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Abstract: Many studies have reported that patients who are experiencing long-term negative emotions have higher 

risk of having health deterioration. Therefore, recognition of negative emotions from Electroencephalography (EEG) 

signals is crucial for monitoring patient conditions. In EEG emotion recognition, clinicians tend to need a clear 

explanation regarding the rules behind the EEG emotion classification process. Most of the EEG emotions 

classification use Support Vector Machine (SVM) causing lack of probabilistic prediction which can trigger longer 

computation time. To address the limitation, we applied Relevance Vector Machine (RVM) with Bayesian inference 

algorithm to calculate the probability of predicted output. Similar to SVM, RVM was unable to provide transparent 

rules behind its classification. Therefore, this study attempts to extract rules from RVM by implementing Random 

Forest algorithm to the relevance vectors. We extract the average energy spectrum in each frequency band as the 

leading feature of emotions in EEG. Through the resulted rules of RVM_RF, we found that negative emotions of EEG 

were determined by the average energy spectrum of delta band at fronto-central electrodes (FCZ>23.683, FC4>24.812), 

theta band at frontal electrode (F5>23.683), and alpha band in parietal-occipital electrode (PO8>20.212). From the 

evaluation on three sessions of data measurement, it shows that the proposed approach of RVM_RF can predict the 

negative emotions of EEG with the higher average accuracy of 85.33% and average precision rate of 0.933 compared 

with other rule-based methods such as RVM_CN2 Rule, RVM_C4.5 Tree, and SVM. All in all, this proposed approach 

has demonstrated the possibility to identify negative emotions from EEG signal using rules extraction from sparse 

learning method, RVM. 
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1. Introduction 

People can encounter a variety of negative 

emotions in daily life such as hatred, anger, sadness, 

or fear due to many types of causes. Prolonged 

negative emotions can lead to many negative impacts 

such as immune alteration [1] or worsening other 

chronic diseases like Diabetes mellitus, Hypertension, 

or Cardiac disease [2]. For example, people who 

experience persistent negative emotions tend to 

increase the risk of having plaques hardening in the 

arteries, i.e. atherosclerosis [3]. For those reasons, a 

recognition of negative emotion is an important 

aspect of medication process of the patient with 

chronic diseases. Emotion recognition can be done by 

identifying the pattern that goes along with negative 

emotions from physical and physiological measures.  

In the last decades, studies on emotion 

recognition have been heavily relying on 

physiological signals. Koelstra compare six 

modalities of physiological signals with responses to 

emotional video clip stimuli. The results show that 

EEG signals have significant correlation with the 

participants rating [4]. Compared to the emotional 

facial-expression recognition, emotion processing in 
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the brain appears early with an interval of 

approximately 180 milliseconds before emotional 

facial processing arises [5]. Therefore, the motivation 

for performing emotion recognition based on EEG 

signals is logical.  

There have been many approaches in studies of 

EEG emotion recognition recently. These approaches 

range from features extraction [6, 7], features and/or 

electrodes selection [8], and classification using 

machine learning [9-11]. In the latter approach, many 

studies perform a black-box method like SVM. SVM 

is non-linear classifier model with given labelled 

training data. It works by finding a separating hyper-

plane which discriminates between the class labels of 

data sample. SVM can handle most of the non-linear 

classification problems in various field. Nevertheless, 

it also has several drawbacks, notably the lack of 

probabilistic prediction output and the growing 

samples of Support Vectors (SVs) that linearly relate 

to the increased number of training data [12]. To 

overcome those limitations, Tipping [12] extends the 

idea of SVM by introducing a prior distribution on 

weight from Bayesian inference which is called RVM. 

Compared to SVM, RVM provides a sparser model 

with lower decision function while keeping its 

classification performance. In RVM, the sparse 

model comes from estimating hyperparameters that 

constraint the posterior distribution of weights [13]. 

Therefore, the corresponding posterior distribution of 

weights is set to zero when these hyperparameters 

approach infinity. Meanwhile, the rest of data 

samples with non-zero weights determine the 

decision functions of the RVM classification model. 

These remaining data are called Relevance Vectors 

(RVs). Therefore, by using RVs from RVM model, it 

is expected to gain an in-depth understanding behind 

the prediction making on data samples. Since its 

appearance, RVM has been implemented in several 

studies on EEG such as in motor imagery [14, 15], 

mental fatigue detection [16], and many more. 

Although SVM and RVM produce a generalized 

model in various areas of application. Both methods 

lack the ability to generate transparent explanation 

behind their prediction result in a human 

comprehensible form [17]. Classification model able 

to deliver a set of human-understandable rule for 

prediction is an advantage for typical application 

such as health monitoring. Therefore, a physician can 

gain more interpretation from the rules learned during 

the classification [18]. A known method for rules 

extraction is based on Sequential Covering Approach 

(SCA). SCA has the ability to construct IF − THEN 

rules from predefined label of the training data. Rules 

based method and decision tree are two of the most 

appealing method in SCA. Both methods, generally 

provide interpretability behind decision prediction, 

but, in practice, they often suffer with low 

comprehensibility and accuracy. By expanding the 

strategy of SCA, Breiman proposes an ensemble 

learning from Tree classifier called Random Forest 

(RF) [19]. RF is an ensemble method that utilizes 

several tree algorithms as a learning model. RF could 

address the difficulty of single binary tree model to 

fit with the complex models. By extracting the rules 

from a few numbers of RVs, the rules obtained using 

RF are obviously smaller than those from RF. 

