
Received: July 31, 2021. Revised: October 6, 2021. 616

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

Modified Flower Pollination Algorithm for Disease Identification in Swine

Yulianto Triwahyuadi Polly1,2 Sri Hartati3* Suprapto3 Bambang Sumiarto4

1Doctoral Program Department of Computer Science and Electronics, Faculty of Mathematics and Natural Science,

Universitas Gadjah Mada, Yogyakarta, Indonesia
2Department of Computer Science, Faculty of Science and Engineering,

Universitas Nusa Cendana, Kupang, Indonesia
3Department of Computer Science and Electronics, Faculty of Mathematics and Natural Science,

Universitas Gadjah Mada, Yogyakarta, Indonesia
4Department of Veterinary Medicine, Faculty of Veterinary Medicine,

Universitas Gadjah Mada, Yogyakarta, Indonesia

* Corresponding author’s Email: shartati@ugm.ac.id

Abstract: Pigs have become an essential part of the cultural and economic life of the people in Nusa Tenggara

Timur (NTT) Province. Diseases in pigs significantly affect the success of pig farming. Identification of disease in

pigs is a classification problem. Metaheuristic algorithms are widely used in Neural Network (NN) optimization to

solve classification problems. Flower Pollination Algorithm (FPA) is grouped into a metaheuristic algorithm that has

been commonly used in optimization cases in the real world. To improve FPA performance, this study proposes

replacing the FPA step vector parameter, namely Levy distribution, with Newton Polynomial Quadratic Interpolation

(NPQI), known as Quadratic Interpolation Flower Pollination (QIFP). Quadratic Interpolation Flower Pollination

Neural Network (QIFPNN), Flower Pollination Neural Network (FPNN), Bat Neural Network (BANN), and Particle

Swarm Optimization Neural Network (PSONN) algorithms were used to train NN in real cases of disease

identification in pigs, covering 11 diseases with 68 clinical symptoms. The results showed that the proposed

algorithm, namely QIFPNN, outperformed FPNN, BANN, and PSONN in classification accuracy. QIFPNN is also

able to improve classification accuracy and speed of convergence when compared to FPNN. QIFPNN and FPNN,

respectively, provide 82.6159 % and 67.4766 % accuracy, and the training time is 6056.240 seconds and 6555.179

seconds. QIFPNN accuracy increased by 22.40%, and training time was 7.61 % faster. It concluded that QIFPNN

could be used as a complementary model in disease identification in pigs.

Keywords: Disease identification in pigs, Flower pollination algorithm, Quadratic interpolation, Neural network.

List of symbols

𝑋 Population

𝑥𝑖
𝑡 The pollen position vector or the 𝑖 -th

solution vector in iteration 𝑡

𝑥𝑖𝑐
𝑡 The 𝑐 -th element of the 𝑖 -th solution

vector in iteration 𝑡

𝑔∗ The best solution vector found among all

solutions in the current iteration

𝐿 The step vector of the Levy distribution

𝛾 The scaling factor that controls the step

size

𝜖 Random walk

𝑄 Quadratic interpolation step vector

𝑃𝑚 The polynomial of degree 𝑚

(𝑟𝑚, 𝑓𝑚) Data point (abscissa, ordinate)

𝑟∗ Best abscissa

𝐿𝑏𝑅𝑒𝑎𝑙 The lower limit of the original search

space

𝑈𝑏𝑅𝑒𝑎𝑙 The upper limit of the original search

space

𝐿𝑏 The lower limit of the search space

𝑈𝑏 Upper limit of search space

𝑥𝑥𝑒 The 𝑒-th neuron in the input layer

𝑣𝑣𝑒𝑜 Connection weight between the input

layer and hidden layer

Received: July 31, 2021. Revised: October 6, 2021. 617

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

𝑣𝑣0𝑜 The bias towards the hidden layer

𝑧𝑧𝑜 The 𝑜-th neuron in the hidden layer

𝑤𝑤𝑜𝑤 Connection weight between the hidden

layer and output layer

𝑤𝑤0𝑤 The bias towards the output layer

𝑦𝑦𝑤 The 𝑤-th neuron in the output layer

Subscripts

𝑛 Population size or number of solutions

𝑡 Iteration

𝑑 Dimensions or number of solution

variables

𝑖, 𝑗, 𝑘 Solution (1, 2, …, n)

𝑐 Dimension index (1, 2, …, d)

𝑚 Interpolation degree

ℎ Number of neurons in the input layer

𝑒 The index of the neurons in the input layer

(1, 2, …, h)

𝑣 Number of neurons in the hidden layer

𝑜 The index of the neurons in the hidden

layer (1, 2, …, v)

𝑧 Number of neurons in the output layer

𝑤 The index of the neurons in the output

layer (1, 2, …, z)

1. Introduction

The agricultural sector in the province of nusa

tenggara timur (NTT) Indonesia is still the economic

base of the people in rural areas, controls the

livelihoods of most of the population and absorbs a

lot of labor. The economic structure of NTT is still

dominated by the agricultural sector, where its

contribution to the formation of gross regional

domestic product (GDP) during 2016-2019 is

between 28.00 percent to 29.03 percent. From this

agricultural sector, the livestock sub-sector

contributes between 9.44 percent to 9.46 percent.

Other sub-sectors contribute less than the livestock

sub-sector, so it can be said that the livestock sub-

sector is the primary buffer for the agricultural

sector [1].

Traditionally, pigs have played an essential role

in various cultural activities, where these events are

embedded in the social order of the people of NTT

while also being a source of protein for domestic

consumption. The health of pigs has been

compromised. These disorders are caused by

diseases, such as worm infections, dystocia,

endometritis, myiasis, mastitis, pneumonia, eye

inflammation, retensio secundinarum, scabies,

streptococcosis, and septichaemia epizootica

(Source: iSIKHNAS).

