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Abstract: Economic dispatch problem is found in the recent focus of specialists, solving this problem being based 

especially on metaheuristic algorithms. Social Group Optimization (SGO) is a new metaheuristic algorithm that 

models human behavior to solve a certain problem, and it has been successfully applied to optimize mathematical 

functions. This paper investigates the behavior of the SGO algorithm equipped with five chaotic maps (Logistic, 

Double, Iterative, Singer and Cat), applied to solve the economic dispatch problem with multiple fuel sources. The 

new algorithm, called Chaotic Social Group Optimization (CSGO), results from including the sequences generated 

by chaotic maps in the heuristics specific to the SGO algorithm. The performance of the CSGO chaotic algorithm is 

tested on four systems having various dimensions (10-units, 20-units, 30-units, and 40-units) and characteristics. The 

SGO and CSGO algorithms are compared with each other and with other algorithms. The obtained results indicate 

that CSGO algorithms equipped with any of the chaotic maps mentioned has a higher average performance than 

SGO algorithm. The application of CSGO, compared to SGO, leads to a reduction of the fuel cost between (0.6-6.7) 

$/h for the analyzed systems. 
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1. Introduction 

Economic dispatch (ED) is an important topic in 

the optimal operation of power systems. The main 

objective of the ED problem is the optimal planning 

of the generating units that operate in the power 

system, so that the total cost of fuel is minimal and a 

series of technical restrictions regarding the 

generating units and the power system are 

maintained. The fuel cost for a generating unit is 

represented by either a quadratic function or a 

quadratic function to which a sinusoidal term is 

added in order to take into account the valve-point 

effects. Considering these effects together with other 

practical characteristics (such as: the transmission 

losses, ramp rate limits or the use of multiple fuel 

sources), it brings to a non-linear, non-continuous, 

non-convex optimization model. 

Solving the optimization models of the ED 

problem has been made using either classical 

methods or meta-heuristic methods. The classical 

methods (such as: quadratic programming [1], non-

linear programming [2] etc), based on the 

calculation of derivatives, encountered difficulties in 

identifying the global solution due to the 

nonlinearities in the optimization model. 

Implementing these methods is relatively difficult. 

Also, the results obtained are modest, considering 

the quality of the solutions. Successful application 

of traditional methods assumes that the cost-power 

function is monotonically increasing, a condition 

that reduces the accuracy of the calculations. 

Moreover, [3] states that the ED problem that takes 

into account practical issues such as ramp rate limits, 

valve-point effects, and multifuel options "is a 

challenging one and cannot be solved by the 

traditional methods". 

To overcome these difficulties the ED problem 

has been solved using metaheuristic algorithms that 

are based on various processes inspired by biology, 

physics, chemistry, but also by social behavior of 



Received:  September 6, 2021.     Revised: October 5, 2021.                                                                                           667 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.59 

 

living things. The main benefits of using 

metaheuristic algorithms compared to classical 

methods are [4]: handling constraints is relatively 

simple, metaheuristic algorithms are not sensitive to 

the nature of the objective function and to the range 

of values (convex/non-convex, discrete/continuous), 

continuity and derivability conditions are not 

imposed to the objective function or functions that 

define the constraints, metaheuristic algorithms do 

not use techniques that necessarily include the 

calculation of derivatives. 

Some metaheuristic algorithms applied in their 

original form to solve the ED problem are 

mentioned below: differential evolution (DE) [4], 

particle swarm optimization (PSO) [5], artificial bee 

colony (ABC) optimization [6], artificial algae 

algorithm (AAA) [7], sine-cosine algorithm (SCA) 

[8], Coulomb's and Franklin's Laws Based 

Optimization (CFLBO) [9], slime mould algorithm 

(SMA) [10], squirrel search optimizer (SSO) [11] etc. 

To increase the performance of the original 

metaheuristic algorithms, several strategies were 

used, such as: developing new varieties of original 

algorithms (by replacing the equations that update 

the solutions or by controlling some algorithm-

specific parameters), creating hybrid algorithms, 

introducing chaos in the algorithms etc.  

Some methods that use varieties or hybrids of 

the original algorithms to solve the ED problem are 

presented below. In [12] classical PSO algorithm is 

enhanced by linear decreasing of the multiple inertia 

weights (called MIW-PSO) to obtain a more efficient 

algorithm for solving the combined economic and 

emission load dispatch problem. The MIW-PSO is 

applied to the study of two small systems, and the 

results obtained indicate a significant reduction in 

cost and emissions. A novel dual-population adaptive 

differential evolution (DPADE) algorithm is 

presented in [13] for solving the ED problem taking 

into account the valve-point effects and multifuel 

sources. The DPADE uses a dual-population and 

adaptive technology to adjust the control parameters. 

It is applied to the study of large-scale systems 

considering up to 1280-units. To improve the 

solutions quality in the optimal power flow problem 

in [14] the authors proposed a modified ABC 

algorithm in which a percentage of the worst 

solutions were replaced with the best solutions. 

Modified ABC was tested on the IEEE 30 bus 

system, obtaining better results than other methods, 

such as: ABC, DE, GA, PSO. In [15] a clustering 

cuckoo search optimization (CCSO) is proposed, 

where the step size is determined by a clustering 

mechanism. The CCSO has been validated on 

systems up to 40-units size and in all cases the 

CCSO has performed better than the original CSO.  

