,

namely MO-ALFPA, MO-ALFPAT, MO-ALFPAB

and MOEA/D-ALFPA are given in Chapter 3. The

details of the experimental study are given in Chapter

4. The results of the experimental study are discussed

in Chapter 5. Finally, the paper is concluded in

Chapter 6.

2. Adaptive lévy flower pollination

algorithm

Adaptive Lévy FPA (ALFPA) is a recent addition

to the variants of FPA [28] proposed by Salgotra [18].

The ALFPA algorithm follows the same framework

of FPA in which the algorithm starts with a

population 𝑃 of 𝑛 randomly initialized solutions. The

population is then updated for several generations

until the terminal condition is met. In every

generation, every solution has a chance to be updated.

Based on the switching probability 𝑝, each solution is

used to generate a candidate solution via

global pollination or via local pollination update

scheme. The global pollination update scheme

generates a candidate solution which is the current

solution shifted towards the current best solution in

the population with step sizes drawn from Lévy

distribution as given in Eq. (2). On the other hand,

local pollination generates a candidate solution from

the current population shifted by a directional vector

Algorithm 1: ALFPA algorithm

Initialize population 𝑃 of 𝑛 =
𝑁

4
 solutions

Evaluate and set �⃗�∗ = argmin�⃗�∈𝑃 𝑓(�⃗�)

Set initial switch probability 𝑝 ∈ [0, 1]
while 𝑡 < 𝑡𝑚𝑎𝑥

 Compute current 𝑝 by Eq. (11)

 for 𝑖 ≔ 1 ∶ 𝑛

 if 𝑟𝑎𝑛𝑑 < 𝑝

 Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈ [1,4] with Eq. (3-6)

 else

 Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈ [1,4] with Eq. (3-6)

 end if

 Evaluate new solutions

 �⃗�𝑖
𝑡+1 =

arg min{𝑓(�⃗�𝑖,1
𝑡+1), 𝑓(�⃗�𝑖,2

𝑡+1), 𝑓(�⃗�𝑖,3
𝑡+1), 𝑓(�⃗�𝑖,4

𝑡+1)}

 end for

 Update current best solution as �⃗�∗

 𝑡++

end while

Return �⃗�∗

made of two random solutions in the current

population. If the candidate solution improves the

current solution, then the candidate solution will

replace the current solution in the next generation.

Finally, the best solution found is returned after the

algorithm is terminated.

In ALFPA, Salgotra [18] proposed using a

candidate pool of four different distributions to

generate new solutions in the global pollination

instead of using the standard Lévy distribution only.

This strategy is adopted from adaptive Lévy mutation

strategy first proposed by Yao and Lee in 2001[30].

In ALFPA, there are four offspring generated for

each solution in a generation. Each offspring is

generated by probability density function which is

derived from probability density function of

symmetrical stable Lévy distribution with different

value of 𝜆.

𝑓Lévy(𝑦; 𝜆, 𝛾) =
1

𝜋
∫ 𝑒−𝛾 𝑞𝜆

∞

0

 cos (𝑞𝑦)𝑑𝑞 (2)

The distribution has two parameters, scaling

factor 𝛾 and 𝜆 which controls the shape of the

probability distribution especially in the tail region as

can be seen in Fig. 1. The scaling factor 𝛾 can be set

to 1 without the loss of generality[30]. Therefore, the

probability distribution with a fixed 𝛾 = 1 will be

denoted as 𝑓𝐿é𝑣𝑦(𝑦; 𝜆, 1) = 𝑓𝐿é𝑣𝑦(𝑦; 𝜆).

For 𝜆 = 1 , the distribution reduces to Cauchy

distribution, and the distribution reduces to Gaussian

Received: September 8, 2021. Revised: October 20, 2021. 144

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

distribution for 𝜆 = 2. As shown in Fig. 1, Cauchy

distribution has a very heavy tail indicating that that

long step size has a high probability to be drawn,

meanwhile Gaussian distribution gives higher

probability to small step sizes. The other two

distributions are Lévy distributions with 𝜆 = 1.3 and

𝜆 = 1.7 . The Lévy distributions are employed to

balance the extreme between Cauchy and Gaussian

distributions. The four new solutions generated via

global pollination are given as:

�⃗�𝑖,1

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐶(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (3)

�⃗�𝑖,2

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐿1(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (4)

�⃗�𝑖,3

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐿2(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (5)

�⃗�𝑖,4

𝑡+1 = �⃗�𝑖
𝑡 + 𝛼 𝐺(𝜆)(�⃗�∗ − �⃗�𝑖

𝑡) (6)

With 𝛼 is the learning rate, 𝑔∗ is the current best

solution, 𝐺(𝜆), 𝐶(𝜆), 𝐿1(𝜆) and 𝐿2(𝜆) corresponds

to random step size drawn from Gaussian distribution,

Cauchy distribution, Lévy with 𝜆 = 1.3, and Lévy

with 𝜆 = 1.7 respectively. Four new solutions are

also generated in the local pollination to even out the

number of search equations in the global pollination.

�⃗�𝑖,1
𝑡+1 = �⃗�𝑖

𝑡 + 𝜖 (𝜆)(�⃗�𝑗1

𝑡 − �⃗�𝑗2

𝑡) (7)

�⃗�𝑖,2

𝑡+1 = �⃗�𝑖
𝑡 + 𝜖 (𝜆)(�⃗�𝑗3

𝑡 − �⃗�𝑗4

𝑡) (8)

�⃗�𝑖,3

𝑡+1 = �⃗�𝑖
𝑡 + 𝜖 (𝜆)(�⃗�𝑗5

𝑡 − �⃗�𝑗6

𝑡) (9)

�⃗�𝑖,4

𝑡+1 = �⃗�𝑖
𝑡 + 𝜖 (𝜆)(�⃗�𝑗7

𝑡 − �⃗�𝑗8

𝑡) (10)

An obvious drawback from this strategy is the

number of objective function evaluations (FE) which

is four times the number of FE done in the standard

FPA. If the same population size is employed, then

ALFPA will either take longer computational time or

terminate four times earlier than the FPA. Therefore,

the population size employed is be reduced to
𝑁

4
 so

that the number of FE will be the same. The limit on

number of FE then will also directly limit the

population size which directly affects the

performance of the algorithm as it has been shown

that larger 𝑁 shown better performance as shown in

the experiments conducted [18].

Besides employing adaptive Lévy mutation in the

global pollination, Salgotra [18] also proposed to use

dynamic value of switching probability 𝑝 instead of

using a predetermined constant value. The general

equation for the dynamic switch probability is given

in Eq.(11).

𝑝 = 𝑝0 −
𝑡𝑚𝑎𝑥 − 𝑡

𝑡𝑚𝑎𝑥
 (11)

Here 𝑡𝑚𝑎𝑥 is the maximum generation until

termination, and 𝑡 is the current generation. The

initial value of the switching probability, 𝑝0 is set as

0.8. The pseudocode for ALFPA is given in

Algorithm 1.

3. Multiple objective ALFPA

3.1 MO-ALFPA

The first proposed method, MO-ALFPA, is a

straightforward extension of ALFPA to solve MOP

by incorporating non-dominated as in NSGA-II as the

survival selection mechanism. However, the

crowding distance calculation in NSGA-II is replaced

by archive truncation method based on HAD[29]. In

addition, because there can be multiple optimal

solutions in the population 𝑃𝑡 of the current

generation 𝑡, therefore the best solution 𝑔∗ in Eq. (3-

6) is replaced by a random nondominated solutions

regarding to 𝑃𝑡 . The generated offspring from

population 𝑃𝑡 will be stored in the offspring set 𝑂𝑡.

Afterwards, the solutions for the next generation 𝑃𝑡+1

will be selected from 𝑃𝑡 ∪ 𝑂𝑡.

The survival selection is done by first partitioning

the set of solutions into several fronts of

nondominated solutions 𝐴𝑖 with 𝐴1 is the non-

dominated solutions of 𝑃𝑡 ∪ 𝑂𝑡 ,and 𝐴𝑖+1 is the non-

dominated solutions of (𝑃𝑡 ∪ 𝑂𝑡) ∖ (∪𝑗=1
𝑖 𝐴𝑗).