Identification of disease in pigs is a

classification problem. Several researchers have

researched classification using NN in the

management of pigs. J. Shao [2] investigated the

behavior of pigs adapting to temperature using

images of pig behavior in cages, then classified

using neural network (NN). Y. Wang, W. Yang, P.

Winter, and L. Walker [3] created a machine vision

to determine pig liveweight based on pig image

using NN. A. Apichottanakul, S. Pathumnakul, and

K. Piewthongngam [4] applied NN to measure the

average weight of pigs. S. K. Biswas, B. Baruah, B.

Purkayastha, and M. Chakraborty [5] used NN for

swine flu diagnosis. NNs often use gradient descent

to update weights in the training process. However,

gradient descent can result in the training process

being trapped in the local optima [6]. This limitation

of gradient descent encourages researchers to use

metaheuristic algorithms for updating weights in the

NN training process [7].

Flower pollination algorithm (FPA) is grouped

into a metaheuristic algorithm that works

stochastically inspired by nature. FPA imitates

flower pollination behavior to get the best flowers.

There are two pollination models: cross-pollination

occurs from pollen from flowers of other plants, and

self-pollination occurs from pollen from the same or

different flowers on the same plant [8]. In this study,

a new variant of FPA, namely quadratic

interpolation flower pollination (QIFP), is proposed

to improve cross-pollination ability in searching for

solutions. Quadratic interpolation (QI) uses a

parabolic curve to fit the objective function near the

optima [9]. The use of QI in metaheuristic

algorithms is auspicious in finding global optimum

solutions [9–11] and very fast convergence to

optimal solutions [9, 11].

Both gradient and linear interpolation techniques

are based on two-point information. Inspired by the

use of the gradient technique in gradient descent and

its drawbacks, it is proposed to use QI in exploring

promising areas based on information on three

fitnesses, namely the prominent pollen and the other

two pollens. QIFP views Levy's step vector in FPA

as a step length. QI against three fitness produces a

quadratic polynomial. This polynomial is derived to

get the step length that produces the best fitness of

the three existing fitness. Next, a random step vector

is generated around the step length, hoping it does

not move away from the global optima point. In

FPA, the random step vector is generated by a levy

distribution whose movement is not controlled so

that it is possible to move away from the global

optima point.

To improve the accuracy and speed of FPNN

convergence in disease identification in pigs,

QIFPNN is proposed. QIFPNN performance was

Received: July 31, 2021. Revised: October 6, 2021. 618

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

also tested against other metaheuristic algorithms,

namely BANN and PSONN. The BA and PSO

algorithms used are based on [12]. As a result,

QIFPNN outperformed FPNN, BANN, and PSONN

in terms of accuracy. The convergence speed of

QIFPNN exceeds FPNN, so the use of QI in

QIFPNN can improve the performance of FPNN.

2. Theory

2.1 Population

A population-based metaheuristic algorithm

means that each individual (solution) in the

population acts as a solution candidate. In each

generation (iteration), the algorithm will improve

the population. The population represents the set of

solution vectors in the search space. The population

and solution vectors are expressed as Eq. (1) and Eq.

(2).

𝑋 = {𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡 } (1)

𝑥𝑖
𝑡 = (𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑑

𝑡) (2)

where 𝑛 is the population size or number of

solutions, 𝑡 and 𝑑 respectively represent the

iterations and the dimensions or number of solution

variables. Each element of the solution vector can be

expressed in terms of 𝑥𝑖𝑐
𝑡 , where 𝑖 = 1,2, … , 𝑛 and

𝑐 = 1,2, … , 𝑑.

2.2 Flower pollination algorithm

FPA is inspired by the pollination process in

flowering plants with the following rules [8]:

1. Biotic pollinators such as bees, insects, birds,

and bats carry pollen and fly long distances

resulting in cross-pollination.

2. Abiotic pollinators such as wind, water, and rain

can only pollinate at close range so that self-

pollination occurs.

3. The probability of reproduction or flower

toughness is proportional to the similarity

between two flowers.

4. Another parameter of the probability

𝑝 𝜖 𝑟𝑎𝑛𝑑[0,1] switch controls pollination in

rules 1 and 2.

Assuming that one flower produces only one

pollen, then the potential solution to a problem is the

same as either flower or pollen. This algorithm is

then formulated by utilizing the concept of cross-

pollination and self-pollination. In cross-pollination,

it is guaranteed that the best reproduction occurs in

pollinators carrying pollen over long distances [13],

so rules 1 and 3 can be presented as Eq. (3).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑔∗ − 𝑥𝑖
𝑡) (3)

where 𝑥𝑖
𝑡 is the pollen position vector or the 𝑖 -th

solution vector in iteration 𝑡, 𝑔∗ is the best solution

vector found among all the solutions in the current

iteration, 𝛾 is the scaling factor that controls the step

size, and 𝐿 is the step vector or pollination power.

Levy flight describes the step distance from the

pollinator, where 𝐿 is derived from the Levy's

distribution using Eq. (4).

𝐿~
𝜆Γ(𝜆)𝑠𝑖𝑛(𝜋𝜆/2)

𝜋

1

𝑠1+𝜆 , (𝑠 ≫ 𝑠0 > 0) (4)

Γ(λ) is the standard gamma function and 𝜆 = 1.5,

the Levy distribution at large steps applies 𝑠 > 0,

and 𝑠 is determined from the gaussian distribution 𝑈

and 𝑉 as in Eq. (5).

𝑠 =
𝑈

|𝑉|1/𝜆 , 𝑈~𝑁(0, 𝜎2), 𝑉~𝑁(0, 1) (5)

where 𝑈~𝑁(0, 𝜎2) shows that a normal gaussian

distribution with variance 𝜎2 and a mean of zero,

and 𝑉~𝑁(0,1) indicates a standard gaussian normal

distribution. 𝜎2 can be calculated by Eq. (6).