A hybrid technique (HHE) for the multi-area 

economic dispatch problem is proposed in [16], 

efficiently combining the ability to explore and 

exploit of PSO and DE algorithms. In [17] a new 

hybrid is suggested that combines PSO with tabu 

search algorithm (TSA) and integrates the Sobol 

distribution to generate values for the inertia factor. 

The new DSPSO-TSA hybrid is more effective than 

well-known approaches, such as: GA, PSO, TSA or 

their varieties. The -GWO [18] is a new hybrid that 

effectively integrates -hill climbing optimizer 

(local search technique) with gray wolf optimizer 

(GWO) to solve the ED problem. A conglomerated 

optimizer is developed in [19] based on ion-motion 

(IMO) and crisscross search (CCS) algorithms. The 

resulting hybrid was tested on several functions 

(unimodal and multimodal) and on the ED problem. 

Another commonly used method to improve the 

search capability of metaheuristic algorithms is to 

use chaotic maps. Some of the algorithms that adopt 

this strategy for optimizing mathematical functions 

or for solving ED problems are: chaotic sine cosine 

firefly algorithm [20], chaotic symbiotic organisms 

search (SOS) algorithm [21], chaotic JA with 

application in solving ED problem [22], chaotic SCA 

for economic emission dispatch problem [23], 

modified SOS algorithm with logistic map [24], etc. 

The chaotic maps are inserted in various phases of the 

optimization process, in the above-mentioned 

algorithms. 

Relatively recently (2016) a new metaheuristic 

algorithm, called Social Group Optimization (SGO) 

[25], has been proposed for the optimization of 

standard numerical functions (taken from the IEEE 

Congress on Evolutionary Computation 2005 

competition). The obtained results show that the 

SGO algorithm outperforms other well-known 

algorithms, such as [25, 26]: DE, PSO, ABC, GA 

(genetic algorithm), TLBO (teaching–learning-based 

optimization), harris hawks optimization (HHO), 

salp swarm algorithm (SSA), grasshopper 

optimization algorithm (GOA), socio evolution and 

learning optimization (SELO), volleyball premier 

league (VPL), SSA or its variants. 

Based on the SGO algorithm, in this paper a new 

chaotic algorithm is proposed, called Chaotic SGO 

(CSGO). The new CSGO algorithm is obtained from 

the original SGO algorithm in which the random 

numbers are replaced with chaotic sequences 

generated by five chaotic maps (Logistic, Double, 

Iterative, Singer and Cat). The insertion of chaotic 

maps in the structure of the CSGO algorithm is 

motivated by the following arguments: (i). the SGO 
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algorithm is efficient in optimizing numerical 

functions with various dimensions and characteristics 

(unimodal, multimodal, composite) [25]. Thus, it is 

expected that in the case of ED problem this 

efficiency will be maintained; (ii). Consulting several 

databases (Scopus, Springer, Elsevier), we found that 

the SGO algorithm equipped with various chaotic 

maps has not been used in solving the ED problem; 

(iii). Also, CSGO algorithms are easy to implement 

and have the ability to maintain a good balance 

between exploration and exploitation, thus being 

able to generate promising solutions during the 

iterative process. 

The main contributions of the research are:  

(i). development of a chaotic optimization 

algorithm by combining the SGO algorithm with 

various chaotic maps (the new algorithm is called 

CSGO); (ii). implementation of CSGO algorithms to 

solve the multi-fuel source ED problem;  

(iii). testing the performance of the CSGO 

algorithm on five power systems of different 

dimensions. 

The paper is organized as follows: Section 2 

presents the optimization model for the ED problem 

with valve-point effects and multiple fuel sources. 

Section 3 and 4 describes the SGO and CSGO 

algorithms. Section 5 details how to implement 

CSGO algorithms to solve the ED problem. Section 

6 presents the analyzed cases and shows the 

obtained results. The conclusions are summarized in 

Section 7. 

2. Formulation of ED problem 

The ED problem aims to determine the powers 

of the generating units so that the total cost of fuel 

for the entire system is minimal while keeping the 

imposed restrictions. If we consider a power system 

with n units, the solution vector is represented as 

[P]=[P1, P2,…, Pj,… Pn], where Pj are the active 

powers of the generating unit j, in MW. Considering 

multiple fuel sources and the valve-point effects the 

cost-power characteristic Fj(Pj) for a generating unit 

j is expressed as [27]: 

 

Fj(Pj)=cjmPj
2+ bjmPj +ajm+ ejmsin(fjm(Pmin,jm - Pj))  (1) 

if  Pmin,jm  Pj  Pmax,jm 

 

where, ajm, bjm, cjm, ejm, fjm the fuel cost coefficients 

for unit d for a type m fuel; m is the type of fuel used 

for a unit j; Pmin,jm, Pmax,jm represent the minimum 

and maximum limits between which a unit j operates 

with a fuel of type m. 

Characteristic Fj(Pj) is composed of a quadratic 

component (having coefficients ajm, bjm and cjm) and 

a sinusoidal component reflecting the valve-point 

effects (with coefficients ejm and fjm).  