After the solutions are partitioned into fronts, the

solutions are inserted into 𝑃𝑡+1 starting from 𝐴1 until

|𝑃𝑡+1| = 𝑁. Suppose that the last front to be inserted

into 𝑃𝑡+1 is 𝐴𝑚 with 𝑚 ≥ 1 . If |𝐴𝑚 ∪ 𝑃𝑡+1| > N,

then the solutions in 𝐴𝑚 will be truncated starting

with the one with the lowest HAD will be removed

from 𝐴𝑚 until |𝐴𝑚 ∪ 𝑃𝑡+1| ≤ 𝑁 as in Algorithm 2.

The calculation of HAD is given in Eq. (12) with

𝐵(�⃗⃗�) is set of 𝑘-nearest solutions of �⃗� in the objective

space and 𝑑(�⃗⃗�, �⃗�) is the Euclidean distance between

solution �⃗� and �⃗� in the objective space. Note that

�⃗� ∉ 𝐵(�⃗�). Similar to crowding distance in NSGA-II,

the solution with lower value of HAD is more

crowded than the solution with a higher value of

HAD.

Received: September 8, 2021. Revised: October 20, 2021. 145

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Algorithm 2: Archive truncation algorithm

Given 𝐴𝑚

while |∪𝑗=1
𝑚 𝐴𝑗 | > 𝑁

 �⃗�′ = arg min
∀𝑥∈ 𝐴𝑚

HAD(�⃗�)

 𝐴𝑚 = 𝐴𝑚 ∖ �⃗�′

end while

Algorithm 3: MO-ALFPA algorithm

Initialize population 𝑃 of 𝑁 solutions

Evaluate initial solutions

Set initial switch probability 𝑝0 ∈ [0,1]
while 𝑡 < 𝑡𝑚𝑎𝑥

 Update 𝑝 by Eq. (11)

 𝑂𝑡 = {}

 𝑄𝑡 = 𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡)
 for 𝑥𝑖

𝑡 ∈ 𝑄𝑡

 if 𝑟𝑎𝑛𝑑 < 𝑝

 Get a random non-dominated solution �⃗�∗ ∈
 𝑃𝑡

 Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈ [1,4] with Eq. (3)-(6)

 PolynomialMutation(𝑥𝑖,𝑗
𝑡+1), ∀ 𝑗 ∈ [1,4]

 else

 Generate 𝑥𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈ [1,4] with Eq. (3)-(6)

 end if

 Evaluate new solutions

 Insert new solutions to 𝑂𝑡

 end for

 𝑃𝑡+1 = 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡 ∪ 𝑂𝑡)

 𝑡 = 𝑡 + 1

end while

Return 𝑃𝑡

HAD(�⃗�) =
|𝐵(𝑥)|

∑
1

𝑑(𝑥,�⃗⃗�)�⃗⃗� ∈𝐵(𝑥)

(12)

Lin et al. [27] argued that HAD can reflect the

crowdedness of each solution in the local search

space. In addition, it is also shown in [29] that

crowding distance in NSGA-II is sensitive to outlier

and therefore may not accurately reflect the actual

crowdedness of solutions in the population. On the

other hand, the influence of outlier existence is

overcome by using HAD.

Besides that, two variants of MO-ALFPA are

proposed to handle the FE inefficiency of ALFPA.

The first variant, MO-ALFPAT, only chooses
𝑁

4

parent solutions from 𝑃𝑡 to be explored in every

generation. In this variant, the parent is chosen by

binary tournament selection based on Pareto crowded

comparison as in NSGA-II with HAD replacing the

Algorithm 4: MO-ALFPAT algorithm

Initialize population 𝑃 of 𝑛 =
𝑁

4
 solutions

Evaluate initial solutions

Set initial switch probability 𝑝0 ∈ [0,1]
while 𝑡 < 𝑡𝑚𝑎𝑥

 Update 𝑝 by Eq. (11)

 𝑂𝑡 = { }

 for 𝑖 = 1 to 𝑛

 if 𝑟𝑎𝑛𝑑 < 𝑝

 Get a random non-dominated solution �⃗�∗ ∈
 𝑃𝑡

 Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈ [1,4] with Eq. (3)-(6)

 PolynomialMutation(�⃗�𝑖,𝑗
𝑡+1), ∀ 𝑗 ∈ [1,4]

 else

 Generate �⃗�𝑖,𝑗
𝑡+1, ∀ 𝑗 ∈ [1,4] with Eq. (3)-(6)

 end if

 Evaluate new solutions

 Insert new solutions to 𝑂𝑡

 end for

 𝑃𝑡+1 = 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡 ∪ 𝑂𝑡)

 𝑡 = 𝑡 + 1

end while

Return 𝑃𝑡

original crowding distance. The crowdedness

comparison operator (≺𝑛) is given as follows. Let

�⃗⃗�1 ∈ 𝐴𝑖 and �⃗⃗�2 ∈ 𝐴𝑗 with 𝐴𝑖, 𝐴𝑗 ⊆ 𝑃𝑡 , �⃗⃗�1 ≺𝑛 �⃗⃗�2 if

and only if 𝑖 < 𝑗 or 𝑖 = 𝑗 and 𝐻𝐴𝐷(𝑥1) > 𝐻𝐴𝐷(𝑥2).
The pseudocode of MO-ALFPAT is given in

Algorithm 4.

The second variant, MO-ALFPAB, select an

appropriate operator to explore a solution instead of

selecting the appropriate solution to explore as in

MO-ALFPA. An adaptive operator selection called

bi-criteria adaptive operator selection (BAOS)

proposed by Lin et al. [27] is used in MO-ALFPAB.

The two criteria in selecting the appropriate

operator are whether the solution is a non-dominated

solution and the solution's crowdedness compared to

another randomly selected solution in the population.

HAD[29] is used as the crowdedness measure as

given in Eq.(12).

To use BAOS, the adaptive Lévy mutation

operators are arranged into two operator pools 𝐴𝐿1

and 𝐴𝐿2. Each operator pool has two operators. The

first operator pool 𝐴𝐿1 is selected when the solution

is a non-dominated solution, otherwise 𝐴𝐿2 is

selected. If 𝑥 is a non-dominated solution, then

optimal solutions near 𝑥 should be found by

exploitation. Otherwise, if 𝑥 is a dominated solution,

then more exploration is needed to find non-

dominated solutions in unexplored area.

Received: September 8, 2021. Revised: October 20, 2021. 146

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Algorithm 5: BAOS algorithm

Compute 𝐵(𝑥)

Select a solution �⃗� ∈ 𝑃𝑡 randomly

if �⃗� is non-dominated in regard to 𝑃𝑡

 𝑃𝑜𝑜𝑙 = 𝐴𝐿1

else

 𝑃𝑜𝑜𝑙 = 𝐴𝐿2

end if

if 𝐻𝐴𝐷(�⃗�) > 𝐻𝐴𝐷(�⃗�)

 Return operator 𝑃𝑜𝑜𝑙1

else if 𝐻𝐴𝐷(�⃗�) > 𝐻𝐴𝐷(�⃗�)

 Return operator 𝑃𝑜𝑜𝑙2

else

 Return random operator from 𝑃𝑜𝑜𝑙
end if

Algorithm 6: MO-ALFPAB algorithm

Initialize population 𝑃 of 𝑁 solutions

Evaluate initial solutions

while 𝑡 < 𝑡𝑚𝑎𝑥

 𝑂𝑡 = {}
 for 𝑖 = 1 to 𝑁

 Operator 𝑜𝑝 = 𝐵𝐴𝑂𝑆(�⃗�𝑖
𝑡)

 Get a random non-dominated solution �⃗�∗ ∈ 𝑃𝑡

 Generate �⃗�𝑖
𝑡+1 by 𝑜𝑝

 PolynomialMutation(�⃗�𝑖
𝑡+1)

 Evaluate �⃗�𝑖
t+1

 Insert �⃗�𝑖
𝑡+1 to 𝑂𝑡

 end for

 𝑃𝑡+1 = SurvivalSelection(𝑃𝑡 ∪ 𝑂𝑡)

 𝑡 = 𝑡 + 1

end while

Based on this, Gaussian operator Eq. (6)is in 𝐴𝐿1

because it has a higher probability to search with

small step sizes as shown in Fig. 1 and has been

shown to perform well for local search. On the other

hand, the Cauchy operator Eq. (3)is well suited to

search at large area of search space and therefore will

be included in 𝐴𝐿2. Compared to 𝐿2 operator Eq. (5)

𝐿1 operator Eq. (4) has a heavier tail as shown in Fig.

1, and therefore 𝐿2 operator is included in 𝐴𝐿1 and

𝐿1 operator is in 𝐴𝐿2.