𝜎2 = {
Γ(1+𝜆)

𝜆Γ(
1+𝜆

2
)

sin(
𝜋𝜆

2
)

2(𝜆−1)/2}

1/𝜆

 (6)

Self-pollination involves neighbouring pollen,

with rules 2 and 3 being presented in Eq. (7).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜖(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) (7)

where random walk 𝜖 is a uniform distribution

vector [0,1], 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡 are pollen positions 𝑗 and 𝑘.

Rule 4 aims to arrange pollination activity

randomly to switch. A preliminary parametric study

shows that 𝑝 = 0.8 can work better for most

applications [8, 14].

2.3 Newton polynomial quadratic interpolation

It has several 𝑚 + 1 data point information in

the range of [𝑎, 𝑏] , namely (𝑟0, 𝑓0) , (𝑟1, 𝑓1) , …,
(𝑟𝑚, 𝑓𝑚) so to determine the 𝑃(𝑟) function that

replaces the original function, interpolation can be

used. 𝑃(𝑟) is a polynomial function as in Eq. (8).

Received: July 31, 2021. Revised: October 6, 2021. 619

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

𝑃𝑚(𝑟) = 𝑎0 + 𝑎1(𝑟 − 𝑟0) + 𝑎2(𝑟 − 𝑟0)(𝑟 − 𝑟1) +
⋯ + 𝑎𝑚(𝑟 − 𝑟0)(𝑟 − 𝑟1) … (𝑟 − 𝑟𝑚−1) (8)

𝑎𝑚 = [𝑓0, … , 𝑓𝑚], is the dividend value recursively

defined as Eq. (9).

[𝑓0] = 𝑓0

[𝑓0, 𝑓1] =
𝑓1−𝑓0

𝑟1−𝑟0

[𝑓0, 𝑓1, … , 𝑓𝑚] =
[𝑓1,…,𝑓𝑚]−[𝑓0,…,𝑓𝑚−1]

𝑟𝑚−𝑟0

 (9)

Quadratic interpolation is known as second-degree

interpolation (𝑚 = 2) where three data points are

required, the polynomial form can be written as Eq.

(10).

𝑃2(𝑟) = 𝑓0 + [𝑓0, 𝑓1](𝑟 − 𝑟0) + [𝑓0, 𝑓1, 𝑓2](𝑟 −
𝑟0)(𝑟 − 𝑟1) (10)

2.4 Quadratic interpolation flower pollination

In QIFP, modification of FPA is carried out in

cross-pollination, where 𝛾𝐿 in Eq. (3) is replaced by

the quadratic interpolation step vector, namely 𝑄, so

that the equation looks like Eq. (11).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑄(𝑔∗ − 𝑥𝑖
𝑡) (11)

The data points in the NPQI represent 𝑟 as 𝑄 ,

and 𝑓 as the fitness of an objective function. The

determination of the three data points is carried out

as follows:

1. First data point (𝑟0, 𝑓0)

Assuming 𝑄 = 0 in Eq. (11), the value 𝑓0 =

𝑓_𝑜𝑏𝑗(𝑥𝑖
𝑡), and 𝑟0 = 0.

2. Second data point (𝑟1, 𝑓1)

Assuming 𝑄 = 1 in Eq. (11), then the values for

𝑓1 = 𝑓_𝑜𝑏𝑗(𝑔∗), and 𝑟1 = 1.

3. Third data point (𝑟2, 𝑓2)

Assuming 𝑄 = 1.25 in Eq. (11), then the value

of 𝑓2 = 𝑓_𝑜𝑏𝑗(𝑥𝑖
𝑡+1) , and the value of 𝑟2 =

1.25. The value of 𝑥𝑖
𝑡+1 is calculated using Eq.

(12).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 1.25(𝑔∗ − 𝑥𝑖
𝑡) (12)

These three data points are then used to obtain the

quadratic polynomial function 𝑃2(𝑟) . Since the

optimization problem is a minimum or maximum

problem, the value of 𝑟∗ which gives the minimum

or maximum fitness of the quadratic polynomial

function is found using Eq. (13).

𝑑𝑃2

𝑑𝑟
= 0

𝑟∗ =
𝑟1

2
+

𝑟0

2
+

𝑓(𝑟1)−𝑓(𝑟0)

𝑟1−𝑟0

2(
(

𝑓(𝑟2)−𝑓(𝑟1)
𝑟2−𝑟1

)−(
𝑓(𝑟1)−𝑓(𝑟0)

𝑟1−𝑟0
)

𝑟2−𝑟0
)

 (13)

An illustration of the three data point representations

for the minimum objective function can be seen in

Fig. 1. To get the step vector 𝑄 at point 𝑟∗, this is

done:

1. 𝑄~𝑁(𝜇, 𝜎) is a normal distribution with mean

𝜇 = 𝑟∗ and deviation standard 𝜎 = 𝑓1.

2. So that the solution vector elements do not

always change, some solution vector elements

need to be maintained using the 20% step vector

element 𝑄 is made zero using Eq. (14).

𝑄𝑐 = {
0,

𝑄𝑐 ,
𝑐 = 𝑙

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14)

where 𝑙 is an integer random number [1, 𝑑]
generated as much as 20 % of 𝑑.