The objective function is expressed by the total 

cost of the fuel used at the level of the entire power 

system, as follows [3]: 

 

min𝐹[𝑃] =∑ 𝐹𝑗(𝑃𝑗)
𝑛
𝑗=1                   (2) 

 

The constraints of the ED problem are 

represented by a set of equations and inequalities 

presented below [3]: 

 

Pj,min ≤ Pj ≤ Pj,max, j=1,2,…,n               (3) 

 

Pj ≤ P0
j + URj,  if active power increases      (4) 

 

Pj ≥ P0
j - DRj,  if active power decreases      (5) 

 

PG - PL - PD = 0                         (6) 

 

where Pj,min and Pj,max are the minimum and 

maximum operating limits of a generator j; where 

P0
j is the previous hour active power of unit j; DRj 

and URj are the down-ramp and up-ramp limits of 

the j unit; PD is the load demand; PL is the 

transmission loss; PG is the power generated in the 

system. The transmission losses PL are calculated 

using constant B coefficient formula: 

 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑛
𝑗=1 + ∑ 𝐵0𝑗𝑃𝑗 +𝐵00

𝑛
𝑗=1

𝑛
𝑖=1    (7) 

 

where Bij is an element of the loss coefficient matrix, 

B0j is j element of the loss coefficient vector and B00 

is the loss coefficient constant. 

Relations Eq. (3) show the operating limits of 

unit j. Constraints Eqs. (4) and (5) define the 

operating limits for a unit j when the power from the 

previous-hour P0
j is known. The interval in which a 

unit j can operate is given by the down-ramp (DRj) 

and up-ramp (URj) limits, which show how much it 

can increase, respectively decrease the power of the 

unit j compared to the value P0
j. The equality 

constraint Eq. (6) defines the active power balance 

for the whole system, which shows that the total 

power generated (PG) is equal to the required power 

(PD) plus the transmission losses (PL). 

3. Social group optimization (SGO) 

SGO is a population-based optimization method 

that mimics people's social behavior to solve a 

complex real-life problem. In SGO the population is 

represented by a group of people, who try solving a 

given problem based on the level of knowledge 

acquired. Each person is associated with a candidate 
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solution. The fitness function is associated with a 

person's ability to solve a given problem. For the 

implementation of the artificial SGO algorithm we 

use the following mathematical notations: Xi=[xi1, 

xi2,…,xij,…xin]i=1,2,..,N is a solution vector that 

includes a number of traits of a person from the 

social group; xij is the component j of the solution 

vector Xi; fi(Xi)=fi is the fitness function 

corresponding to solution Xi; n is the number of 

person traits, and N is the number of persons 

(solutions) from the social group. 

SGO algorithm has four main phases: 

initialization phase, improving phase, acquiring 

phase, termination phase. In the initialization phase 

the solutions are randomly generated between the 

minimum and maximum limits, using the relation [25]: 

 

xi,j=xmin,j+r1∙(xmax,j – xmin,j), i=1, 2,…,N         (8) 

 

where, xmin,j, xmax,j,  j=1, 2,…,n are the minimum and 

maximum limits of component j associated with the 

solution Xi; r1 is a random number uniformly 

distributed between 0 and 1. 

In the improving phase the best person (the best 

solution) from the group tries spreading the 

knowledge among the other members to improve the 

level of knowledge in the social group. Updating the 

knowledge of a person from the social group is done 

using Algorithm 1 [25]: 

 

Algorithm 1: Improving phase 

For i=1 to N do 

      For j=1 to n do 

 

xnew,ij=cxij+r2(Gbestj - xij)                 (9) 

 

End; End; 

The Xnew,i solution is accepted if f(Xnew,i) is better 

than f(Xi). 

 

where, Xnew,i is the new solution vector obtained 

after the application of Algorithm 1; xnew,ij is the 

component j of the vector Xnew,i; Xi is the old solution 

vector, before the application of algorithm 1; xij is the 

component j of the vector Xi; Gbestj is the best 

solution obtained so far; Gbestj is the component j of 

the Gbest solution; c is the self-introspection parameter 

with values between 0 and 1; r2 is a uniformly 

generated random number in the range (0, 1); 

In the acquiring phase, each person from the 

social group interacts with the best person, as well 

as with other group members, to gain new 

knowledge. Updating the knowledge of a person 

from the social group is done using Algorithm 2 [25]: 

 

Algorithm 2: Acquiring phase 

For i=1 to N do 

Randomly select a solution Xr, with ir 

If f(Xi) < f(Xr) Then 

For j=1 to n do  

 

xnew,ij=xij+r3(xij-xrj)+r4(Gbestj-xij)          (11) 

 

End For 

Else 

For j=1 to n do  

 

xnew,ij=xij+r3(xrj-xij)+r4(Gbestj-xij)          (12) 

 

End For 

End If 

The Xnew,i solution is accepted if f(Xnew,i) is better 

than f(Xi); 

End For. 

 

where, Xr, ri is a solution vector randomly selected 

from the current population; r3 and r4 are uniformly 

generated random numbers in the range (0, 1); 

The last phase refers to the termination criterion 

of the algorithm. Stopping the algorithm is 

performed if the maximum number of kmax iterations 

is reached. 