Therefore, the rules obtained from RVM_RF is 

comprehensible.  

Based on those advantages, this study uses RF 

rule induction technique to extract rules for 

predicting negative emotions from EEG signals. In 

our proposed approach, the RVs from the best model 

of RVM are generated. Then, the RVs and its original 

label are used as an artificial training data for 

generating rules from RF rule induction. Compared 

to the previous study as shown in Table 1, RVM_RF 

is the first approach for rules extraction from RVM, 

which has never been tested on predicting negative 

study pattern from EEG signals. Specifically, the 

RVM is used for emotion classification, where RF 

was applied in the relevance vectors result to provide 

transparent explanation behind the RVM prediction 

model. So that the experts can obtain more 

interpretations of the rules learned during the 

classification. In addition, the RVM has been proven 

to have less execution time than SVM [16]. The 

proposed approach is using an open dataset on EEG 

emotion [20]. In the dataset, a set of video clips were 

used as stimuli to evoke participant in three class of 

emotions namely positive, negative, and neutral.  

The main objective of this study is to extract a 

human-understandable rules to predict the negative 

emotions of EEG signals from RVM classification. 

Therefore, the two major contributions of this study 

are the following: presenting a framework of rule 

extraction from RVM and providing rules for 

predicting negative emotions from EEG signals. In 

addition to the major contributions, this paper also 

investigates electrodes which are significant for 

emotion recognition task within the dataset. These 

findings are also notable for developing a framework 

of EEG emotion recognition due to many interests in 

implementing fewer electrodes on real-time EEG 

emotion recognition. 

The rest of the paper is organized as follow, the 

basics of this research are based on the related 

research described in Section 2. Dataset material and 

proposed methods introduced in Section 3. Section 4 

presents experiment result about electrode selection 

and classification evaluation. Discussion the  
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Table 1. Summary of related works 

Studies Remarks   Classifier and accuracy result 

[11] A fused feature extraction method used to improve the 

precision of EEG-based emotion recognition. 

SVM = 89.17% 

RVM = 91.18%  

[21] Develop a hybrid model (SVM-LOA) for epileptic seizure 

detection with SVM and Lion Optimization Algorithm 

(LOA) to optimize the SVM parameters. 

SVM = 80.05% 

SVM-LOA = 96.78% 

[22] The Recursive partition- Parallel Random Forest (R-PRF) has 

been used to improve the performance of the medical data 

classification. 

SVM-linier = 86.93% 

RF = 86.57% 

Decision tree = 78.9% 

R-PRF = 92.01% 

[23] The proposed rule based modified Convolutional neural 

network-Global Vectors (RCNN-GloVe) and rule-based 

modified Support Vector Machine-Global Vectors (RSVM-

GloVe) were developed for classifying the twitter complex 

sentences. 

RCNN-GloVe = 92.02% & 88.93% 

RSVM-GloVe = 87.91% & 85.02% 

[16] Claimed that RVM has less execution time than SVM during 

the EEG-based mental fatigue detection using cognitive test. 

RVM = 92.6% & 93.7% 

SVM = 81.8% & 73.5% 

[14] It suggested different approach for EEG signal analysis other 

than the classic SVM  

RVM with kernel: 

- Polynomial = 63.1% 

- Gaussian = 62.6% 

- Chaos = 63.6%  
SVM with polynomial kernel = 64.5% 

[15] Proposed a novel hybrid kernel function RVM by combining 

the Gaussian and the Polynomial to classify multi-task motor 

imagery EEG 

RVM with kernel: 

- Polynomial = 81.18% 

- Gaussian = 81.34% 

- Hybrid = 82.50%  
 

possibility of rules extraction to predict negative 

emotion in Section 5, followed by conclusions of this 

study in Section 6. 

2. Related works 

An end-user may need explanations (rules) when 

the purpose is to seek the generalized decision behind 

the prediction models. The motivation of rule 

extraction from RVM carries over from earlier 

knowledge in rules extraction from SVM. In 

particular, RVM has an advantage related to sparse 

property which uses significantly fewer basis 

functions, i.e. RVs, compared to the SVM. This 

minimum number of RVs in the resulted model is the 

representative of the class separating data. Therefore, 

the minimum number of RVs can be optimized to 

produce comprehensible rules that explains “how” a 

decision is made by the RVM model. With the 

emerging of RVM implementation in many areas of 

the field and significant development of the kernel 

type, it is required to learn patterns from RVM 

decision function that provides human- 

comprehensible explanations behind the model. This 

ability advances the RVM application for some fields 

that requires transparency of the decision. 

Rules extraction from RVM follows the step of 

rules extraction from SVM. According to the review 

on SVM rules extraction, there are three common 

schemes in rules extraction of SVM: decompositional, 

pedagogical, and combination of earlier approach 

[17]. The decompositional approach takes the SVs 

and separating hyperplane from SVM model as an 

input for the rule extraction algorithm. For instances, 

Christy and Shyamala propose rule-based modified 

SVM using Fuzzy Rule Based Systems (FRBS) [24] 

to refine the rules; Han suggest the ensemble learning 

approach to generate rules from SVs as an artificial 

data input [25]; Fu proposed rules extraction for a 

non-linear SVMs called RulExSVM, and define the 

hyper-rectangles region (to determine rules) by using 

intersection of separating hyper-planes with each 

SVs which bind the corner of the region [26]. On the 

contrary, the pedagogical approach uses the SVM 

model as a black-box method. Method in this group 

performs SVM as a main learner of the training data. 