The search space defines the area the algorithm

uses to find all possible solutions. The search space
[𝐿𝑏𝑅𝑒𝑎𝑙, 𝑈𝑏𝑅𝑒𝑎𝑙] says 𝐿𝑏𝑅𝑒𝑎𝑙 is the lower limit

and 𝑈𝑏𝑅𝑒𝑎𝑙 is the upper limit. In the optimization

problem with a single objective function, the

metaheuristic algorithm may not get satisfactory

results in the original search space. The original

search space is divided into smaller search

subspaces [15, 16]. The search technique in this

r0=0

f

r1=1 r2=1.25r*

f0

f1

f2

r

Received: July 31, 2021. Revised: October 6, 2021. 620

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

Figure. 1 An illustration of the representation of three

data points for the minimum objective function.

study was that the search starts from a small search

space and then slowly expands to the area of the

original search space. Expanding the search space

follows the steps as follows:

1. Identification of the initial search space:

[𝐿𝑏, 𝑈𝑏]𝑑 = [−1,1]𝑑 (15)

2. The next search space is expanded by:

[𝐿𝑏, 𝑈𝑏]𝑑 =

{
[𝐿𝑏 − 1, 𝑈𝑏 + 1]𝑑 𝑡 MOD 50 = 0

[𝐿𝑏, 𝑈𝑏]𝑑 otherwise
 (16)

3. Step 2 is repeated until 𝐿𝑏 = 𝐿𝑏𝑅𝑒𝑎𝑙 and 𝑈𝑏 =
𝑈𝑏𝑅𝑒𝑎𝑙

Where 𝐿𝑏𝑅𝑒𝑎𝑙 and 𝑈𝑏𝑅𝑒𝑎𝑙 are integers, and the

sum of 𝐿𝑏𝑅𝑒𝑎𝑙 and 𝑈𝑏𝑅𝑒𝑎𝑙 is zero. In each

identified search space, a metaheuristic algorithm is

used to find possible solutions.

2.5 Feed-forward neural network

Feed-forward neural network (FNN) is a

classifier that carries out supervised forward

learning in a pattern layer to obtain a classification

model. FNN contains several neurons arranged in

layers, neurons in each layer can be connected to

neurons in the next layer, and each connection has a

weight. FNN has at least one hidden layer that is

between the input and output layers. Fig. 2 is an

FNN with one hidden layer. The explanation of the

three types of neurons in each layer is from Fig. 2,

namely:

yyz

yyw

yy1

zzv

zzo

zz1

xxh

xxe

xx1

11

vv11

vv1o

vv1v

vve1

vveo

vvev

vvh1

vvho

vvhv

vv01 vv0o

vv0v

ww01

ww0w

ww0z

ww11

wwo1

wwv1

ww1w

wwow

wwoz

wwvw

ww1z

wwvz

..
.

..
.

..
.

..
.

..
.

..
.

Figure. 2 FNN architecture.

• Input neurons 𝑥𝑥𝑒 : neurons receive input from

the outside world. No computation is done, only

passing information to hidden neurons. Where

𝑒 = 1,2, … ℎ.

• Hidden neuron 𝑧𝑧𝑜 : information from input

neuron 𝑥𝑥𝑒 , connection weight 𝑣𝑣𝑒𝑜 and bias

𝑣𝑣0𝑜 are computed to produce output on hidden

neuron 𝑧𝑧𝑜 which is then forwarded to the

output neuron, where 𝑜 = 1,2, … 𝑣 . The

calculation for hidden neurons can be seen in Eq.

(17).

𝑧𝑧𝑜 =
1

(1+exp(−(𝑣𝑣0𝑜+∑ 𝑥𝑥𝑒𝑣𝑣𝑒𝑜
ℎ
𝑒)))

 (17)

• Output neuron 𝑦𝑦𝑤 : output from the hidden

neuron 𝑧𝑧𝑜, connection weights 𝑤𝑤𝑜𝑤 and bias

𝑤𝑤0𝑤 are computed to produce output on the

output neuron, where 𝑤 = 1,2, … 𝑧 . The

calculation on the output neuron can be seen in

Eq. (18).

𝑦𝑦𝑤 =
1

(1+exp(−(𝑤𝑤0𝑤+∑ 𝑧𝑧𝑜𝑤𝑤𝑜𝑤
𝑧
𝑤)))

 (18)

Learning error is determined by Eq. (19).

𝑀𝑆𝐸 =
∑ (

∑ (𝑑𝑡𝑤𝑦−𝑦𝑦𝑤𝑦)
2𝑧

𝑤=1
𝑧

)𝑁𝑑𝑡
𝑦=1

𝑁𝑑𝑡
 (19)

where MSE (mean square error) is the average

squared error, 𝑁𝑑𝑡 is the amount of training data, 𝑧

is the number of neurons in the output layer, 𝑑𝑡𝑤𝑦 is

the target of the 𝑦-th actual data on the 𝑤-element,

and 𝑦𝑦𝑤𝑦 is the output of the 𝑤 -th neuron

corresponding to the actual data-target 𝑦.

Received: July 31, 2021. Revised: October 6, 2021. 621

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

The calculation of classification accuracy using

Eq. (20) is done by:

• Use weights and biases for instances.

• Perform forward propagation to get the output,

compare the output with the actual class, and

calculate the correct class.

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (20)

2.6 k-Fold cross-validation

k-fold cross-validation is used to evaluate and

select a good classification model. k-fold-cross-

validation means that the dataset is divided into 𝑘

parts, and cross-validation is carried out for 𝑘

rounds so that each part has the opportunity to be

tested [17]. Of the 𝑘 parts, 𝑘 − 1 parts are used as

training data, and one part as validation data. In k

cycles it will produce 𝑘 different exact models.

2.7 Quadratic interpolation flower pollination

neural network with k-fold cross-validation

The weights and bias of the FNN are

represented in pollen, as in Fig. 3.

The objective function is the FNN function, as in

Eq. (21).

𝑣𝑣11 ⋯ 𝑣𝑣ℎ1 𝑣𝑣01 ⋯ 𝑣𝑣ℎ𝑣 𝑣𝑣0𝑣 𝑤𝑤11 ⋯ 𝑤𝑤𝑣1 𝑤𝑤01 ⋯ 𝑤𝑤𝑣𝑧 𝑤𝑤0𝑧

↓

𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 ⋯ 𝑥𝑖𝑑

Figure. 3 Arrangement of the weight and bias elements in

the solution vector.