4. Chaotic SGO (CSGO) 

The insertion of chaotic maps in the structure of 

metaheuristic algorithms can increase the efficiency 

of the new algorithm [22, 28]. Equipping the SGO 

algorithm with chaotic maps aims to improve the 

capacity of the CSGO algorithm to avoid local 

minimums, to increase the stability and strengthen 

the global search. In this paper, the SGO algorithm 

is combined with five chaotic maps: Logistic, 

Iterative, Double, Singer and Cat. The characteristics 

of the chaotic maps mentioned are presented below: 

1. Logistic map [22]: xk+1=a·xk(1-xk), a=4, xk(0,1); 

2. Iterative map [28]: xk+1=sin(a/xk),  

a=2, xk[-1,1]/{0}; 

3. Double map [29]: xk+1=sin(2aπxk), a=2, xk(-1,1);  

4. Singer map [28]:  

xk+1=a·(7.86xk -23.31xk
2+28.75xk

3-13.3xk
4),  

a=1.06, xk(0.077, 0.987); 

5. Cat map [30]: xk+1 = (xk+ayk) mod 1;  

yk+1 = (bxk+(ab+1)yk) mod 1; xk, yk(0,1), a=b=1. 

The CSGO algorithm has the same structure and 

the same steps as the original SGO algorithm [25], 

but the random numbers from the initialization 

phase (r1), improving phase (r2) and acquiring 

phase (r3 and r4) are replaced with sequences 

generated by the mentioned chaotic maps (similar to 
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[28]). Basically, using the five chaotic maps, we get 

five chaotic optimization algorithms, their name 

abbreviation being “CSGO-chaotic map name”. In 

order to compare the chaotic maps in the closest 

possible conditions, the initial values cx0 used for all 

the cases studied were chosen as equal to 

cx0=0.1777. In the initialization phase the chaotic 

sequences will be generated in the range (0, 1), and 

in the improving phase and acquiring phase in the 

range (-1, 1). 

5. Implementation of CSGO for ED problem 

The CSGO algorithms applied to solve the ED 

problem with multiple fuel sources include the 

following steps: 

Step 1: Specifying input data for the ED 

problem: number of units (n), cost coefficients (a, b, 

c, e, f); loss coefficients Bij, B0i, B00; load demand 

(PD); 

Step 2: Set the CSGO parameters: N and kmax; 

Step 3: Initialization of solutions 

3.1 Initialization of iterations: k=0; 

3.2 The chaotic sequences cx1 are generated (cx1 

replace the random numbers r1 in relation (8)), using 

one of the mentioned maps; 

3.3 The initial solutions are randomly generated 

using relation (8), so that the constraints imposed on 

the ED problem are met; 

3.4 Evaluation of the initial solutions (Pi, i=1,2,.., N); 

determination of the best initial solution and its cost; 

For k=1 Do kmax 

Step 4: Update solutions Pi in the improving 

phase 

For i=1 To N Do  

 For j=1 to n Do  

4.1 Update the chaotic sequences cx2, which replace 

random numbers r2 in the relation (9); 

4.2 Update the Pji component of the solution Pi with 

relation (9);  

4.3 The constraints of inequality (3)-(5) are verified: 

if the Pnew,ji power is outside the limits, then the 

mechanism for handling the inequality restrictions 

presented in [24] is applied; End For j; 

4.4 The equality constraint (6) is verified: if the new 

solution Pnew,i needs to be adjusted, then the 

mechanism for handling the equality restriction 

presented in [24] is applied; End For i; 

4.5 Evaluate the new solutions Pi, by relation (2); 

4.6 Compare the new solution Pnew,i with the old 

solution Pi. If the new solution Pnew,i is better, then 

replace Pi with Pnew,i; 

4.7 Identify and retain the best solution Gbest; 

Step 5: Update solutions Pi in the acquiring 

phase 

For i=1 To N Do  

5.1 Randomly select a solution Pr, r{1, 2,..,N}, r≠i; 

If F(Xi)< F(Xr) Then  

 For j=1 to n Do 

5.1 Update the chaotic sequences cx3 and cx4, which 

replace random numbers r3 and r4 in the relation (11); 

5.2 Update the Pji  component of the solution Pi with  

relation (11);  

5.3 The constraints of inequality (3)-(5) are verified, 

similar to point 4.3; End For j; 

Else 

 For j=1 to n Do 

5.4 Update the chaotic sequences cx3 and cx4, which 

replace random numbers r3 and r4 in the relation (12); 

5.5 Update the Pji component of the solution Pi with 

relation (12);  

5.6 The constraints of inequality (3)-(5) are verified, 

similar to point 4.3; End For j; End If; 

5.7 The equality constraint (6) is verified, similar to 

point 4.4; End For i; 

5.8 Evaluate the new solutions Pi, by relation (2); 

5.9 Compare the new solution Pnew,i with the old 

solution Pi. If the new solution Pnew,i is better, then 

replace Pi with Pnew,i; 

5.10 Identify and retain the best solution Gbest; 

Step 6: Stopping the process: the calculation 

process is stopped when the maximum number of 

iterations (kmax) is reached. {End For k} 

6. Simulation results and comparison 

The efficiency of the SGO algorithm and of the 

CSGO algorithms equipped with different chaotic 

maps is tested by analyzing four systems having 10-

units, 20-units, 30-units, and 40-units. 