𝐴𝐿1 = {Gaussian operator, 𝐿2 operator} (13)

𝐴𝐿2 = {𝐿1operator, Cauchy operator} (14)

Afterwards, an operator will be picked from the

chosen operator pool based on the crowdedness of

solution 𝑥. The pseudocode of the BAOS is given in

Algorithm 5.

Algorithm 7: MOEA/D-ALFPA algorithm

Initialize weight vectors 𝑊 = {�⃗⃗⃗�1, … , �⃗⃗⃗�𝑁}

Initialize population 𝑃 of 𝑁 solutions

Initialize neighbourhood 𝐵(�⃗�𝑖), ∀ �⃗�𝑖 ∈ 𝑃

Evaluate initial solutions

Initialize 𝑧, 𝑧𝑚 = min
∀ 𝑥𝑖∈ 𝑃

𝑓𝑚(�⃗�𝑖) ∀ 𝑚 ∈

{1, … , 𝐾}
while 𝑡 < 𝑡𝑚𝑎𝑥

 for 𝑖 = 1 to 𝑛

 𝐸 = 𝑃

 if 𝑟𝑎𝑛𝑑 < 𝑝

 𝐸 = 𝐵(�⃗�𝑖)

 end if

 Operator 𝑜𝑝 = 𝐵𝐴𝑂𝑆(�⃗�𝑖)

 Get a random solution �⃗�∗ ∈ 𝐸

 Generate �⃗�′ by 𝑜𝑝

 PolynomialMutation(�⃗�′)

 Evaluate �⃗�′
 𝑧𝑚 = min{𝑓𝑚(�⃗�′), 𝑧𝑚}, ∀𝑚 ∈ {1, … , 𝐾}

 𝑐𝑟 = 0

 while 𝑐𝑟 < 𝑛𝑟 and 𝐸 is not empty

 Select solution �⃗�𝑗 ∈ 𝐸

 Calculate 𝑔𝑡𝑒(�⃗�𝑗|�⃗⃗⃗�𝑗, 𝑧) and 𝑔te(�⃗�′|�⃗⃗⃗�𝑗, 𝑧)

 if 𝑔𝑡𝑒(�⃗�′|�⃗⃗⃗�𝑗, 𝑧) < 𝑔𝑡𝑒(�⃗�𝑗|�⃗⃗⃗�𝑗, 𝑧)

 Replace �⃗�𝑗 = �⃗�′ in the population 𝑃

 𝑐𝑟 = 𝑐𝑟 + 1

 end if

 𝐸 = 𝐸 ∖ �⃗�𝑗

 end while

 end for

 𝑡 = 𝑡 + 1

end while

Return 𝑃

By using BAOS, each solution in the population

𝑃𝑡 will be explored and will generate one offspring

with the appropriate operator based on its Pareto

dominance and crowdedness. Besides that, the

exploitation done by local random walk will be

replaced by operator pool 𝐴𝐿1 , and therefore the

switching probability 𝑝 is not needed anymore. The

generated offspring will be perturbed by polynomial

mutation before evaluated and collected in 𝑂𝑡 until

the end of generation and the population for the next

generation will be selected by survival selection used

in NSGA-II from 𝑃𝑡 ∪ 𝑂𝑡 , similar to MO-ALFPA.

The pseudocode for MO-ALFPAB is given in

Algorithm 6.

Received: September 8, 2021. Revised: October 20, 2021. 147

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Table 1. Properties of the benchmark problems

Problem Properties

WFG1 separable, deceptive, mixed

WFG2 nonseparable, unimodal, discontinuous

WFG3 nonseparable, unimodal, degenerate

WFG4 separable, multimodal, concave

WFG5 separable, deceptive, concave

WFG6 nonseparable, unimodal, concave

WFG7 separable, unimodal, concave

WFG8 nonseparable, unimodal, concave

WFG9 nonseparable, multimodal, concave

ZDT1 separable, unimodal, convex

ZDT2 separable, unimodal, conceive

ZDT3 separable, multimodal, discontinuous

ZDT4 separable, multimodal, convex

ZDT6 separable, multimodal, convex

3.2 MOEAD-ALFPA

The second proposed method, MOEA/D-ALFPA,

differs from the MO-ALFPA in following the well-

known multiple objective evolutionary algorithm

based on decomposition framework MOEA/D-DE

[19]. MOEA/D-DE is a variant of MOEA/D [11]

framework which uses DE operators and polynomial

mutation.

The bottom line of MOEA/D framework is to

solve several single objective subproblems

decomposed from the original MOP. In this paper, the

scalarization method used is Tchebycheff

method[31] as given in Eq. (15). The utopia point,

denoted by 𝑧∗ , is the best value of all objectives,

𝑧𝑚
∗ = min

∀ 𝑥∈Ω
𝑓𝑚 (𝑥) , ∀𝑚 ∈ {1, … , 𝐾}. However, the

utopia point might not be known beforehand and it is

often the case that finding the utopia point will be

time consuming. Therefore, an approximation of the

utopian point can be used in the calculation by using

the current best-known values of all objectives,

denoted by 𝑧, 𝑧𝑚 = min
∀�⃗� ∈ 𝑃𝑡

{𝑧𝑚, 𝑓𝑚(�⃗⃗�)} with 𝑃𝑡 is the

population in the current generation 𝑡 and the initial

𝑧𝑚 = min
∀�⃗� ∈ 𝑃1

𝑓𝑚(�⃗⃗�).

minimize gte(�⃗�|�⃗⃗⃗�, 𝑧∗) = max
1≤𝑖≤𝐾

𝑤𝑖|𝑓𝑖(𝑥) − 𝑧𝑖
∗| (15)

An optimal solution for Eq. (15) is also a member

of Pareto optimal set, and for each solution 𝑥∗ in the

Pareto optimal set, there is at least one weight vector

w so that 𝑥∗ is the optimal solution for Eq. (15)(15).

Therefore, one can solve MOP by solving Eq. (15)

with different weight vectors and thus finding

different Pareto optimal solutions to approximate

POF.

In MOEA/D, each solution in the population is

assigned a different weight vector and solve a

different subproblem. New solutions are generated

each generation by means of crossover and mutation

operator. However, the mating pool of each solution

�⃗�𝑖, with associated weight vector �⃗⃗⃗�𝑖, is limited to a

neighbourhood 𝐵(�⃗�𝑖) , with 𝐵(�⃗�𝑖) is set of 𝑘

solutions in the current population which weight

vectors are the 𝑘-nearest weight vectors to �⃗⃗⃗�𝑖.

This mating restriction is employed as an

exploitation-exploration rate. Small 𝑘 makes the

solution only consider similar subproblems, therefore

emphasizing exploitation. On the other hand, large 𝑘

will emphasize more on the exploration. To adopt the

mating restriction in the MOEA/D, the adaptive Lévy

mutation operators in Eqs. (3-6) are modified so that

�⃗�∗ is not a non-dominated solution in regards to 𝑃𝑡

anymore, but a random solution selected from the

mating pool.

The complete algorithm of MOEA/D-ALFPA is

given in Algorithm 7. Firstly, a uniformly distributed

set of weight vectors 𝑊 = {�⃗⃗⃗�1, … , �⃗⃗⃗�𝑁} are

initialized. The chosen method to generate the weight

vectors are Das and Dennis method [32]. Afterwards,

initial population is initialized and each solution �⃗�𝑖 is

associated with a neighbourhood 𝐵(�⃗�𝑖) of size 𝑘. In

every generation 𝑡, every solution �⃗�𝑖
𝑡 will generate a

new offspring �⃗�𝑖
𝑡+1 by an adaptive Lévy mutation

operator selected with BAOS explained in subsection

MO-ALFPAB. A mating pool 𝐸 will be selected

randomly from 𝐵(𝑥𝑖
𝑡) with probability 𝑝 or from the

whole population 𝑃𝑡 with probability 1 − 𝑝 . A

random solution �⃗�∗ will be selected from 𝐸 as the

parent to create a new solution by the selected

operator.

Afterwards, the new solution is evaluated and the

utopian point estimation is updated 𝑧𝑚 =
min{𝑓𝑚 (�⃗�𝑖

𝑡+1), 𝑧𝑚}. All solutions' quality, based on

their associated subproblem, in the chosen mating

pool 𝐸 are recalculated with the new 𝑧 value and

compared to the new solution. Random solution from

𝐸 will be compared to the new solution one by one,

and will be replaced with the new solution if the new

solution is more optimal in regard to the associated

subproblem. This will continue until at most 𝑛𝑟

solutions from 𝐸 is replaced by the new solution or

until all solutions from 𝐸 have been compared.