𝑓_𝑜𝑏𝑗(𝑥) = 𝑀𝑆𝐸(𝑥) (21)

Each pollen in the population produces its fitness.

The set of fitness in the 𝑡-iteration is expressed as

Eq. (22).

QIFPNN algorithm:

1 Objective minimize 𝑓_𝑜𝑏𝑗(𝑥), 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑)

2 Initialize QIFPNN control parameters

 [number of flowers/pollen gametes (n), max iteration (maxIteration), switch probability (p),

problem dimensions (d), lower bound (Lb), upper bound (Ub), target error (targetError), NN

structure, iteration threshold of convergence accuracy (iterThOfCA), lower bound real (LbReal),

upper bound real (UbReal)]

3 Load the diseases of pig training data

4 Load the diseases of pig validation data

5 𝒕 = 1

6 Initialize a population of n flowers/pollen gametes with random solutions[0,1]
7 Find the candidate best solution 𝒈 ∗ in the initial population based on the fitness of training data

8 Using 𝒈∗ to compute 𝒈𝒍𝒐𝒃𝒂𝒍𝑩𝒆𝒔𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 of validation data

9 𝒄𝒐𝒖𝒏𝒕𝑰𝒕𝒆𝒓𝑶𝒇𝑪𝒐𝒏𝒗𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 1

10 While (t ≤ maxIteration) and (fitness of 𝒈∗ ≥ targetError) and (countIterOfConvAccuracy ≤

iterThOfCA)

11 For i = 1 : n

12 If |𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝒙𝒊
𝒕 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝒈∗| < 10−2 then 𝒕𝒆𝒎𝒑(𝑖) = "1"

13 If 𝑠𝑢𝑚(𝑐𝑜𝑢𝑛𝑡(𝒕𝒆𝒎𝒑, "1")) ≥ 90% of population

14 Generate the population via 𝑥𝑡 = 𝐿𝑏 + 𝑟𝑎𝑛𝑑[0,1](𝑈𝑏 − 𝐿𝑏) except the solution vector

containing 𝒈∗

15 Empty 𝒕𝒆𝒎𝒑

16 End if

17 If rand < p

18 If i ≠ CandidateBestSolutionIndex

19 Draw a (d-dimensional) step vector Q based on quadratic interpolation mechanism

20 Global pollination via Eq. (11)

21 End if

22 Else

23 If i ≠ CandidateBestSolutionIndex

24 Draw 𝝐 from a uniform distribution in [0,1]

25 Do local pollination via Eq. (7)

Received: July 31, 2021. Revised: October 6, 2021. 622

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

26 End if

27 End if

28
Check the bounds, 𝑥𝑖𝑐

𝑡+1 = {
𝐿𝑏 𝑥𝑖𝑐

𝑡+1 < 𝐿𝑏

𝑈𝑏 𝑥𝑖𝑐
𝑡+1 > 𝑈𝑏

29 Using new solution 𝒙𝒊
𝒕+𝟏 to compute fitness of training data

30 If the fitness of new solution < fitness of old solution then 𝑜𝑙𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

31 If the fitness of new solution < fitness of 𝒈∗ then update 𝒈∗

32 End for

33 Compute classification accuracy of validation data (𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑶𝒇𝑽𝒂𝒍𝑫𝒂𝒕𝒂) using 𝒈∗ via Eq. (20)

34 If (𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑶𝒇𝑽𝒂𝒍𝑫𝒂𝒕𝒂 ≥ 𝒈𝒍𝒐𝒃𝒂𝒍𝑩𝒆𝒔𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚)

35 Update current best solution 𝒃𝒔 = 𝒈∗

36 globalBestAccuracy = accuracyOfValData

37 countIterOfConvAccuracy = 0

38 End if

39 Expand of Lb and Ub coverage using Eq. (16)

40 countIterOfConvAccuracy = countIterOfConvAccuracy + 1

41 𝒕 = 𝒕 + 1

42 End while

43 Output the best solution 𝒃𝒔 found

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡 =
 {𝑀𝑆𝐸(𝑥1

𝑡), 𝑀𝑆𝐸(𝑥2
𝑡), … , 𝑀𝑆𝐸(𝑥𝑛

𝑡)} (22)

The optimization problem in FNN is to minimize

learning errors.

Training and validation data are used in the

QIFPNN training process with the aim that the

solution obtained is able to provide the best

classification accuracy. This accuracy is obtained in

two stages. First, find the solution that provides the

best accuracy on the training data in each iteration

indicated by the fitness value or minimum MSE of

the solution. This solution is called the best

candidate solution (𝑔∗). Second, check the accuracy

of the validation data (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑓𝑉𝑎𝑙𝐷𝑎𝑡𝑎) of 𝑔∗.

If 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑓𝑉𝑎𝑙𝐷𝑎𝑡𝑎 is greater than or equal to

the best accuracy (𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) , then

update the best solution (𝑏𝑠) and

𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , and reset the accuracy

convergence counter(𝑐𝑜𝑢𝑛𝑡𝐼𝑡𝑒𝑟𝑂𝑓𝐶𝑜𝑛𝑣𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦).

During iteration, the value of

𝑐𝑜𝑢𝑛𝑡𝐼𝑡𝑒𝑟𝑂𝑓𝐶𝑜𝑛𝑣𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is incremented. If

𝑐𝑜𝑢𝑛𝑡𝐼𝑡𝑒𝑟𝑂𝑓𝐶𝑜𝑛𝑣𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 has reached the

convergence accuracy (𝑖𝑡𝑒𝑟𝑇ℎ𝑂𝑓𝐶𝐴) limit value,

the training is stopped.