Description of the analyzed systems: Depending 

on the characteristics of the systems, five cases are 

studied (C1-C5), presented below: 

Case 1 (C1): A 10-units system with multiple 

fuel sources and valve-point loading effects is 

studied, the transmission losses being neglected. The 

cost coefficients a, b, c, e, f and the power limits of 

the units are taken from [27]. The load demand PD is 

2700 MW. 

Case 2 (C2): The second case studies the 10-

units system from case C1 taking into account the 

transmission losses in the power system. The loss 

coefficients B are considered from [36]. 

Case 3 (C3), case 4 (C4) and case 5 (C5): In 

these cases, the 20-units, 30-units and 40-units 

systems obtained by replicating twice, three times, 

respectively four times the 10-units system in case C1 

are analyzed. The powers required in these systems 

are 5400 MW, 8100 MW, respectively 10800 MW. 
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For each case, the quality and robustness of the 

solutions is evaluated by 50 runs. Based on the 

performed runs, the following statistics were 

retained: best total fuel cost F (Best cost F), mean 

total fuel cost F (Mean cost F), worst total fuel cost 

F (Worst cost F) and standard deviation (SD). All 

simulations were done in MathCAD, on a computer 

with an Intel i5 processor, having the characteristics: 

2.2 GHz CPU and 4 GB of RAM. 

 
Table 1. The values of the statistical items obtained by different algorithms (case C1-C5) 

Algorithm Case Best cost F ($/h) Mean cost F ($/h) Worst cost F ($/h) SD ($/h) Rank 

JA [31] 

C
as

e 
C

1
: 

1
0

-u
n

it
s 

624.6819 626.1531 637.5108 1.658 - 

CGA-MU [27] 624.7193 627.6087 633.8652 - - 

IGA-MU [27] 624.5178 625.8692 630.8705 - - 

DE [4] 624.4606 624.4724 624.4918 0.007 - 

PSO-GM [32] 624.305 624.6749 625.0854 0.158 - 

PSO-LRS [3] 624.2297 625.7887 628.3214 - - 

PSO [4] 624.2449 624.2543 624.2744 0.002 - 

GC-Jaya [33] 624.2249 624.6812 628.28.11 0.660 - 

CPSO [32] 624.1715 624.5493 624.7844 0.127 - 

MSFLA [34] 624.11569 624.8958 628.3428 - - 

M_DE [16] 624.1026 - - - - 

HHE [16] 624.0671 - - - - 

CBPSO-RVM [32] 623.9588 624.0816 624.293 0.057 - 

TSA [17] 624.3078 624.8285 635.0623 1.159 - 

GA [17] 624.5050 624.7419 624.8169 0.100 - 

SGO 623.9179 624.8831 635.6641 1.877 6 

SGO-Logistic 623.9125 624.0583 624.1754 0.059 2 

SGO-Double 623.9625 624.1068 624.2511 0.064 3 

SGO-Iterative 623.9170 624.0363 624.2044 0.064 1 

SGO-Singer 623.8491 624.2499 626.5394 0.762 5 

SGO-Cat 623.9496 624.1073 624.2115 0.056 4 

SGO 

C
as

e 
C

2
: 

 

1
0

-u
n

it
s,

 w
it

h
 

tr
an

sm
is

si
o

n
 

lo
ss

es
 

700.3177 701.2902 706.0056 1.849 6 

SGO-Logistic 700.3155 700.4358 700.5558 0.053 3 

SGO-Double 700.3809 700.4873 700.5795 0.048 4 

SGO-Iterative 700.3486 700.4343 700.5176 0.041 2 

SGO-Singer 700.2501 700.4154 700.9802 0.148 1 

SGO-Cat 700.3553 700.4899 700.6026 0.050 5 

SGO 

C
as

e 
C

3
: 

 

2
0

-u
n

it
s 

1248.1867 1251.2317 1260.7457 3.331 6 

SGO-Logistic 1248.4230 1248.9334 1249.3402 0.206 2 

SGO-Double 1248.8628 1249.6126 1250.6042 0.465 5 

SGO-Iterative 1248.4458 1248.9108 1249.2710 0.180 1 

SGO-Singer 1247.8797 1249.3174 1253.2771 1.523 4 

SGO-Cat 1248.6073 1249.0555 1249.4559 0.205 3 

SGO 

C
as

e 
C

4
: 

 

3
0

-u
n

it
s 

1872.2854 1877.8060 1888.2968 4.350 6 

SGO-Logistic 1873.1560 1873.9909 1875.7981 0.420 1 

SGO-Double 1874.0164 1875.6813 1877.8939 0.869 5 

SGO-Iterative 1873.2144 1874.0914 1875.4884 0.470 3 

SGO-Singer 1871.7917 1873.9710 1883.7271 2.299 2 

SGO-Cat 1873.6577 1874.3583 1875.3154 0.354 4 

IMO [19] 