It uses the prediction results of SVM model as 

artificial data. These data are then used to train in a 

rules based algorithm (i.e. association rules or 

decision tree) to generate the corresponding rules, 

such as SVM with PCPAR (SVM_PCPAR) [27] and 

SVM with Decision Tree (SVM_DT) [28]. The last 

approach combines pedagogical and decompositional 

strategies. This approach employs SVs and 

separating hyperplanes to extract rules from the 

synthetic data based on SVs. In implementation, 

Barakat and Diederich suggest an eclectic rules-

extraction from SVM [29]. The eclectic method  
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Figure. 1 Proposed rules extraction for negative emotions recognition from EEG 

 
utilizes the knowledge obtained by the SVM and 

represented in its SVs as well as the synthetic data 

predicted with them. Mona and Mohamed develop a 

hybrid model with SVM and Lion Optimization 

Algorithm (LOA) for epileptic seizure detection [21]. 

The LOA based approach is used to optimize the 

SVM parameters and give better result than the SVM 

alone. Among those three approaches of rules 

extraction from SVM, the decompositional 

techniques appear to produce less number of rules 

which tend to have a good generalization 

performance compared with the original SVM form. 

Therefore, this method is suitable for application that 

requires comprehensible rules, like in our study. 

3. Material and methods 

In this study, we propose a novel approach for 

extracting rules to predict negative emotion from 

EEG using RVM and RF algorithm. This method 

utilizes the resulting RVs from best RVM model 

classification to generate rules by RF algorithm. This 

rule is then applied to predict negative emotions from 

EEG records. As comparison method, the SVM, K-

Nearest Neighbour (kNN), RF, C4.5 Tree, and CN2 

Rule are also employed to prove the motive behind 

the rule extraction from RVM. The overall 

methodology proposed in this work comprises of five 

tasks as shown in Fig. 1. 

3.1 Dataset preparation 

In this paper we used open EEG dataset of 

emotion, i.e. SEED dataset [20]. It contains 45 

records of EEG data from 15 participants in three 

sessions of measurement within certain time interval 

(1st, 2nd, and 3rd weeks). In each session, the  
 

 
Figure. 2 The data acquisition process of SEED dataset 

 

participants were stimulated by 5 videos for negative, 

positive, and neutral emotions. The data 

measurement process of SEED dataset was depicted 

in Fig. 2. In this study, we assumed that the neutral 

emotion is as the baseline condition. Therefore, we 

only included negative and positive emotion for 

further processing.  Then, the total instances that were 

used in the next process were 15 subjects x 3 sessions 

x 10 videos (450 instances). Each video clip duration 

was about 4 minutes. After the video stimulation, 

every participant was asked to fill their emotional 

response regarding the video clip. The EEG signals 

were captured by using ESI NeuroScan System with 

62-electrodes location according to the 10-20 

international system (as shown in Fig. 3).  

 

 
Figure. 3 The EEG cap electrode location used in ESI 

Neuroscan System [20] 
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The data was first down sampled to 200 Hz 

sampling rate. To eliminate noise and artefact such as 

eye blinking and other muscular remarks, the band 

pass filter from 0.3 to 50Hz were performed. After 

performing the noise removal process, the data was 

decomposed into five common EEG bands; there are 

gamma (30 – 50 Hz), beta (13-30 Hz), theta (4 – 8Hz), 

alpha (8-13Hz) and delta (0-4 Hz) bands using Short 

Term Fourier Transform (STFT) of 256 points with 1 

second non-overlapping Hamming window.  

3.2 Average energy spectrum features 

The EEG signals contain a number of hidden 

information of brain function. The feature extraction 

methods were implemented to capture reliable hints 

from the EEG data in order to recognize and classify 

emotion. The extracted features were used later in 

classification process. In this study, the remarkable 

features extraction of differential entropy (DE) is 

applied [20]. The DE is known to be equal to the 

average energy spectrum. It follows the general idea 

of Shannon entropy which uses entropy to measure 

the complexity of continuous random variables. 

Since, the EEG data has a higher portion of low-

frequency energy over high frequency. Therefore, the 

average energy spectrum features can be used to 

distinguish the pattern of low and high power of each 

EEG frequency band. It is defined as [6]: 

 

ℎ(𝑋) = − ∫ 𝑋
∞

−∞
𝑙𝑜𝑔(𝑋)𝑑𝑥 =

1

2
𝑙𝑜𝑔(2𝜋𝑒𝜎2)     (1) 

 

𝑋 = 𝑁(𝜇, 𝜎2) =  
1

√2𝜋𝜎2
𝑒

(𝑥−𝜇)2

2𝜎2               (2) 

 

For the feature extraction, we calculated average 

energy spectrum for each frequency band from all 

electrodes.  