4. Experimental study

The first experimental study is conducted to

examine the performance of the variants of the first

proposed method, MO-ALFPA. The second

experimental study is conducted to compare the three

proposed methods with several well-known multiple

objective evolutionary algorithms. The performance

Received: September 8, 2021. Revised: October 20, 2021. 148

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

of the proposed algorithms are assessed based on

their respective inverted generational distance (IGD)

[33] value and hypervolume indicator (HV) [34]

value on benchmark instances.

4.1 Test instances

Two sets of continuous MOPs are used in the

conducted experimental studies. The two sets of

MOPs are from WFG [35], and ZDT [8]. These

problem sets are widely used in experimental studies

to compare the performance of MOEAS [20], [23],

[36], [37]. The properties of the problem instances

provided by Chen et al. [20] is given in Table 1.

The number of objectives is two for all of the

problems. The numbers of position-related and

distance-related decision variables for WFG

problems were set to eight and two respectively. The

number of decision variables is 30 for ZDT1-ZDT3

and ZDT6, and 10 for ZDT4.

4.2 Experimental settings

For all the employed algorithms, the population

size 𝑁 is set to 100, and the algorithm is terminated

if maximum number of FE is done, with 𝐹𝐸𝑚𝑎𝑥 =
25 × 103. The value of the maximum iteration 𝑡max,

which is needed for MO-ALFPA's dynamic

switching probability, can be calculated by Eq. (16)

with 𝐹𝐸𝑖𝑡𝑒𝑟 is the number of FE done per generation

which equals to the population size in MO-ALFPA.

𝑡𝑚𝑎𝑥 = ⌈
𝐹𝐸𝑚𝑎𝑥

𝐹𝐸𝑖𝑡𝑒𝑟
 ⌉ (16)

Other parameter settings of the employed

algorithms are given in Table 2. The parameter

settings are set with values recommended by the

corresponding literatures. The values of 𝜂𝑐 and 𝜂𝑚

are the distribution index of SBX and polynomial

mutation respectively. The probability of polynomial

mutation is set to 𝑝𝑚 =
1

𝑑
, with 𝑑 is the size of

decision variables. 𝐹 and 𝐾 are both scaling step

sizes used in DE operators, while 𝐶𝑅 is the crossover

rate in DE. 𝑘 denotes the neighbourhood size in

MOEA/D variants, and the number of closest

solutions to be considered in HAD calculation in

MO-ALFPAB. The probability that controls the

neighbourhood choice in MOEA/D variants is set to

𝑝 = 0.9 . The value of LP is the number of

generations to update the selection probability in

ENS-MOEA/D, and the possible neighbourhood

sizes are 30, 60, 90 and 120. The value of 𝐶, 𝑊 and

𝐷 are parameters for bandit-based AOS in MOEA/D-

FRRMAB and MOEA/D-CS. The value of 𝛼 and 𝜆

are the scaling step size and the parameter for Lévy

distribution in MOEA/D-CS and MOFPA. Lastly, the

initial switching probability of MO-ALFPA is

denoted by 𝑝0.

The experiments are done with PlatEMO[38], a

MATLAB-based evolutionary multiple objective

platform. Besides MOFPA, MOEA/D-CS and the

proposed methods, the other methods are available in

PlatEMO.

Each algorithm is run for thirty independent runs,

and the mean and standard deviation of IGD and HV

are collected. The best average results of IGD and HV

are highlighted in boldface. Wilcoxon's rank sum test

at a 0.05 significance level is applied to further

compare the differences between the compared

algorithms.

5. Results and discussion

Several well-known MOEAs are considered in

the performance comparison with the proposed

algorithms. Seven competitive and relatively new

MOEA/D variants, MOEA/D [11], MOEA/D-DE

[19], MOEA/D-DRA [12], ENS-MOEA/D [15],

MOEA/D-FRRMAB[26], and MOEA/D-CS without

the angle based selection [20] are considered

alongside NSGA-II [10], and MOFPA [39]. The

variant of MOEA/D-CS without angular selection is

selected because the average results produced

outperform MOEA/D-CS with angular selection in

the original paper. All MOEA/D variants considered

use Tchebycheff scalarization method given in Eq.

(15).

Table 3 shows the average ranks of the compared

algorithms across problem instances based on IGD

and HV values. For IGD values, MO-ALFPAT has

the best average rank followed by MOEA/D-ALFPA

and MOEA/D-CS. However, regarding HV values,

MOEA/D-ALFPA has the best average rank

followed by MOEA/D-CS and MO-ALFPAT.

Afterwards, based on the average rank on both IGD

and HV values, the next best performing algorithms

are a tie between ENS-MOEA/D and MOEA/D-

FRRMAB, MO-ALFPAB, MO-ALFPA, NSGA-II,

MOFPA, MOEA/D-DE, followed by MOEA/D, and

the last is MOEA/D-DRA.

Based solely on the average ranking, the proposed

MO-ALFPA variants show a competitive

performance for the given problem instances,

performing better than the other algorithms including

other MOEA/D variants i.e., MOEA/D-DE,

MOEA/D and MOEA/D-DRA. Moreover, MO-

ALFPAT outperforms all other algorithms in term of

average ranking of IGD values and only perform

Received: September 8, 2021. Revised: October 20, 2021. 149

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Table 2. Parameter settings

Algorithm Parameters

MOEA/D 𝜂𝑐 = 20, 𝑛𝑟 = ∞

MOEA/D-DE
𝐹 = 0.5, 𝐶𝑅 = 1,

𝑘 =
 𝑁

10
, 𝑛𝑟 = 2

MOEA/D-DRA
𝐹 = 0.5, 𝐶𝑅 = 1,

𝑘 =
𝑁

10
, 𝑛𝑟 =

𝑁

100

ENS-MOEA/D
𝐹 = 0.5, 𝐶𝑅 = 1,

𝑛𝑟 =
𝑁

100
, 𝐿𝑝 = 50

MOEA/D-FRRMAB

𝐹 = 0.5, 𝐾 = 0.5 ,

𝐶𝑅 = 1, 𝑘 =
𝑁

2
, 𝑛𝑟 = 2,

𝐶 = 5, 𝑊 =
𝑁

2
, 𝐷 = 1

MOEA/D-CS

𝐹 = 0.5, 𝐾 = 0.5, 𝐶𝑅
= 1,

𝑘 =
𝑁

2
, 𝑛𝑟 = 2, 𝐶 = 5,

𝑊 =
𝑁

2
, 𝐷 = 1, 𝛼 = 1,

 𝜆 = 1.5

NSGA-II 𝜂𝑚 = 20

MOFPA
𝜆 = 1.5, 𝑝𝑎 = 0.8, 𝛼

= 0.01

MO-ALFPA 𝑘 = 5, 𝛼 = 0.05

MO-ALFPAT 𝑘 = 5, 𝛼 = 0.05

MO-ALFPAB 𝑘 = 3, 𝛼 = 0.05

MOEA/D-ALFPA 𝑛𝑟 = 10, 𝑘 =
𝑁

10
, 𝛼 = 1

worse than MOEA/D-ALFPA and MOEA/D-CS in

term of average ranking of HV values. It can also be

seen that incorporating tournament selection in MO-

ALFPAT as well as BAOS operator selection in

BAOS not only improve the FE inefficiency of MO-

ALFPA but also improve the performance of MO-

ALFPA. Similarly, MOEA/D-ALFPA outperforms

other algorithms in term of average ranking of HV

values and only worse than MO-ALFPAT in term of

average ranking of IGD values.

Wilcoxon's rank sum test is done to further

determine the performance difference between the

compared algorithms. As shown by Table 4,

MOEA/D-ALFPA performs better in 7 problem

instances compared to MO-ALFPAT while

performing worse in 3 problem instances in regard to

IGD values. A similar case can be seen in regard to

HV values as shown in Table 5, MOEA/D-ALFPA

performs better in 6 problem instances compared to

MO-ALFPAT while perform worse in 4 problem

instances. In addition, compared to the pareto

dominance-based algorithms, MOEA/D-ALFPA

performs better in 9 and 10 problem instances

Table 3. The average rank of the compared algorithms

based on the average IGD and HV values

 IGD HV

MO-ALFPAT 4.0 4.8

MOEA/D-ALFPA 4.6 4.5

MOEA/D-CS 5.6 4.7

MOEA/D-FRRMAB 5.9 6.5

ENS-MOEA/D 5.9 6.5

MO-ALFPAB 6.2 6.4

MO-ALFPA 6.8 6.2

NSGAII 6.9 6.6

MOEA/D-DE 7.4 7.8

MOFPA 8.1 7.4

MOEA/D 8.2 8.1

MOEA/D-DRA 8.3 8.3

compared to NSGA-II and MOFPA respectively. In

regard to HV values, MOEA/D-ALFPA performs

better in 8 and 10 problem instances compared to

NSGA-II and MOFPA respectively.