2.8 Pig diseases data

The disease dataset in pigs was obtained from

the national animal health information system

(iSIKHNAS) [18]. The data collected consisted of

disease data and accompanying clinical symptoms.

There were 11 diseases and 68 clinical symptoms,

according to data availability. The eleven diseases

consist of worm infections, dystocia, endometritis,

myiasis, mastitis, pneumonia, eye inflammation,

retensio secundinarum, scabies, streptococcosis, and

septichaemia epizootica. sixty-eight clinical

symptoms consist of: anorexia, limp, swollen joints,

anemia, dull hair, thinness, weakness, lack of

response, postpartum, diarrhea, fever, skin

inflammation, parasitic feces, lack of body fluids,

standing abnormal, injuries feet, paralyzed,

difficulty in standing, cough, runny nose,

abnormalities/difficulty breathing, pale mucosa,

vaginal inflammation, itching, loss of hair,

collapsing, abscess, bleeding sores, skin disorders,

vulva abnormalities, inflammation of vulva,

vomiting, abnormal walk, unsteadiness, constipation,

nose with mucus, vulvar pus discharge,

inflammation of the eyes, ear scabs, ulcers,

temperature disorders, snoring, (jaw) / (lower jaw)

swelling, respiratory system disorders, green feces,

abdominal abnormalities, purulent eyes, difficulty

birth , bad smell vulva, miscarriage, vaginal

abnormalities, stillbirth, excessive saliva, tremor,

swollen udder, inflammation of nipples, blisters on

udder, Scrotum Hernia, Swollen Testicles, Nose

problems, blindness, light sensitive eyes, placental

retention, cloudy eye corneas, swollen head, milk

disorders, difficulty chewing/swallowing, and

hypothermia.

The disease dataset in pigs was categorical, so it

needs to be converted into numeric. The value of

clinical symptoms that appear in specific diseases is

set to 1 while others are 0. Sixty-eight clinical

symptoms become 𝑥𝑥𝑒 input neurons and 11

diseases were converted in binary to produce four

Received: July 31, 2021. Revised: October 6, 2021. 623

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

output neurons 𝑦𝑦𝑤. The dataset of diseases in pigs

can be categorized into medical datasets. It had 68

input attributes and 11 class attributes. The input

Table 1. Class characteristics

Class Information

Worm infections 17 data (11%)

Dystocia 3 data (2%)

Endometritis 10 data (6%)

Myiasis 10 data (6%)

Mastitis 6 data (4%)

Pneumonia 21 data (13%)

Eye Inflammation 4 data (3%)

Retensio Secundinarum 3 data (2%)

Scabies 22 data (14%)

Streptococcosis 44 data (28%)

Septichaemia Epizootica 18 data (11%)

Total 158 data (100%)

attribute had binary characteristics. Class

characteristics can be seen in Table 1.

3. Experiment setup

3.1 System configuration

The QIFPNN algorithm proposed in this study

was used to identify diseases in pigs. QIFPNN was

coded and implemented using MATLAB R2018b on

a computer with an Intel Core i7-9750H

configuration, CPU @ 2.6GHz - Up to 4.6GHz,

16GB RAM, 64-bit operating system. All

experiments were carried out on the specified

machine. The training and testing process was based

on a parallel computing model, which took

advantage of the six physical cores available on the

Intel Core i7-9750H.

3.2 Parameter settings

The optimal solution obtained by a

metaheuristic algorithm was to control the

parameters in the iteration cycle. However, the exact

way to create parameter diversity was unknown

[19]. QIFPNN, FPNN, BANN, and PSONN were

vulnerable to the parameters used, similar to other

metaheuristic algorithms, which were also

susceptible to their parameters. In this experiment,

the population parameter 𝑛 = 30 [20] and the

original search space for all dimensions 𝐿𝑏𝑅𝑒𝑎𝑙 =
−80 and 𝑈𝑏𝑅𝑒𝑎𝑙 = 80 were determined. For FPNN,

BANN and PSONN, the search space is directly

performed against the original search space so that

𝐿𝑏 = 𝐿𝑏𝑅𝑒𝑎𝑙 = −80 and 𝑈𝑏 = 𝑈𝑏𝑅𝑒𝑎𝑙 = 80 .

Especially for QIFPNN and FPNN, the switch

probability parameter is 𝑝 = 0.8 . In BANN,

parameter 𝑙𝑜𝑢𝑑𝑛𝑒𝑠𝑠 = 0.25 and parameter

𝑝𝑢𝑙𝑠𝑒𝑅𝑎𝑡𝑒 = 0,5 , while in PSONN, learning

parameters 𝛼 ≈ 𝛽 ≈ 2 [12].

In FNN, a hidden layer was used, given the fact

that one hidden layer is relatively close to function

with arbitrary accuracy [21]. The determination of

the number of hidden neurons, according to [22],

uses Eq. (23).

𝑣 = √(ℎ + 𝑧) + 𝑎𝑎 (23)

where 𝑣 is the number of neurons in the hidden

layer, ℎ is the number of neurons in the input layer,

𝑧 is the number of neurons in the output layer, and

𝑎𝑎 is an integer. By choosing 𝑎𝑎 = 1, we get 𝑣 = 9

so that the FNN architecture used is 68-9-4.

The specified stopping parameters for the

QIFPNN, FPNN, BANN and PSONN criteria were

the maximum iteration (𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 4000) ,

the target error (𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑟𝑟𝑜𝑟 = 0.001) and the

iteration allowance limit for the convergence

condition of classification accuracy

(𝑖𝑡𝑒𝑟𝑇ℎ𝑂𝑓𝐶𝐴 = 700).

3.3 Comparison algorithms and running the

proposed QIFPNN

The disease dataset in pigs is divided into three

subsets, i.e. 90 % of the data for the training and

validation subsets are based on 10-fold cross-

validation, and 10 % of the data for the test subset.