3.3 Electrode selection 

With a large number of electrodes in the dataset 

(e.g. 62-electrodes), it is obvious that a useful 

selection method is required [30]. The purpose of this 

selection is to remove the irrelevant electrodes for 

emotion recognition. Therefore, this leads to 

minimize the computation time in further process. In 

our previous study [31], we employ stepwise 

discriminant analysis to select which electrode has 

high significance value of discrimination. The Wilk’s 

lambda (Λ) score was used to tests how well each 

electrode feature contributes to the classification 

model. Each electrode feature is evaluated by putting 

it into the model and then taking it out by generating 

a Λ score. The Λ score is calculated as follows: 

Λ =  
|𝚬|

|𝚬|+|𝚮|
                              (3) 

 

Where H is the Sums of Squares and Cross 

Product (SSCP) matrix and E is the error of SSCP 

matrix. The SSCP matrix is often used in the 

multivariate analysis of variance to store information 

about variability.  

3.4 RVM classification 

RVM is based on the principle of sparse learning 

algorithm with a prior distribution on weight that 

generates a sparse solution. It is first introduced by 

Tipping for regression and classification problem 

[12]. RVM has an identical function with SVM. In 

general, the output function y(x) for the input space 

(𝑥𝑖)𝑖=1
𝑁  and the target vector 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑁]  are 

defined as: 

 

𝑦(𝑥, 𝑤) =  ∑ 𝑤𝑖𝐾(𝑥, 𝑥𝑖) + 𝑤0
𝑁
𝑖=1            (4) 

 

Where 𝑁 is number of instances,𝑤𝑖is the weight, 

and 𝐾(. ) is the kernel function. Thus for  𝑡𝑛 =
𝑦(𝑥𝑛; 𝑤) + 𝜀𝑛, the noise 𝜀𝑛 is assumed as Gaussian 

distribution with zero mean and variance 𝜎2, then: 

 

𝑝(𝑡|𝑤) = 𝑁(𝑡|𝑦(𝑥; 𝑤), 𝜎2)               (5) 
 

The basis function is the kernel function 𝜙𝑖(𝑥) =
𝐾(𝑥, 𝑥𝑖). Since the basis function does not necessary 

meet Mercer’s condition, then it is not required to be 

positive definite. For classification problem, RVM 

uses Bernoulli distribution to construct probability 

density function, given as:  

 

𝑝(𝑡|𝑤) =  ∏ 𝑦𝑖
𝑡𝑖(1 − 𝑦𝑖)1−𝑡𝑖𝑁

𝑖=1            (6) 

 

Where weight 𝑤 = (𝑤0, … , 𝑤𝑁)𝑇 , target class 

𝑡 = (𝑡1, … , 𝑡𝑁)𝑇, and 𝑦𝑖 are the sigmoid function of 

𝜎{𝑦(𝑥𝑖; 𝑤)}. 𝜎(𝑦)  with 𝜎(𝑦) = 1/(1 + 𝑒−𝑦) . The 

weight 𝑤  is constrained by Eq. (7) to ensure the 

generalization ability. 

 

𝑝(𝑤|𝛼) = ∏ 𝑁(𝑤𝑖|0, 𝛼𝑖
−1)𝑁

𝑖=1              (7) 
 

Where α is the hyper-parameter that determines 

the prior distribution of 𝑤  value. Then, the Bayes’ 

rule is used to obtain the posterior probability density 

function of 𝑝(𝑤|𝑡, 𝛼) expressed as: 

 

𝑝(𝑤|𝑡, 𝛼) =
𝑝(𝑡|𝑤)𝑝(𝑤|𝛼)

∫ 𝑝(𝑡|𝑤)𝑝(𝑤|𝑎)𝑑𝑤
=  

𝑔(𝑤)

𝑝(𝑡|𝛼)
       (8) 
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The weight 𝑤  is assumed to be a Gaussian 

distribution. Therefore, we can obtain analytical 

formulation since all the probability density functions 

are Gaussian. The expression for the posterior 

probability density function equation over the weight 

is:  

 

𝑝(𝑤|𝑡, 𝛼) ~ 𝑁(𝜇, Σ)                        (9) 

 

Where the mean 𝜇 =  ΣΦ𝑇𝐁𝑡with 𝐁 are a (𝑁 +
1) × (𝑁 + 1) diagonal matrix with diagonal element 

and the covariance Σ = (𝐀 + Φ𝑇Φ)−1  with 𝐀 =
𝑑𝑖𝑎𝑔(𝛼0, 𝛼1, … , 𝛼𝑛). Therefore, the learning of RVM 

is the search for the hyper parameter α and w. The 

sparse model is achieved when α values approach 

infinity, then the weight 𝑤  approaches zero. To 

obtain solution for (𝑤|𝑡, 𝛼) , Laplace method with 

Gaussian distribution is used. By taking the logarithm 

of 𝑔(𝑤), we approximate the solution using Hessian 

matrix that is given as: 

 

𝐇 = ∇∇ log 𝑔(𝑤) |𝑤MP
=  Φ𝑇𝐁𝚽 + 𝐀      (10) 

 

The values of 𝑤MP  and 𝛼𝑖  are achieved 

iteratively as follows: 

 

𝑤MP
𝑛𝑒𝑤 = 𝑤MP

𝑜𝑙𝑑 − (𝐇𝑜𝑙𝑑)
−1

∇ log 𝑔(𝑤)|𝑤MP
   (11) 

 

𝛼𝑖
𝑛𝑒𝑤 =

1−𝛼𝑖
𝑜𝑙𝑑Σ𝑖𝑖

𝜇𝑖
2 =  

𝛾𝑖

𝜇𝑖
2                   (12) 

 

The procedure of RVM learning and prediction is 

shown in the following steps [32]: 

1) Choose a suitable kernel type to map the dataset 

into high dimensional space and create the 

design matrix Φ.  