C
as

e 
C

5
: 

 

4
0

-u
n

it
s 

2537.2500 2600.5920 2669.6190 27.882 - 

MIMO [19] 2496.8590 2503.5270 2520.2890 5.659 - 

CSO [35] 2495.7880 2496.6341 2497.1320 0.248 - 

SGO 2498.2374 2504.3423 2513.3058 4.618 6 

SGO-Logistic 2496.9975 2497.5560 2497.9921 0.243 1 

SGO-Double 2500.5846 2503.1080 2505.8080 1.342 5 

SGO-Iterative 2498.5429 2499.7372 2501.2157 0.670 3 

SGO-Singer 2495.8071 2498.4940 2508.4666 2.733 2 

SGO-Cat 2499.0007 2500.3746 2503.4240 0.920 4 

 



Received:  September 6, 2021.     Revised: October 5, 2021.                                                                                           672 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.59 

 

Table 2. The best solutions obtained by CSGO-Singer algorithms 

Pi (MW) Fuel* Case C1 Case C2 Case C3 Pi (MW) Case C5 

P1  2 217.56666 228.93014 217.59196 P1/P21 217.19361 216.52372 

P2  1 209.97877 219.13867 210.47605 P2/P22 211.46316 213.45369 

P3 1 279.64900 301.82946 285.71802 P3/P23 278.61969 281.76781 

P4 3 240.31140 245.41738 239.37055 P4/P24 238.56236 240.17645 

P5 1 279.93518 306.00853 278.72821 P5/P25 282.47694 276.75469 

P6 3 239.10192 244.20803 237.89231 P6/P26 240.44619 237.08653 

P7 1 290.09924 316.18613 287.90651 P7/P27 287.51709 290.49508 

P8 3 240.04251 244.20805 242.05903 P8/P28 238.42965 238.96786 

P9 3 427.42777 439.99996 427.50543 P9/P30 424.65805 424.90014 

P10 1 275.88754 297.39817 274.61603 P10/P31 279.11293 278.78224 

P11 2 - - 217.46760 P11/P32 216.60360 219.53770 

P12 1 - - 213.19991 P12/P33 212.70350 212.44934 

P13 1 - - 280.63986 P13/P34 278.75342 279.65979 

P14 3 - - 238.02741 P14/P35 240.04397 238.29727 

P15 1 - - 276.72947 P15/P36 280.16658 280.17394 

P16 3 - - 238.69965 P16/P37 238.96720 240.44593 

P17 1 - - 290.05387 P17/P38 294.56060 289.91067 

P18 3 - - 241.52034 P18/P39 237.75849 237.35520 

P19 3 - - 426.39275 P19/P40 427.30883 430.74312 

P20 1 - - 275.40504 P20/P21 271.51107 275.66189 

A - -5.457E-12 3.233E-06 -1.000E-11 A -1.637E-11 

PL - - 143.32451 - - - - 

The accuracy (A) is calculated using the relation: A=PG -PL-PD; *The same type of fuel was considered for all cases (C1-C5) 

 

Parameters setting: The parameters of the SGO 

and CSGO algorithms are the number of persons in 

the social group (N), the maximum number of 

iterations (kmax) and self-introspection parameter (c). 

In the case of SGO and CSGO algorithms, the 

parameter c was considered to have the value c=1, 

and the parameters N and kmax were set by 

experimental trials. The parameters N and kmax were 

selected based on the Mean cost F item, having the 

following values: 25 and 100 (for case C1), 30 and 

100 (case C2), 35 and 100 (case C3), 50 and 150 (case 

C4), 60 and 200 (case C5). 

The presentation of the best solutions: The 

statistics resulting from the application of SGO and 

CSGO algorithms, referring to the following items 

(Best cost F, Mean cost F, Worst cost F and SD) are 

shown in Table 1, for each analyzed case. It is 

noticed in Table 1 that the best cost (Best cost F) is  

obtained by CSGO-Singer algorithm, therefore, 

the best solutions obtained by applying this 

algorithm are presented in Table 2. For cases 

without power losses, the accuracy (A) of 

calculations is below 1E-10 MW, while for case 

having power losses (C2) the accuracy is below 1E-

5 MW. 

Comparison of the SGO and CSGO algorithms: 

Based on the statistical items resulting from the 

application of the SGO and CSGO algorithms 

(presented in Table 1), the following can be found: 

(i). for all case studies, CSGO algorithms 

equipped with various chaotic maps (Logistic, Double, 

Iterative, Singer and Cat) have a higher mean 

performance (measured by the Mean cost F item) than 

the original SGO algorithm. Also, when considering 

the items Worst cost F and SD, the CSGO algorithms 

(CSGO-Logistic, CSGO-Double, CSGO-Iterative, 

CSGO-Singer and CSGO-Cat) obtain better values 

than SGO algorithm, for all cases; 

(ii). CSGO algorithms have a very good stability 

(SD item has values below 1 $/h) for all cases and 

for the majority of maps used. Exceptions are the 

CSGO-Singer for cases C3-C5 and the CSGO-

Double for case C5; CSGO algorithms have better 

stability than the SGO algorithm for all cases and 

maps used; 