6. Conclusion and future work

 This paper proposed two methods to extend

ALFPA to solve MOP. The first proposed method

denoted as MO-ALFPA is a simple extension of

ALFPA by incorporating a similar framework as

NSGA-II. To solve the FE inefficiency of ALFPA, a

tournament selection is used to select the solutions to

update every generation. However, the crowdedness

measure in NSGA-II is replaced by HAD in both the

tournament selection and the non-dominated sorting

which is shown to improve the performance of MO-

ALFPA. In addition, another proposed method

denoted as MO-ALFPAB is similar to MO-ALFPA

but uses AOS to solve ALFPA FE inefficiency. The

last proposed method denoted as MOEA/D-ALFPA

is a decomposition based multi objective extension of

ALFPA with BAOS to choose the appropriate 𝜆 of

the adaptive Lévy mutation operator based on the

solution's dominance and crowdedness. Based on the

obtained results for the bi-objective WFG and ZDT

problem instances, the proposed ALFPA extension to

solve MOP, MO-ALFPAT and MOEA/D-ALFPA,

perform better than the compared algorithms. The

results also showed that MO-ALFPAT and MO-

ALFPAB performed better than MO-ALFPA while

improving the FE inefficiency of ALFPA. However,

the proposed methods perform only slightly better

compared the relatively novel MOEA/D-CS with

FRRMAB adaptive operator selection.

In our future work, we intend to extend the study

to exploring other AOS strategies to choose the

appropriate 𝜆 for the adaptive Lévy mutation

operator, including a strategy that does not discretize

Received: September 8, 2021. Revised: October 20, 2021. 150

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Table 4. Comparative results of the compared algo regarding the mean (std) of IGD values. "+", "-", and "="

respectively shows that the corresponding algorithm performs better, worse, and similar compared to MOEA/D-ALFPA

according to wilcoxon's rank sum test with 0.05 significance level. The best mean and standard deviation results are

highlighted in boldface

Probl

em
NSGA

II
MOF

PA
MOE

A/D
MOEA

/D-DE

MOEA

/D-

DRA

ENS-

MOE

A/D

MOEA

/D-

FRRM

AB

MOEA

/D-CS

MO-

ALFP

A

MO-

ALFP

AB

MO-

ALFP

AT

MOEA

/D-

ALFP

A

WFG

1

1.858×

10-1

(3.09×

10-1)-

1.606×

10-2

(8.49×

10-4)-

5.416×

10-1

(4.25×

10-1)-

2.903×

10-2

(2.74×1

0-1)-

3.398×

10-2

(3.20×1

0-2)-

2.286×

10-2

(2.18×

10-2)-

3.721×

10-2

(3.54×1

0-2)-

8.572×

10-2

(4.03×1

0-1)-

1.484×

10-2

(8.13×

10-4)-

1.490×

10-2

(6.35×

10-4)-

1.256×

10-2

(1.36×

10-4)-

1.203×

10-2

(4.29×

10-5)

WFG

2

4.954×

10-1

(2.19×

10-1)-

8.580×

10-2

(9.76×

10-2)+

6.308×

10-1

(2.43×

10-1)-

2.657×

10-1

(1.93×1

0-1)-

3.926×

10-1

(2.27×1

0-1)-

2.746×

10-1

(2.11×

10-1)-

1.733×

10-1

(1.61×1

0-1)-

1.778×

10-1

(1.27×1

0-1)=

1.361×

10-2

(3.39×

10-3) +

1.263×

10-2

(1.58×

10-3)+

1.740×

10-1

(7.68×

10-2)-

1.412×

10-1

(9.52×1

0-2)

WFG

3

1.524×

10-2

(1.11×

10-3)-

1.530×

10-2

(8.99×

10-4)-

3.879×

10-2

(2.19×

10-2)-

1.324×

10-2

(5.66×1

0-5)-

1.349×

10-2

(5.93×1

0-4)-

1.129×

10-2

(9.37×

10-4)+

1.364×

10-2

(1.58×1

0-3)-

1.141×

10-2

(5.10×1

0-5)+

1.521×

10-2

(5.61×

10-4) -

1.525×

10-2

(7.74×

10-4)-

1.264×

10-2

(2.60×

10-4)-

1.145×

10-2

(1.16×1

0-4)

WFG

4

1.666×

10-2

(9.36×

10-4)=

2.453×

10-2

(3.29×

10-3)-

1.74×1

0-2

(3.92×

10-3)=

2.353×

10-2

(3.29×1

0-3)-

2.664×

10-2

(7.99×1

0-3)-

2.262×

10-2

(4.31×

10-3)-

3.047×

10-2

(7.33×1

0-3)-

1.419×

10-2

(1.17×

10-3)+

3.052×

10-2

(5.94×

10-3)-

2.852×

10-2

(6.00×

10-3)-

1.997×

10-2

(2.43×

10-3) -

1.762×

10-2

(2.87×1

0-3)

WFG

5

7.163×

10-2

(6.50×

10-4)-

8.223×

10-2

(1.39×

10-2)-

7.480×

10-2

(4.27×

10-3)-

7.022×

10-2

(2.86×1

0-4)+

6.990×

10-2

(1.46×1

0-4)+

7.061×

10-2

(8.70×

10-4)=

7.039×

10-2

(3.17×1

0-4)+

7.067×

10-2

(4.11×1

0-3)+

7.294×

10-2

(9.69×

10-3)-

7.787×

10-2

(3.29×

10-3)-

6.838×

10-2

(8.11×

10-3)=

7.077×

10-2

(7.48×1

0-4)

WFG

6

2.385×

10-2

(8.73×

10-3)+

1.634×

10-2

(8.91×

10-4)+

4.238×

10-2

(1.68×

10-2)-

4.847×

10-2

(1.93×1

0-2)-

3.937×

10-2

(1.59×1

0-2)-

4.476×

10-2

(2.25×

10-2)=

3.128×

10-2

(3.16×1

0-2)+

2.707×

10-2

(2.87×1

0-2) =

1.610×

10-2

(7.90×

10-4)+

1.627×

10-2

(7.70×

10-4)+

1.396×

10-2

(2.42×

10-3)+

3.680×

10-2

(4.20×1

0-2)

WFG

7

1.097×

10-1

(2.97×

10-2)-

1.862×

10-2

(8.41×

10-3)-

9.624×

10-2

(3.38×

10-2)-

6.062×

10-2

(3.39×1

0-2)-

6.666×

10-2

(2.28×1

0-2)-

4.240×

10-2

(1.79×

10-2)-

4.085×

10-2

(2.52×1

0-2)-

1.823×

10-2

(1.37×1

0-2)-

1.610×

10-2

(7.32×

10-4)-

1.567×

10-2

(7.82×

10-4)-

3.266×

10-2

(1.73×

10-2)-

1.233×

10-2

(1.19×

10-4)

WFG

8

9.116×

10-2

(1.32×

10-2)-

9.653×

10-2

(3.47×

10-2)-

2.648×

10-1

(2.04×

10-1)-

5.062×

10-2

(5.21×

10-2)+

5.679×

10-2

(5.04×1

0-2)-

5.967×

10-2

(5.28×

10-2) -

6.156×

10-2

(5.29×1

0-2)=

6.781×

10-2

(4.84×1

0-2)-

1.419×

10-1

(2.83×

10-2) -

9.094×

10-2

(1.96×

10-2)-

5.187×

10-2

(1.02×

10-2)=

5.355×

10-2

(9.75×1

0-3)

WFG

9

2.503×

10-2

(2.03×

10-3) -

2.999×

10-2

(3.30×

10-3)-

4.430×

10-2

(2.03×

10-2)-

2.461×

10-2

(2.55×1

0-3)-

2.556×

10-2

(5.41×1

0-3)-

2.311×

10-2

(2.51×

10-3)=

2.414×

10-2

(1.98×1

0-3)-

2.254×

10-2

(1.86×

10-3) =

3.127×

10-2

(3.67×

10-3)-

3.168×

10-2

(3.30×

10-3)-

2.346×

10-2

(2.57×

10-3)=

2.302×

10-2

(2.69×1

0-3)