2) Initialize starting values of 𝛼 to calculate 𝐀, 

3) Choose initial value of 𝑤 to estimate 𝑤MP, 

4) Fix and update the values of 𝑤 and 𝛼 using Eq. 

11 and Eq. 12, 

5) Repeat step (2)-(4) until meeting the 

convergence criteria, and 

6) Predict the new data with the estimated model 

and obtain performance measures. 

The proposed rules extraction from RVM in this 

study is given in Figure. 4. Firstly, the training data 

are applied to construct an RVM model with 

acceptable accuracy by performing 10-fold cross-

validation. Then the RVs output from best fold of 

RVM model is used to generate rules with RF. 

Different with proposed scheme by Han [25], we use 

RVs with their original label as an artificial data input 

for RF. The reason behind this strategy is the 

assumption that the RVs samples have high  
 

 
Figure. 4 The steps of proposed RVM_RF 

probability, therefore, it is selected as the model 

representation. In the last stage, these rules results are 

evaluated by the testing data.  

3.5 Random Forest for rules extraction 

Random Forest is one of the known algorithms in 

ensemble learning family. RF is working by 

combining several binary tree models to learn and 

predict the target-class label. Similar with the rules-

based algorithm, each binary tree in RF also has 

ability to generate the form of IF-THEN rules. 

Therefore, it has the advantage of easy 

interpretability for human and machine. A random 

forest is a tree-structured based classifier, which is 

given as [19]: 

 

{ ℎ𝑘 = ℎ(𝑥, 𝜃𝑘), 𝑘 = 1, … . , 𝑁 }           (13) 

 
Therefore, each tree gives a vote for typical class 

appearing in instances x. The basic principle of RF 

uses Bootstrap Aggregating (Bagging) and Random 

Features Selection (RFS). The randomness is injected 

by growing each tree through both principles.  

Bagging utilizes N classifier by generating addition 

data in the learning process. Random sampling 

technique produces the additional data with 

substitution from initial dataset. In this way, some 

observations may be reiterated in each new training 

dataset. However, any instances have equal 

probability to be appended in a new dataset. 

Meanwhile, RFS technique works by randomly 

choosing k features among M features in the dataset. 

Then, it builds the best splitting rule-based from these 

features. As for the prediction, aggregation of N 

resulting classifier is given as: 

 

ℎ(𝑥) = argmax
𝑦𝑖

∑ 𝐼(ℎ𝑘(𝑥) = 𝑦𝑖)𝑁
𝑘=1       (14) 

 

The RF model can handle a large number of input 

features, such EEG data without a prior feature 
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selection process. It can be used to give estimation of 

which features are important for classification.  

3.6 Performance evaluation 

The rules were obtained from the RVs generated 

from the 10% training data set. The proportion of 

10% data training was chosen because RVM tends to 

have a good performance with a smaller samples of 

training data [33]. We validate the rules on three 

sessions of data measurement. By validating on three 

sessions of measurement, we want to see whether the 

resulted rules are consistent over different time of 

data measurement. 

Several measures such as accuracy, precision, 

recall, and F-measure are used to show the rules 

performance. Accuracy criterion computes the 

correctness of predicting samples towards the total 

number of samples in classification. Among several 

criteria in performance measure, we highly concern 

the precision criterion because it indicates how 

precise the rules could predict the number of relevant 

negative emotion of EEG samples correctly. This 

criterion is good to determine the accurate prediction 

of EEG sample originally labelled as negative 

emotions. It is given by the proportion of correct 

prediction number of negative emotion samples 

divided by the total number of predicted samples of 

negative emotion class. The recall criterion is a 

number of actual negative emotion samples that the 

model predicts as negative emotion samples divided 

by the total number of actual samples on negative 

emotion class. Meanwhile, the F-measure criterion 

shows the balance among recall and precision criteria. 

The accuracy, precision, recall, and F-measure 

criteria are given by Eqs. (15) to (18). 

 

Accuracy = 
Number of all correct predicted samples 

Number of all samples 
      (15) 

 
Precision = 

Number of correct predicted samples as negative emotion

Number of all predicted samples as negative emotion class
 

(16) 

 
Recall = 

Number of correct predicted samples as negative emotion

Number of actual samples of negative emotion class
 

(17) 

 

F − measure =  2  
Precision .  Recall

Precision + Recall
       (18) 

 

4. Experimental results 

Extracting rules for predicting negative emotions 

from RVM is the main intention of this study. In the 

first step, the EEG pre-processing stage resulted in 

average energy spectrum features extract from 5 

bands of frequency in 62 electrodes. So, the 

dimension size output from the feature extraction 

process is 310 features. Then, the features extracted 

result was fed to the electrode selection process.  

4.1 Electrode selection 

From our previous work [31], we investigated the 

most optimum electrodes for emotion recognition 

using the Wilk’s Lambda from five different 

frequency bands. The three optimal electrodes in each 

frequency band is shown in Table 2. The selection 

was according to their lambda score (> 0.5). 

Consequently, the number of features for 

classification were 15, 3 electrodes × 5 frequency 

bands. 