(iii). based on the Best cost F item, for each case, 

several chaotic algorithms obtain better solutions 

than SGO: CSGO-Logistic (for cases C1, C2, and 

C5), CSGO-Iterative (for case C1) and CSGO-

Singer (for all cases C1-C5); 

(iv). CSGO algorithms maintain their stability 

when the size of the systems is increased from 10-

units to 40-units; 

(v). there are several chaotic algorithms that 

outperform the original SGO algorithm, taking into 

account all the items (Best cost F, Mean cost F, 

Worst cost F and SD): CSGO-Logistic (for cases C1, 

C2, and C5), CSGO-Iterative (for case C1) and 

CSGO-Singer (for all cases C1-C5). 
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Table 3. Average ranks and average rank difference (ARD) 

Algorithm AR ARD between CSGO & SGO 

SGO 6 - 

CSGO-Logistic 1.8 4.2 

CSGO-Double 4.4 1.6 

CSGO-Iterative 2 4 

CSGO-Singer 2.8 3.2 

CSGO-Cat 4 2 

CD value (Bonferroni-Dunn), at =95%: 3.048 

 

Statistical testing: To verify whether there are 

statistically significant differences between the 

performance of SGO and the group of CSGO 

algorithms, Friedman test was conducted. The 

algorithms are ranked for each data set 

(corresponding to each case), the best performing 

algorithm (using the results for Mean cost F item) 

getting the rank of 1, the second best rank 2, and so 

on (Table 1). The Friedman test compares the 

average ranks of algorithms. The null-hypothesis 

states that all algorithms are equivalent, and so their 

average ranks should be equal. Table 3 shows the 

average ranks (AR) of all algorithms with respect to 

their performance. 

The computed Friedman test statistic value is 

11.352, being higher than 2.71, which represents the 

critical Friedman statistics value for a confidence 

level of =95%. So, the null-hypothesis is rejected, 

indicating that the results obtained by the algorithms 

used in this study are significantly different. 

In order to compare the performance of SGO 

with the performance of each CSGO algorithms, a 

pairwise post-hoc Bonferroni-Dunn test was used. 

The performance of two compared algorithms is 

significantly different if the corresponding average 

ranks differ by at least the critical difference (CD) 

value. The average rank difference (ARD) between 

each CSGO algorithm and SGO algorithm, and the 

CD value at 95% confidence level are presented in 

Table 3. We can notice that the ARD of CSGO-

Logistic, CSGO-Iterative, and CSGO-Singer with 

respect to SGO algorithm is greater than the CD 

value (3.084). In the case of CSGO-Double and 

CSGO-Cat algorithm the difference is smaller than 

this critical value. Based on the statistic tests 

conducted, we can highlight that CSGO-Logistic, 

CSGO-Iterative, and respectively CSGO-Singer 

algorithm has a better mean performance as compared 

to SGO algorithm. CSGO-Double and CSGO-Cat 

algorithms do not differ from SGO algorithm in 

terms of performance obtained for Mean cost F item. 

Comparison of SGO and CSGO to other 

algorithms: In the cases C1 (10-units) and C5 (40-

units) several algorithms applied to solve the ED 

problem with multiple fuel sources were found in the 

literature. Details regarding the competing 

algorithms (inspiration, mathematical modeling, 

implementation, parameter setting, etc.) are given in 

the references indicated in Table 1. Below is a short 

description of the competing algorithms.  

A first group of algorithms refers to PSO [4] and 

several varieties: CPSO (advanced PSO), CBPSO-

RVM (PSO with inertia weight factor, constriction 

factor, and real-valued mutation), PSO-GM (PSO 

with Gaussian mutation) [32], and PSO-LRS (PSO 

with local random search) [3]. PSO algorithms are 

population-based algorithms inspired by swarm 

intelligence. In classical PSO the particles 

movement is based on three components: inertial, 

cognitive, and social. PSOs are fast convergence 

algorithms, easy to implement, but suffer from 

premature convergence in the case of multi-modal 

functions (as is the case of ED problem). CPSO [32] 

introduces a constriction factor that adjusts the 

velocity of the particles. CBPSO-RVM, PSO-GM 

and PSO-LRS are PSO varieties that enhance the 

global or local search capability of PSO.  

The second group consists of the GA algorithm 

[17] and its varieties (IGA-MU (improved genetic 

algorithm with multiplier updating (MU)), CGA-

MU (conventional GA with MU)) [27]. The GA is a 

population-based global search algorithm that 

mimics the natural genetic process. GA is based on 

three operators: crossover, mutation, and selection. 

GAs have the ability to identify a global solution, 

but have a long computational time. IGA-MU and 

CGA-MU are variants of GA that improve the 

search efficiency in solutions space (SS) for the ED 

problem with multiple local optimals. The tabu 

search algorithm (TSA) [17] is a local heuristic 

search method that exploits the vicinity of a given 

solution to obtain an improved solution. 

The third group consists of DE algorithm and its 

varieties. The DE [4] is a population-based 

algorithm that uses operators similar to GA. DE has 

a rapid convergence, which can sometimes be 

premature towards a local solution. The M-DE is an 

improved variety of DE in which an additional 

momentum operation is introduced to maintain the 

quality of the SS search. The HHE (hybrid 

hierarchical evolution) is a hybrid that combines the 

exploration and exploitation capabilities of the PSO 

and DE algorithms to improve the search efficiency. 