The test records the minimum (Min), maximum

(Max), and average (Ave) values of the

classification accuracy values for QIFPNN, FPNN,

BANN, and PSONN.

4. Result and discussion

Finding optimal solutions resistant to uncertainty

in real-world problems is very difficult, so an

algorithm must be treated on various data groups. k-

fold cross-validation is very helpful in measuring

the performance of algorithms in different data

groups. The algorithm performance measurement

used is the minimum, maximum, and average

classification accuracy per fold.

The performance comparison results of QIFPNN,

FPNN, BANN, and PSONN are presented in Table

2-6 and Fig. 4-11. Table 2 and Fig. 4-5 represent

information on a mean of 20 runs of classification

accuracy per fold and an average of 10 folds of the

training subset. Table 3 and Fig. 6-7 represent

information on a mean of 20 runs of classification

accuracy per fold and an average of 10 folds of the

validation subset.

Received: July 31, 2021. Revised: October 6, 2021. 624

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

Table 4 and Fig. 8-9 represent information on a

mean of 20 runs of classification accuracy per fold

and a mean of 10 folds of the test subset. Table 5

describes the information recapitulation of the

average classification accuracy of the training,

validation, and test subsets for ten folds. In

comparison, Table 6 and Fig. 10-11 represent the

average information of 20 runs of training time per

fold and an average of 10 folds of training time.

Based on the classification accuracy

measurement results on the training, validation, and

test subsets between QIFPNN, FPNN, BANN, and

PSONN, it can be seen that QIFPNN provides

promising results in experiments than FPNN,

BANN, and PSONN. The average value of

classification accuracy in training, validation, and

test subsets for each fold obtained by QIFPNN is

higher than FPNN, BANN, and PSONN. Likewise,

Table 2. Average 20 runs of classification accuracy per fold in the training subset of disease in pigs

Fold

Method

QIFPNN (%) FPNN (%) BANN (%) PSONN (%)

Min Max Ave Min Max Ave Min Max Ave Min Max Ave

1 89.0625 99.2188 96.4453 40.625 92.9688 82.8906 8.5938 100 68.6328 10.9375 32.8125 21.2891

2 90.5512 99.2126 96.5354 22.8347 92.126 68.2284 7.0866 98.4252 72.2047 13.3858 40.1575 24.9606

3 87.4016 99.2126 95.63 52.7559 95.2756 79.4095 7.0866 99.2126 72.126 11.0236 31.4961 20.7874

4 75 99.2188 91.4453 56.25 92.1875 74.5313 8.5938 98.4375 71.7969 5.4688 39.8438 21.1328

5 85.9375 99.2188 95.8984 40.625 90.625 69.5313 14.0625 100 76.25 7.0313 38.2813 22.0703

6 75 99.2188 94.6094 46.875 89.8438 69.2578 13.2813 98.4375 75.3125 12.5 36.7188 23.0859

7 89.8438 99.2188 95.625 32.0313 92.1875 75.1953 9.375 99.2188 78.9844 4.6875 31.25 18.4375

8 85.1563 98.4375 95.1172 33.5938 90.625 65.7422 5.4688 99.2188 70.5469 8.5938 35.1563 19.9609

9 90.625 99.2188 97.5 50 93.75 76.1719 5.4688 100 71.1719 10.1563 36.7188 22.1094

10 76.5625 100 93.6328 59.375 94.5313 79.1797 10.9375 99.2188 79.1406 14.0625 38.2813 21.6016

Mean 84.514 99.2175 95.2439 43.4966 92.412 74.0138 8.9955 99.2169 73.6167 9.7847 36.0716 21.5436

Table 3. Average 20 runs of classification accuracy per fold in the validation subset of disease in pigs

Fold

Method

QIFPNN (%) FPNN (%) BANN (%) PSONN (%)

Min Max Ave Min Max Ave Min Max Ave Min Max Ave

1 64.2857 92.8571 72.8571 57.1429 85.7143 67.8571 7.1429 78.5714 46.4286 7.1429 42.8571 26.7857

2 80 93.3333 84.3333 40 86.6667 68.6667 13.3333 86.6667 56.3333 13.3333 40 30.3333

3 60 86.6667 73 60 80 69.3333 6.6667 73.3333 51.6667 20 46.6667 25.3333

4 57.1429 92.8571 79.2857 57.1429 85.7143 72.1429 14.2857 92.8571 58.5714 7.1429 50 26.7857

5 64.2857 85.7143 76.0714 50 78.5714 66.4286 21.4286 85.7143 58.5714 7.1429 42.8571 26.4286

6 71.4286 92.8571 79.2857 50 92.8571 69.6429 0 85.7143 57.1429 14.2857 35.7143 26.0714

7 71.4286 92.8571 83.9286 57.1429 85.7143 74.6429 7.1429 85.7143 63.9286 14.2857 42.8571 27.8571

8 71.4286 92.8571 81.0714 50 78.5714 63.5714 7.1429 85.7143 55.3571 7.1429 42.8571 25

9 71.4286 85.7143 79.2857 64.2857 92.8571 72.1429 21.4286 85.7143 61.0714 14.2857 50 29.6429

10 71.4286 78.5714 75.3571 64.2857 78.5714 72.8571 7.1429 78.5714 57.1429 7.1429 35.7143 26.7857

Mean 68.2857 89.4286 78.4476 55 84.5238 69.7286 10.5714 83.8571 56.6214 11.1905 42.9524 27.1024

Received: July 31, 2021. Revised: October 6, 2021. 625

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

Figure. 4 Average 20 runs per fold of classification

accuracy of the training subset of diseases in pigs

Figure. 5 Average 10 fold of classification accuracy of

the training subset of diseases in pigs
Table 4. Average 20 runs of classification accuracy per fold in the test subset of disease in pigs