In addition to Table 2, Fig. 5 maps the location of 

selected electrodes in each frequency band. Through 

Fig. 5, we see that the optimum three electrodes from 

each frequency band are spread in several areas of 

brain, which are in central electrodes (CZ, C3, CB2), 

 
Table 2. Three optimum electrodes in each frequency 

band resulted from Wilk’s Lambda 

Frequency Band (Electrode / Lambda Score) 

Delta 

(δ) 

Theta 

(θ) 

Alpha 

(α) 

Beta 

(β) 

Gamma 

(γ) 

FCZ / 

0.843 

CZ / 

0.871 

C3 / 

0.769 

FC1 / 

0.752 

PO5 / 

0.774 

CB2 / 

0.747 

F5 / 

0.792 

PO8 / 

0.549 

F6 / 

0.598 

CZ / 

0.667 

FC4 / 

0.698 

P1 / 

0.732 

TP8 / 

0.448 

CZ / 

0.533 

P8 / 

0.587 

 

 
Figure. 5 Location of selected optimal channels 

according to the SDA results 
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fronto-central electrodes (FCz, FC4, FC1, F5, F6), 

parietal-occipital electrodes (PO8, PO5, P8), and 

temporal-parietal (TP8). 

4.2 Classification evaluation 

Predicting negative emotions from EEG signal 

using the extracted rules from RVM is the main 

intention of this study. The performance criteria such 

as accuracy, precision, recall, and F-measure were 

employed to measure the quality of the rules 

extracted from the proposed and compared methods 

including rules extraction from SVM with C4.5 Tree, 

CN2 Rule, and RF. The parameter details and 

implementation package of each algorithm during the 

experiment are given in Table 3. From the three 

performance criteria used in this study, we emphasize 

on precision of negative emotion class as the main 

point of analysis. The average results on 10-fold 

cross-validation on the train set are shown Table 4. 

Through Table 4, the RVM shows the highest 

precision rate and accuracy from the 10-fold cross-

validation of the training set data. Besides, the 

standard deviation (SD) of accuracy and precision in 

RVM model is the lowest among other algorithms. 

This means that the accuracy among fold models 

tends to be close to the mean accuracy. Therefore, the 

rules from RVM tends to be more advantageous 

compared to other algorithms. To prove the sparse 

ability of RVM over SVM, we present the different 

numbers of RVs and SVs in each fold in Fig. 6. 

Clearly seen from Fig. 6, the number of RVs in all 

folds (mean and SD 13±1.77) are much less than the 

number of SVs (mean and SD 34±1.43).  

 
Table 3. Detail parameters used in different methods 

Classification Detail of Parameters 
Implementation 

Algorithm  

RVM Gaussian kernel and 

optimal kernel scale = 

3 

Tipping 

Bayesian 

Sparse v.2  

SVM Gaussian kernel, γ = 

0.125, and C-value = 2 

LIBSVM  

C4.5 Tree Min. number of 

instances in leaves = 2 

and max. split of subset 

= 5 

C4.5 (Orange 

v3.18) 

CN2 Rule Evaluation measure = 

entropy, max. rules 

length = 5, and ordered 

rule sequence 

CN2 Rule 

(Orange v3.18) 

RF Number of tree = 3 and 

max. depth of each tree 

= 3 

Orange v3.18 

kNN k = 5 Orange v3.18 

 

Table 4. Average results of 10-fold cross-validation for 

negative emotion class 

Classific

ation 

Method 

Accuracy 

% (mean 

± SD) 

Precision 

rate 

(mean ± 

SD) 

Recall 

rate 

(mean 

± SD) 

F-

Measure 

score 

(mean ± 

SD) 

RVM 95.33 ± 

4.50 

0.907 ± 

0.19 

0.876 

± 0.15 

0.877 ± 

0.17 

SVM 83.00 ± 

16.19 

0.870 ± 

0.26 

0.863 

± 0.21 

0.863 ± 

0.18 

C4.5 

Tree 

76.85 ± 

23.49 

0.783 ± 

0.24 

0.854 

± 0.27 

0.767 ± 

0.23 

CN2 

Rule 

80.55 ± 

15.02 

0.889 ± 

0.18 

0.740 

± 0.25 

0.817 ± 

0.14 

RF 79.17 ± 

26.13 

0.845 ± 

0.22 

0.937 

± 0.17 

0.787 ± 

0.25 

kNN 83.33 ± 

18.83 

0.895 ± 

0.19 

0.708 

± 0.32 

0.846 ± 

0.18 

 

 
Figure. 6 Comparison of RVs and SVs number in each 

training fold 

 

Through running the 10-fold cross-validation on 

training data, we found that the model from fold 9 

achieved the best precision rate. The RVs and SVs 

with its original labels are then taken as artificial data 

for rules extraction phase using RF and other 

comparing models. The motivation for including SVs 

for rules extraction is to show comparison of 

performance achievements with the proposed 

approach.  

After obtaining the RVs and SVs from the best 

fold model of RVM and SVM training, we further 

extracted the rules from the RVs and SVs using rule 

induction methods. These methods include the RF, 

CN2 Rule, and C4.5 Tree. The evaluation was 

performed on three sessions of data measurement 

according to Figure. 2. The performance results from 

the RVM_RF and other comparing methods are 

shown in Fig. 7. From Fig. 7 (a), (b), and (d), the 

RVM_RF obtained the highest average performance 

from three sessions of data measurement in terms of 

accuracy 85.33%, precision rate 0.933, and F-

measure score 0.852. 
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(a)                                                                                              (b) 

 
(c)                                                                                              (d) 

Figure. 7 Results of three sessions of data measurement for negative emotion class 

 

Meanwhile, the least average performance is 

yielded by RVM_CN2Rule with accuracy of 56%, 

precision rate of 0.578, and F-measure rate of 0.557. 