ZDT1

4.816×

10-3

(1.86×

10-4)-

5.866×

10-3

(5.20×

10-4)-

4.364×

10-3

(5.75×

10-4)-

2.343×

10-2

(7.45×1

0-3)-

8.512×

10-3

(6.02×1

0-3)-

3.962×

10-3

(1.74×

10-3)-

4.154×

10-3

(4.20×1

0-4)-

3.930×

10-3

(2.75×1

0-5)-

5.178×

10-3

(2.14×

10-4)-

5.316×

10-3

(2.30×

10-4)-

4.906×

10-3

(3.05×

10-4)-

3.915×

10-3

(2.57×

10-5)

ZDT2

4.956×

10-3

(2.45×

10-4)=

5.881×

10-3

(4.61×

10-4)=

4.214×

10-3

(5.77×

10-4)=

1.494×

10-2

(4.69×1

0-3)=

2.852×

10-2

(2.48×1

0-2)=

5.839×

10-3

(6.44×

10-3)+

4.152×

10-3

(3.52×

10-4)=

4.482×

10-1

(2.73×1

0-1)-

5.039×

10-3

(2.21×

10-4)=

5.172×

10-3

(2.10×

10-4)=

4.744×

10-3

(2.60×

10-4) =

2.461×

10-1

(3.02×1

0-1)

ZDT3

6.442×

10-3

(5.33×

10-3)+

7.644×

10-3

(9.02×

10-4)+

1.300×

10-2

(1.01×

10-2)+

3.957×

10-2

(1.77×1

0-2)-

1.046×

10-1

(4.69×1

0-2)-

2.854×

10-2

(1.69×

10-2)+

1.950×

10-2

(8.19×1

0-3)+

7.002×

10-3

(8.69×1

0-5)=

5.915×

10-3

(6.41×

10-4)+

5.725×

10-3

(2.50×

10-4)+

5.686×

10-3

(2.77×

10-4)+

3.408×

10-2

(1.48×1

0-1)

ZDT4

6.504×

10-3

(1.64×

10-3)+

6.4327

(6.95)-

9.094×

10-3

(3.11×

10-3)+

3.542×

10-2

(1.90×1

0-1)+

2.015

(2.24)=
3.7616

(2.05)-

8.904×

10-1

(8.67×1

0-1)=

5.4668

(6.92) -
8.040

(5.25)-

1.229

(7.86×

10-1)=

3.460×

10-1

(2.14×

10-1)+

7.939×

10-1

(2.62×1

0-1)

ZDT6

1.228×

10-1

(2.10×

10-2)-

7.862×

10-1

(7.45×

10-1)-

3.018×

10-2

(6.27×

10-3) -

5.688×

10-1

(3.94×1

0-1)-

1.879×

10-1

(1.83×1

0-1)-

5.123×

10-3

(8.19×

10-3)+

6.174×

10-3

(1.54×1

0-2)+

3.945×

10-2

(1.38×1

0-1)-

7.259×

10-2

(1.17×

10-1)-

9.734×

10-3

(1.84×

10-2)+

6.675×

10-1

(1.70×

10-1)-

2.048×

10-2

(9.45×1

0-2)
+/-/= 3/9/2 3/10/1 2/10/2 3/10/1 1/11/2 4/7/3 4/7/3 3/7/4 3/10/1 4/8/2 3/7/4

Received: September 8, 2021. Revised: October 20, 2021. 151

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

Table 5. Comparative results of the compared algo regarding the mean (std) of HV values. "+", "-", and "=" respectively

shows that the corresponding algorithm performs better, worse, and similar compared to MOEA/D-ALFPA according to

wilcoxon's rank sum test with 0.05 significance level. The best mean and standard deviation results are highlighted in

boldface

Probl

em
NSGA

II
MOF

PA
MOE

A/D
MOEA

/D-DE

MOEA

/D-

DRA

ENS-

MOE

A/D

MOEA

/D-

FRRM

AB

MOEA

/D-CS

MO-

ALFP

A

MO-

ALFP

AB

MO-

ALFP

AT

MOEA

/D-

ALFP

A

WFG

1

6.138×

10-1

(1.43×

10-1)-

6.954×

10-1

(2.84×

10-4)-

4.533×

10-1

(1.89×

10-1)-

6.882×

10-1

(1.13×1

0-2)-

6.864×

10-1

(1.37×

10-2)-

6.904×

10-1

(9.53×

10-3)-

6.837×

10-1

(1.83×

10-2)-

6.729×

10-1

(1.27×

10-1)=

6.958×

10-1

(2.17×

10-4)-

6.958×

10-1

(1.80×

10-4)-

6.964×

10-1

(4.82×

10-5)+

6.962×

10-1

(1.72×

10-5)

WFG

2

5.669×

10-1

(3.51×

10-2)-

6.260×

10-1

(9.89×

10-3)+

5.416×

10-1

(4.22×

10-2)-

6.018×

10-1

(3.01×1

0-2)-

5.831×

10-1

(3.59×

10-2)-

6.005×

10-1

(3.19×

10-2)-

6.143×

10-1

(2.24×

10-2)-

6.151×

10-1

(1.69×

10-2)=

6.330×

10-1

(3.89×

10-4)+

6.332×

10-1

(3.73×

10-4)+

6.167×

10-1

(7.60×

10-3)-

6.200×

10-1

(9.40×

10-3)

WFG

3

5.793×

10-1

(1.30×

10-3)-

5.804×

10-1

(3.13×

10-4)-

5.679×

10-1

(7.54×

10-3)-

5.817×

10-1

(1.75×1

0-4)-

5.812×

10-1

(7.61×

10-4)-

5.821×

10-1

(1.07×

10-3)+

5.812×

10-1

(1.13×

10-3)-

5.822×

10-1

(1.21×

10-4)+

5.799×

10-1

(3.67×

10-4)-

5.798×

10-1

(4.11×

10-4)-

5.808×

10-1

(2.99×

10-4)-

5.821×

10-1

(1.31×

10-4)

WFG

4

3.429×

10-1

(9.60×

10-4)+

3.373×

10-1

(1.55×

10-3)-

3.407×

10-1

(2.32×

10-3)=

3.369×

10-1

(1.62×1

0-3)-

3.356×

10-1

(3.82×

10-3)-

3.375×

10-1

(1.82×

10-3)-

3.340×

10-1

(2.79×

10-3)-

3.431×

10-1

(1.29×

10-3)+

3.35×1

0-1

(2.23×

10-3)-

3.358×

10-1

(2.62×

10-3)-

3.389×

10-1

(1.49×

10-3)-

3.405×

10-1

(1.96×

10-3)

WFG

5

3.064×

10-1

(4.43×

10-4)=

3.040×

10-1

(5.09×

10-3)-

3.045×

10-1

(1.66×

10-3)-

3.063×

10-1

(2.17×1

0-4)-

3.066×

10-1

(1.21×

10-4)=

3.065×

10-1

(3.75×

10-4)=

3.062×

10-1

(2.33×

10-4)-

3.066×

10-1

(2.32×

10-3)+

3.068×

10-1

(5.28×

10-3)+

3.037×

10-1

(9.77×

10-4)-

3.079×

10-1

(4.44×

10-3)=

3.065×

10-1

(4.18×

10-4)

WFG

6

3.386×

10-1

(4.17×

10-3)-

3.462×

10-1

(3.14×

10-4)+

3.301×

10-1

(4.94×

10-3)-

3.292×

10-1

(5.64×1

0-)-

3.322×

10-1

(6.76×

10-3)-

3.313×

10-1

(8.80×

10-3)-

3.387×

10-1

(1.14×

10-2)+

3.406×

10-1

(1.01×

10-2)=

3.46×1

0-1

(2.47×

10-4)+

3.457×

10-1

(2.92×

10-4)+

3.454×

10-1

(2.32×

10-3)+

3.386×

10-1

(1.34×

10-2)

WFG

7

3.143×

10-1

(4.99×

10-3)-

3.446×

10-1

(4.69×

10-3)-

3.161×

10-1

(6.03×

10-3)-

3.286×

10-1

(1.09×1

0-2)-

3.256×

10-1

(5.77×

10-3)-

3.333×

10-1

(7.79×

10-3)-

3.344×

10-1

(9.88×

10-3)-

3.443×

10-1

(6.40×

10-3)-

3.460×

10-1

(2.42×

10-4)-

3.460×

10-1

(2.42×

10-4)-

3.367×

10-1

(7.95×

10-3)-

3.470×

10-1

(1.49×

10-4)