Another group in represented by the Jaya 

algorithms. The Jaya algorithm (JA) [31] is an easy-

to-implement metaheuristic technique that has only 

two parameters: the maximum number of iterations 

and population size, being used to solve 

optimization problems with/without constraints. The 

JA has a fast convergence, but the solutions can 
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stagnate a number of iterations. To cover this 

shortcoming GC-Jaya [33] introduces a mutation 

operator to increase diversity and avoid stagnation at 

certain points.  

The last group includes IMO and MIMO 

algorithms. Ion motion optimization (IMO) [19] is a 

population-based algorithm that models the 

phenomenon of ions attraction and repulsion. IMO 

consists of two phases: the liquid phase (which 

performs SS exploration) and the solid phase (which 

performs SS exploitation). The MIMO [19] is a 

modified IMO, which takes into account the 

repulsion between ions of the same type and the 

attraction between ions of different types in the 

liquid phase. 

Thus, the SGO and CSGO algorithms will be 

compared to other algorithms, using the items Best 

cost F, Mean cost F, Worst cost F, and SD. For the 

other cases (C2-C4) there were no algorithms 

identified for solving the ED problem.  

For case C1, based on the results from Table 1, the 

following can be noticed: 

(i). the SGO and CSGO algorithms obtain better 

solutions than all the algorithms mentioned in Table 1 

(such as: GA [17], PSO [4], DE [4], TSA [17], Jaya 

[31] or their varieties [3, 16, 27, 32-33], in terms of 

the Best cost F item; 

(ii). CSGO algorithms equipped with Logistic and 

Iterative maps have a better performance than all the 

algorithms mentioned in Table 1, in terms of the Best 

cost F, Mean cost F, Worst cost F items. 

In the case of C5, based on the results from 

Table 1, the following can be highlight: 

(i). the performance of SGO algorithm is higher 

compared to IMO algorithm [19] in terms of all 

statistical items; 

(ii). all CSGO algorithms have a better average 

performance than IMO and MIMO [19]; Also, 

CSGOs get a better value for Worst cost F and SD 

items than IMO and MIMO; 

(iii). CSO algorithm has the best performance 

[35]. 

Convergence: In Fig. 1 two convergence 

characteristics are drawn for each case, one obtained 

by the SGO algorithm, and the other by the CSGO 

algorithm equipped with the best chaotic map 

(Singer map). The characteristics are drawn for the 

best solution obtained.  

Cost values differ significantly from case to case. 

Therefore, for a more compact representation these 

costs are normalized in the range [0, 1]. For a better 

visibility of the convergence process, the graphs 

corresponding to cases C1-C3 are shifted with the 

value 0.01, and for cases C4-C5 with the value 0.02. 

 
(a) 

 
(b) 

Figure. 1 Convergence characteristics obtained by SGO 

and CSGO-Singer for: (a) C1-C3 cases and (b) C4-C5 

cases 

 

Following the iterative process displayed in Fig. 

1 it can be noticed that the convergence of the SGO 

and CSGO algorithms is good for all analyzed cases. 

Thus, after about 60-85% of the maximum number 

of iterations, the SGO and CSGO algorithms are 

able to obtain the best solution or a value close to it. 

Also, for each case, it can be seen that in the first 

25-30 iterations the SGO algorithm has a faster 

convergence than CSGO-Singer, but after 30 

iterations CSGO-Singer outperforms SGO, orienting 

toward the best solution (mentioned in Table 1). 

7. Conclusions 

This paper developed a chaotic SGO algorithm 

equipped with various chaotic maps that has been 

used to solve the economic dispatch problem with 

valve-point effects and multi-fuel sources. The 

chaotic sequences generated by various maps are 

included in the heuristics for updating the solutions 

contained in the initialization, improving and 

acquiring phases of SGO algorithm, increasing the 
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quality of the solutions and the stability of the new 

CSGO algorithm. 

CSGO algorithms were applied on four small 

(10-units), medium (20-units and 30-units) and large 

(40-units) systems. In all analyzed cases (C1-C5), 

the obtained results indicate that the inclusion of 

chaotic maps in the structure of the SGO algorithm 

leads to increased stability (measured by SD item) 

and a better average performance of CSGO 

algorithms (equipped with any chaotic map 

mentioned: Logistic, Double, Iterative, Singer and 

Cat) compared to the original SGO algorithm. 

Considering the group of CSGO algorithms, the 

CSGO-Singer algorithm obtains the best solution 

(based on Best Cost F item), for all analyzed cases. 

Also, the CSGO-Logistic obtains better solutions 

than SGO (considering Best cost F item) for C1 and 

C5 cases. Additionally, CSGO algorithms perform 

better than other well-known algorithms (GA, PSO, 

DE, Jaya, TSA) or varieties of them, especially for 

the C1 system. 

The obtained results, also confirmed by 

statistical tests, support the idea that including 

chaotic maps (Logistic, Iterative and Singer) in the 

structure of the original SGO algorithm can bring 

important benefits in solving ED problem. 
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