Among three rule induction methods combined with 

RVM, the RF performed better compared with CN2 

Rule and C4.5 Tree. As we can see in Fig. 7 (a), (b), 

and (d), the rules result from RVM_RF obtained 

better performance on predicted negative emotions 

than rules extraction from SVM. Although, the 

RVM_RF has a lower recall than rules extraction 

from SVM, but it leads in accuracy, precision, and F-

measure score in total six methods.  

4.3 Sample rules 

For further exploration of the performance of 

RVM_RF for rules extraction, we compared a 

number of rules of the RVM_RF method with the 

other eight methods to predict negative emotions 

from EEG signal. The result is shown in Fig. 8, as we 

see, the RVM_RF generated least number of rules 

compared to the other methods. RVM_RF obtained 

similar result compared to RVM_C4.5Tree.  

The sample of extracted rules from RVM_RF is 

shown in Fig. 9. The sample rules in Fig. 9 show that 

negative emotions of EEG are determined by average 

energy spectrum in alpha, theta, and delta frequency 

bands. Moreover, the negative emotions are found at 

fronto-central electrodes (FCZ, FC4), frontal 

electrode (F5), and parietal-occipital electrode (PO8) 

areas of brain.  

 

 
Figure. 8 Comparison of number of rules with proposed 

and another rules induction methods 

 

 
Figure. 9 Sample of rules extracted using RVM_RF 

method 
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5. Discussion 

This study demonstrates the possibility of rules 

extraction to predict negative emotions from EEG 

signal. In the first step, we used fewer electrode 

which optimal for emotion recognition [31]. Through 

the results of Wilk’s Lambda score in Table 2, they 

indicate that the features of electrode from delta and 

theta frequency bands are more significant among 

other frequency bands for emotion recognition. From 

Fig. 5, we see that most of the electrodes selected in 

each frequency band are spread several areas of the 

brain. This result of electrode selection proves the 

contribution of certain brain areas for emotion 

recognition. 

The results on classification of RVM and SVM 

training model show that the RVM generated less 

number of relevance vectors than SVM (see Fig. 6). 

This finding proves that RVM classification has 

sparser ability than SVM. Consequently, the testing 

computation time of RVM is less required than SVM. 

This comparison result of RVs and SVs number is 

confirmed well by earlier finding shown in [12]. The 

classification results on the 10-fold training data 

show that the RVM obtained the highest precision 

and F-measure compared to other methods. This 

evidence supports our motivation to extract the rules 

from RVM classification.  

The evaluation of extracting rules to the three 

sessions of data measurement shows that RVM_RF 

obtained the highest average accuracy, precision rate, 

and F-measure score in all data sessions. 

Consequently, from Fig. 7(a) and (b), it shows that 

RVM_RF has better accuracy and precision 

compared with rules extraction from SVM (SVM_RF, 

SVM_C4.5Tree, and SVM_CN2Rule). This verifies 

that our proposed rule-extraction method has better 

learning ability from RVs than SVs to predict 

negative emotions. Through Fig. 7 (a) and (b), the 

rules extraction result from RVM_RF also has higher 

accuracy and precision compared with 

RVM_C4.5Tree and RVM_CN2Rule. This is 

because RF uses an ensemble of several Tree models 

with bagging method that could generate a strong 

learner which has more complexity and flexibility 

than a single model. Certainly, from Fig. 7 (a)-(c), the 

RVM_RF has higher accuracy and precision but 

lower recall than rules extraction from SVM. 

However, the rules of RVM_RF is generated only by 

RVs, which has smaller size than SVs (see Fig. 6), so 

the complexity and number of rules are more 

decreased than rules extraction from SVM (see Fig. 

8). Overall, our rules evaluation on the testing data 

proves the possibility of using RVM_RF to predict 

negative emotions from EEG signal. 

Additionally, we also present comparison of 

number of rules obtained from all comparing 

methods in Fig. 8 and the sample rules from the 

RVM_RF in Fig. 9. According to the rules number 

resulted in Fig. 7, it is shown that RVM_RF resulted 

the least number of rules which is also similar with 

RVM_Tree. The larger rules set may make the 

learning patterns more transparent but the 

comprehensibility of the rules is adversely affected. 

Nevertheless, the RVM_RF still obtained better 

precision result of evaluation than RVM_Tree. This 

means that RVM_RF does not only generate a few 

comprehensible rules, but also with high precision of 

prediction. The sample rules shown is confirmed well 

by the earlier study on brainwaves-emotion 

correlation analysis studies [34-36] in term of 

frequency band. 