WFG

8

3.119×

10-1

(3.59×

10-3)-

3.099×

10-1

(8.71×

10-3)-

2.720×

10-1

(4.20×

10-2)-

3.255×

10-1

(2.11×1

0-2)-

3.228×

10-1

(2.01×

10-2)=

3.214×

10-1

(2.07×

10-2)=

3.211×

10-1

(2.04×

10-2)=

3.244×

10-1

(7.90×

10-3)=

2.934×

10-1

(7.84×

10-3)-

3.100×

10-1

(6.03×

10-3)-

3.248×

10-1

(3.26×

10-3)=

3.260×

10-1

(3.16×

10-3)

WFG

9

3.386×

10-1

(6.48×

10-4)=

3.36×1

0-1

(1.15×

10-3)-

3.283×

10-1

(9.28×

10-3)-

3.378×

10-1

(9.74×1

0-4)-

3.369×

10-1

(2.32×

10-3)-

3.386×

10-1

(7.43×

10-4)=

3.378×

10-1

(6.08×

10-4)-

3.389×

10-1

(5.90×

10-4)=

3.362×

10-1

(9.88×

10-4)-

3.363×

10-1

(8.33×

10-4)-

3.387×

10-1

(7.69×

10-4)=

3.384×

10-1

(1.03×

10-3)

ZDT1

7.188×

10-1

(2.62×

10-4)-

7.164×

10-1

(9.97×

10-4)-

7.194×

10-1

(8.31×

10-4)-

6.917×

10-1

(9.58×1

0-3)-

7.094×

10-1

(1.37×

10-2)-

7.190×

10-1

(3.55×

10-3)=

7.192×

10-1

(9.58×

10-4)-

7.200×

10-1

(1.12×

10-4)=

7.178×

10-1

(4.21×

10-4)-

7.174×

10-1

(4.27×

10-4)-

7.178×

10-1

(5.98×

10-4)-

7.200×

10-1

(1.34×

10-4)

ZDT2

4.435×

10-1

(3.18×

10-4)=

4.408×

10-1

(8.29×

10-4)=

4.439×

10-1

(1.06×

10-3)=

4.214×

10-1

(8.43×1

0-3)=

4.201×

10-1

(2.29×

10-2)=

4.421×

10-1

(7.45×

10-3)+

4.438×

10-1

(7.06×

10-4)=

1.849×

10-1

(1.59×

10-1)-

4.429×

10-1

(3.44×

10-4)=

4.423×

10-1

(4.23×

10-4)=

4.424×

10-1

(5.75×

10-4)=

3.033×

10-1

(1.76×

10-1)

ZDT3

6.022×

10-1

(1.62×

10-2)+

5.968×

10-1

(1.59×

10-3)+

5.974×

10-1

(7.57×

10-3)+

5.853×

10-1

(1.51×1

0-2)+

5.030×

10-1

(4.86×

10-2)-

5.752×

10-1

(1.63×

10-2)-

5.837×

10-1

(9.29×

10-3)+

5.992×

10-1

(2.20×

10-4)=

5.982×

10-1

(7.71×

10-4)+

5.987×

10-1

(5.38×

10-4)+

5.980×

10-1

(7.16×

10-4)+

5.822×

10-1

(9.28×

10-2)

ZDT4

7.151×

10-1

(2.72×

10-3)+

4.057×

10-3

(1.67×

10-2)-

7.109×

10-1

(4.67×

10-3)+

3.258×

10-1

(1.60×1

0-1)+

1.116×

10-1

(1.53×

10-1)=

1.038×

10-2

(4.41×

10-2)-

1.222×

10-1

(1.37×

10-1)=

7.389×

10-2

(1.76×

10-1)-

0.000

(0.00)-

5.289×

10-2

(9.78×

10-2)-

3.401×

10-1

(1.92×

10-1)+

1.253×

10-1

(1.49×

10-1)

ZDT6

2.471×

10-1

(2.11×

10-2)-

9.867×

10-2

(1.54×

10-1)-

3.498×

10-1

(7.65×

10-3)-

8.758×

10-2

(1.40×1

0-1)-

2.563×

10-1

(1.09×

10-1)-

3.865×

10-1

(8.84×

10-3)=

3.855×

10-1

(1.66×

10-2)+

3.655×

10-1

(8.80×

10-2)=

3.187×

10-1

(1.12×

10-1)-

3.803×

10-1

(2.45×

10-2)+

9.384×

10-3

(1.47×

10-2)-

3.780×

10-1

(5.86×

10-2)
+/-/= 3/8/3 3/10/1 2/10/2 2/11/1 0/10/4 2/7/5 3/8/3 3/3/8 4/9/1 4/9/1 4/6/4

Received: September 8, 2021. Revised: October 20, 2021. 152

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

the choice of 𝜆. Moreover, based on the promising

performances of the proposed methods which are

verified by the empirical findings, we will extend the

study to solve many-objective optimization problems

(MaOP).

Conflicts of interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Gemilang Santiyuda,

Retantyo Wardoyo and Afiahayati; methodology,

investigation, original draft preparation, Gemilang

Santiyuda and Afiahayati; software, Gemilang

Santiyuda; validation, resources, writing—review

and editing, Retantyo Wardoyo and Afiahayati;

supervision, project administration, Retantyo

Wardoyo.

Acknowledgments

Researchers acknowledge the Directorate of

Research and Community Service, Deputy for

Strengthening Research and Development, Ministry

of Research, Technology/National Research and

Innovation Agency of the Republic of Indonesia in

the PMDSU program.

References

[1] Z. Liu, J. Wang, S. Tan, S. Qiao, and H. Ding,

“Multi-objective optimal design of the nuclear

reactor pressurizer”, Int. J. Adv. Nucl. React. Des.

Technol., Vol. 1, pp. 1–9, 2019, doi:

10.1016/j.jandt.2019.09.001.

[2] N. Jozefowiez, F. Semet, and E. G. Talbi,

“Multi-objective vehicle routing problems”, Eur.

J. Oper. Res., Vol. 189, No. 2, pp. 293–309,

2008, doi: 10.1016/j.ejor.2007.05.055.

[3] Z. Jingwei and M. Zujun, “Fuzzy Multi-

objective Location-Routing-Inventory Problem

in Recycling Infectious Medical Waste”, in 2010

International Conference on E-Business and E-

Government, pp. 4069–4073, 2010, doi:

10.1109/ICEE.2010.1021.

[4] A. Ponsich, A. L. Jaimes, and C. A. C. Coello,

“A Survey on Multiobjective Evolutionary

Algorithms for the Solution of the Portfolio

Optimization Problem and Other Finance and

Economics Applications,” IEEE Trans. Evol.

Comput., Vol. 17, No. 3, pp. 321–344, 2013, doi:

10.1109/TEVC.2012.2196800.

[5] M. G. C. Tapia and C. A. C. Coello,

“Applications of multi-objective evolutionary

algorithms in economics and finance: A survey”,

in 2007 IEEE Congress on Evolutionary

Computation, pp. 532–539, 2007, doi:

10.1109/CEC.2007.4424516.

[6] J. Handl, D. B. Kell, and J. Knowles,

“Multiobjective Optimization in Bioinformatics

and Computational Biology”, IEEE/ACM Trans.

Comput. Biol. Bioinforma., Vol. 4, No. 2, pp.

279–292, 2007, doi:

10.1109/TCBB.2007.070203.

[7] K. Miettinen, “Concepts”, in Nonlinear

Multiobjective Optimization, Boston, MA:

Springer US, pp. 5–36, 1998.

[8] E. Zitzler, K. Deb, and L. Thiele, “Comparison

of Multiobjective Evolutionary Algorithms:

Empirical Results”, Evol. Comput., Vol. 8, No.

2, pp. 173–195, 2000, doi:

10.1162/106365600568202.

[9] J. Sun, H. Zhang, Q. Zhang, and H. Chen,

“Balancing Exploration and Exploitation in

Multiobjective Evolutionary Optimization”, in

Proceedings of the Genetic and Evolutionary

Computation Conference Companion, pp. 199–

200, 2018, doi: 10.1145/3205651.3205708.

[10] K. Deb, A. Pratap, S. Agarwal, and T.

Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II”, IEEE Trans. Evol.

Comput., Vol. 6, No. 2, pp. 182–197, 2002, doi:

10.1109/4235.996017.

[11] Q. Zhang and H. Li, “MOEA/D: A

Multiobjective Evolutionary Algorithm Based

on Decomposition”, IEEE Trans. Evol. Comput.,

Vol. 11, No. 6, pp. 712–731, 2007, doi:

10.1109/TEVC.2007.892759.

[12] Q. Zhang, W. Liu, and H. Li, “The performance

of a new version of MOEA/D on CEC09

unconstrained MOP test instances”, in 2009

IEEE Congress on Evolutionary Computation,

pp. 203–208, 2009, doi:

10.1109/CEC.2009.4982949.

[13] M. Laszczyk and P. B. Myszkowski, “Improved

selection in evolutionary multi–objective

optimization of multi–skill resource–

constrained project scheduling problem”, Inf.

Sci. (Ny)., Vol. 481, pp. 412–431, 2019, doi:

https://doi.org/10.1016/j.ins.2019.01.002.

[14] H. Ishibuchi, N. Akedo, and Y. Nojima,

“Relation between Neighborhood Size and

MOEA/D Performance on Many-Objective

Problems”, in Evolutionary Multi-Criterion

Optimization, pp. 459–474, 2013.

[15] S. Z. Zhao, P. N. Suganthan, and Q. Zhang,

“Decomposition-Based Multiobjective

Evolutionary Algorithm With an Ensemble of

Neighborhood Sizes”, IEEE Trans. Evol.

Comput., Vol. 16, No. 3, pp. 442–446, 2012, doi:

Received: September 8, 2021. Revised: October 20, 2021. 153

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

10.1109/TEVC.2011.2166159.

[16] H. S. Noghabi, H. R. Mashhadi, and K. Shojaei,

“Differential Evolution with Generalized

Mutation Operator for Parameters Optimization

in Gene Selection for Cancer Classification”,

2016.

[17] Q. Guo, Y. Gao, L. Cui, and J. Zhang, “Cuckoo

search algorithm based on three random walks”,

in 2017 3rd IEEE International Conference on

Computer and Communications (ICCC), pp.

2180–2186, 2017, doi:

10.1109/CompComm.2017.8322923.

[18] R. Salgotra and U. Singh, “Application of

mutation operators to flower pollination

algorithm”, Expert Syst. Appl., Vol. 79, pp. 112–

129, 2017, doi: 10.1016/j.eswa.2017.02.035.

[19] H. Li and Q. Zhang, “Multiobjective

Optimization Problems With Complicated

Pareto Sets, MOEA/D and NSGA-II”, IEEE

Trans. Evol. Comput., Vol. 13, No. 2, pp. 284–

302, 2009, doi: 10.1109/TEVC.2008.925798.

[20] L. Chen, W. Gan, H. Li, K. Cheng, D. Pan, L.

Chen, and Z. Zhang, “Solving multi-objective

optimization problem using cuckoo search

algorithm based on decomposition”, Appl. Intell.,

Vol. 51, No. 1, pp. 143–160,2020, doi:

10.1007/s10489-020-01816-y.

[21] A. E. Eiben, R. Hinterding, and Z. Michalewicz,

“Parameter control in evolutionary algorithms”,

IEEE Trans. Evol. Comput., Vol. 3, No. 2, pp.

124–141, 1999, doi: 10.1109/4235.771166.

[22] G. Karafotias, M. Hoogendoorn, and A. E. Eiben,

“Parameter Control in Evolutionary Algorithms:

Trends and Challenges”, IEEE Trans. Evol.

Comput., Vol. 19, No. 2, pp. 167–187, Apr. 2015,

doi: 10.1109/TEVC.2014.2308294.

[23] N. Hitomi and D. Selva, “A Classification and

Comparison of Credit Assignment Strategies in

Multiobjective Adaptive Operator Selection”,

IEEE Trans. Evol. Comput., Vol. 21, No. 2, pp.

294–314, 2017, doi:

10.1109/TEVC.2016.2602348.

[24] D. E. Goldberg, “Probability matching, the

magnitude of reinforcement, and classifier

system bidding”, Mach. Learn., Vol. 5, No. 4, pp.

407–425, 1990, doi: 10.1007/BF00116878.

[25] D. Thierens, “Adaptive Strategies for Operator

Allocation”, in Parameter Setting in

Evolutionary Algorithms, F. G. Lobo, C. F. Lima,

and Z. Michalewicz, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 77–90, 2007.

[26] K. Li, Á. Fialho, S. Kwong, and Q. Zhang,

“Adaptive Operator Selection With Bandits for

a Multiobjective Evolutionary Algorithm Based

on Decomposition”, IEEE Trans. Evol. Comput.,

Vol. 18, No. 1, pp. 114–130, 2014, doi:

10.1109/TEVC.2013.2239648.

[27] W. Lin, Q. Lin, J. Ji, Z. Zhu, C. A. C. Coello,

and K. C. Wong, “Decomposition-based

multiobjective optimization with bicriteria

assisted adaptive operator selection”, Swarm

Evol. Comput., Vol. 60, p. 100790, 2021, doi:

10.1016/j.swevo.2020.100790.

[28] X. S. Yang, “Flower Pollination Algorithm for

Global Optimization”, in Unconventional

Computation and Natural Computation, pp.

240–249, 2012.

[29] V. L. Huang, P. N. Suganthan, A. K. Qin, and S.

Baskar, “Multiobjective Differential Evolution

with External Archive and Harmonic Distance-

Based Diversity Measure”, Singapore, 2005.

[30] C. Y. Lee and X. Yao, “Evolutionary algorithms

with adaptive Levy mutations”, in Proceedings

of the 2001 Congress on Evolutionary

Computation (IEEE Cat. No.01TH8546), Vol. 1,

pp. 568–575, 2001, doi:

10.1109/CEC.2001.934442.

[31] K. Miettinen, “A Posteriori Methods”, in

Nonlinear Multiobjective Optimization, Boston,

MA: Springer US, pp. 77–113, 1998.

[32] I. Das and J. E. Dennis, “Normal-Boundary

Intersection: A New Method for Generating the

Pareto Surface in Nonlinear Multicriteria

Optimization Problems”, SIAM J. Optim., Vol. 8,

No. 3, pp. 631–657, 1998, doi:

10.1137/S1052623496307510.

[33] E. Zitzler, L. Thiele, M. Laumanns, C. M.

Fonseca, and V. G. da Fonseca, “Performance

assessment of multiobjective optimizers: an

analysis and review”, IEEE Trans. Evol.

Comput., Vol. 7, No. 2, pp. 117–132, 2003, doi:

10.1109/TEVC.2003.810758.

[34] E. Zitzler and L. Thiele, “Multiobjective

evolutionary algorithms: a comparative case

study and the strength Pareto approach”, IEEE

Trans. Evol. Comput., Vol. 3, No. 4, pp. 257–

271, 1999, doi: 10.1109/4235.797969.

[35] S. Huband, L. Barone, L. While, and P. Hingston,

“A Scalable Multi-objective Test Problem

Toolkit”, in Evolutionary Multi-Criterion

Optimization, 2005, pp. 280–295.

[36] S. Jiang, S. Yang, Y. Wang, and X. Liu,

“Scalarizing Functions in Decomposition-Based

Multiobjective Evolutionary Algorithms”, IEEE

Trans. Evol. Comput., Vol. 22, No. 2, pp. 296–

313, 2018, doi: 10.1109/TEVC.2017.2707980.

[37] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu,

“Moea/d with Adaptive Weight Adjustment”,

Evol. Comput., Vol. 22, No. 2, pp. 231–264,

2014.

Received: September 8, 2021. Revised: October 20, 2021. 154

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.14

[38] Y. Tian, R. Cheng, X. Zhang, and Y. Jin,

“PlatEMO: A MATLAB Platform for

Evolutionary Multi-Objective Optimization

[Educational Forum]”, IEEE Comput. Intell.

Mag., Vol. 12, No. 4, pp. 73–87, 2017, doi:

10.1109/MCI.2017.2742868.

[39] X. S. Yang, M. Karamanoglu, and X. He,

“Flower pollination algorithm: A novel

approach for multiobjective optimization”, Eng.

Optim., Vol. 46, No. 9, pp. 1222–1237, 2014,

doi: 10.1080/0305215X.2013.832237.