When we look at the sample rules, we found that 

average energy spectrum from delta frequency bands 

determines largely the negative emotions. Although, 

the literature stated that delta frequency band is 

usually associated with a deep sleep condition. This 

result is also confirmed well by the study of Balconi 

and Vanutelli [34] that showed a significant increase 

of variance of negative emotions in delta frequency 

band. Other than delta frequency band, we can see 

from the sample rules that theta and alpha frequency 

band are also considered as important bands for 

emotion recognition.  These rules agree with the 

result obtained by Lee and Hsieh [35]. From the 

analysis on theta and alpha frequency band, a 

negative emotion shows a significantly higher 

correlation than positive emotions, particularly at the 

parietal and occipital sites such as PO8. Other than 

that, the EEG alpha power from sad emotion has the 

largest variance among other emotion. Moreover, in 

our result on electrode selection in Table 2, we can 

see that features from electrodes in delta and theta 

frequency bands have high score of Wilk’s Lambda 

(the Wilk’s lambda score indicates greater 

discriminatory ability of the features). These results 

are in accordance with the sample rules obtained in 

Fig. 9. Another study on brainwaves analysis of 

emotion detection by Wan Ismail [36] also confirms 

our rules. He finds that the anger emotion shows very 

clear reaction in theta band, while the sad emotion 

shows significant reaction at the delta and theta bands. 

In order to show the difference of our proposed 

approach with previous works, we summarize several 

studies on the same public dataset in Table 5. 

Compared to other studies, our approach is 

advantageous in number of features included for 

classification since it reports the lowest number of 

electrodes. Consequently, the less amount of 

electrodes in emotion recognition will reduce the  
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Table 5. Comparison with previous studies on the same public dataset 

Authors Number of 

Features 

(Electrodes)  

Method  Performance result Provide rules  

of 

classification 

Zheng and 

Lu [20] 

20 (4 electrodes × 

5 frequency band) 

Deep belief Neural Network 

for classification 

86.08 % of accuracy with 

different training and testing 

data  

No 

Zheng 

[38] 

310 (62 electrodes 

× 5 frequency 

band) 

Graph Regularized Extreme 

Learning Machine for 

classification 

91.07 % of accuracy using 5-

fold cross-validation scheme 

No 

W. Zheng 

[8] 

20 (4 electrodes × 

5 frequency band) 

Group sparse correlation 

analysis for optimal 

electrode selection 

80.20 % of accuracy using 

leave-one-trial-out cross-

validation strategy of evaluation  

 

Chai [39] 

 

310 (62 electrodes 

× 5 frequency 

band) 

Subspace Alignment Auto-

Encoder for reducing 

dimension discrepancy  

81.81 % of accuracy from 

session-to session evaluation 

No 

Our 

proposed 

approach 

15 (3 electrodes × 

5 frequency band) 

RVM and RF for 

classification and rules 

extraction  

0.933 precision rate of 

predicting only negative 

emotions 

85.33% of average accuracy 

from three sessions of data 

measurement  

Yes 

 
time setup for EEG headset and features extraction 

process [37]. According to the proposed approach 

categories in Table 5, the studies in general propose 

a method for classification, electrode selection, and 

features reduction. Instead of only performing 

emotion classification by RVM, our study also gives 

additional result in form of interpretable explanation 

for predicting negative emotions.  

Although all of the studies in Table 5 use the same 

dataset and features extraction methods, comparing 

performance result within these studies is difficult to 

perform. Because each study has different strategies 

in validating their proposed method. However, the 

performance accuracy average achieved by our study 

is still comparable with other previous works. 

Besides, we use the fewest number of features to gain 

acceptable performance in EEG emotion recognition 

compared with other studies.  From Table 5, it is 

clearly seen that our proposed approach is the only 

study that provides explanation behind the emotion 

classification, particularly of negative emotions. This 

shows that this study contributes to the higher 

precision rate on prediction of negative emotions and 

providing interpretable rules useful for end-users.  

6. Conclusion 

This study attempts to provide human-transparent 

rules to predict negative emotions from brain signals 

by combining the RVM and RF method. Specifically, 

the RVM is used for emotion classification, where RF 

was applied in the relevance vectors result to provide 

transparent explanation behind the RVM prediction 

model. In addition, we performed electrode selection 

using Wilk’s Lambda score due to the large numbers 

of electrodes included in the dataset, which will avoid 

a high computation time.   

The training result proves that the RVM model is 

much sparser than SVM. Through the rules 

evaluation result, our proposed method has higher 

precision and accuracy in predicting negative 

emotion than SVM, meaning that the relevance 

vectors provide better learning data than support 

vectors for extracting the rules. In terms of the rules 

extracted, our proposed method generates the least 

number of rules with high quality of precision rate 

compared with other methods. The RVM_RF 

obtained the highest average performance from three 

sessions of data measurement in terms of accuracy 

85.33%, precision rate 0.933, and F-measure score 

0.852. The sample rules showed that the average 

energy spectrum from delta, theta and alpha 

frequency bands mainly identifies negative emotions 

of EEG. This rule is confirmed well by the previous 

finding in brainwaves analysis on emotion 

recognition. With the fewest number of features that 

only 15 (3 electrodes × 5 frequency band) can gain 

acceptable performance in EEG emotion recognition 

compared with other studies. This shows that this 

study contributes to the higher precision rate on 

prediction of negative emotions and providing 

interpretable rules useful for end-users. Furthermore, 

these rules result will provide enhanced opportunity 

for timely prediction in a real-time emotion 

recognition, which might reduce the emergence of 

adverse effects from experiencing prolonged 

negative emotions.  
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Further improvement might put emphasis on 

utilizing α and w hyperparameters together with RVs 

for extracting rules through the finding of decision 

boundary in form of hyper-rectangles. Moreover, the 

performance criterion here is restricted to just 

classification performance. In the future, we suggest 

to include several rules quality measures such as 

fidelity, comprehensibility, and consistency.  
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