Fold

Method

QIFPNN (%) FPNN (%) BANN (%) PSONN (%)

Min Max Ave Min Max Ave Min Max Ave Min Max Ave

1 56.25 87.5 75.3125 37.5 81.25 63.75 0 87.5 41.875 0 43.75 20

2 62.5 87.5 77.8125 25 81.25 56.5625 6.25 75 51.875 12.5 50 27.5

3 62.5 93.75 78.4375 31.25 81.25 61.25 6.25 81.25 51.5625 6.25 37.5 22.1875

4 56.25 81.25 68.125 31.25 75 56.875 6.25 75 48.4375 0 50 21.875

5 68.75 87.5 77.8125 25 75 54.375 6.25 81.25 56.5625 6.25 37.5 21.875

6 62.5 87.5 72.8125 31.25 75 53.4375 6.25 87.5 54.375 6.25 37.5 22.5

7 62.5 87.5 75.3125 37.5 81.25 64.375 6.25 81.25 53.4375 0 37.5 19.375

8 50 87.5 76.5625 31.25 75 51.875 0 87.5 44.6875 6.25 43.75 22.1875

9 56.25 87.5 73.75 31.25 93.75 63.75 6.25 81.25 51.875 0 37.5 19.375

10 50 81.25 65.625 31.25 75 60.625 6.25 68.75 48.75 0 37.5 20.9375

Mean 58.75 86.875 74.1563 31.25 79.375 58.6875 5 80.625 50.3438 3.75 41.25 21.7813

Table 5. Recapitulation of mean classification accuracy of

the training, validation, and test subsets for the ten folds

of disease in pigs

Method

Average

accuracy

of

training

subset

(%)

Average

accuracy

of

validation

subset

(%)

Average

accuracy

of test

subset

(%)

Mean

accuracy of

training,

validation,

and test

subsets (%)

QIFPNN 95.2439 78.4476 74.1563 82.6159

FPNN 74.0138 69.7286 58.6875 67.4766

BANN 73.6167 56.6214 50.3438 60.194

PSONN 21.5436 27.1024 21.7813 23.4758

Table 6. Average 20 runs of training time per fold

Fold

Method

QIFPNN

(seconds)

FPNN

(seconds)

BANN

(seconds)

PSONN

(seconds)

1 6122.22 7850.327 5304.251 5069.914

2 5568.101 5523.534 5917.551 3812.06

3 5808.79 7062.422 4680.401 4273.359

4 4839.996 6728.211 5473.157 3645.717

5 7166.274 6054.811 5709.082 4095.621

6 6800.633 5656.272 6231.315 4774.752

7 5516.892 7134.534 6109.82 4029.035

8 5872.615 5550.709 6364.938 3690.586

9 7512.588 7136.171 5075.679 3193.189

10 5354.292 6854.8 4879.294 3488.122

Mean 6056.240 6555.179 5574.549 4007.235

Received: July 31, 2021. Revised: October 6, 2021. 626

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

Figure. 6 Average 20 runs per fold of classification

accuracy of the validation subset of diseases in pigs

Figure. 7 Average 10 fold of classification accuracy of

the validation subset of diseases in pigs

Figure. 8 Average 20 runs per fold of classification

accuracy of the test subset of diseases in pigs

Figure. 9 Average 10 fold of classification accuracy of

the test subset of diseases in pigs

the average value of classification accuracy for ten

folds shows the QIFPNN 82.6159 % higher than

FPNN 67.4766 %, BANN 60.194 %, and PSONN

23.4758 %. The measurement of training time per

fold QIFPNN 6056.240 seconds is relatively faster

than FPNN 6555.179 seconds.

QIFPNN accuracy increased by 22.40 %, and

training time was 7.61 % faster against FPNN.

However, the QIFPNN training time is slower than

BANN and PSONN.

QIFPNN was applied to identify disease in pigs

based on data on clinical symptoms of pigs that

were tested to see the identification ability of

QIFPNN. Disease identification in pigs by FPNN

outperformed the accuracy of BANN and PSONN

but with a slower convergence rate.

As expected, the proposed QIFPNN can improve

the accuracy and speed of convergence of the FPNN.

This shows that QIFPNN managed to avoid local

Figure. 10 Average of 20 runs per fold of training time

Received: July 31, 2021. Revised: October 6, 2021. 627

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

Figure. 11 Average of 10 folds of training time

minima and has the ability to explore the search

space to find the best weights and biases that result

in minimum MSE training, thereby increasing

classification accuracy. The QI concept adopted by

QIFPNN can accelerate convergence. The poor

classification accuracy of FPNN, BANN, and

PSONN is caused by poor exploration and

exploitation capabilities.

Overall, QIFPNN is accurate and promises to

solve real-life optimization problems. The proposed

QIFPNN algorithm can be used as a complementary

model for human expertise, provided that data on

clinical symptoms of disease in pigs is well

available.

5. Conclusion

In this study, the QI approach was used to

improve accuracy and accelerate the convergence of

QIFPNN in disease identification in pigs. It is a

complementary model that can be used to identify

diseases in pigs. Updating the weights in NN

training using metaheuristic algorithms such as FPA,

BA, and PSO compared to QIFP aims to obtain an

appropriate disease identification model in pigs. It

was found that the proposed QIFPNN performs

better than FPNN, BANN, and PSONN in terms of

accuracy, and the convergence speed of QIFPNN is

faster than FPNN but slower than BANN and

PSONN. This is evidenced by the average value of

classification accuracy for ten fold, showing

QIFPNN 82.6159 % higher than FPNN 67.4766 %,

BANN 60.194 %, and PSONN 23.4758 %. The

measurement of training time per fold QIFPNN

6056.24 seconds is relatively faster than FPNN

6555.179 seconds. QIFPNN accuracy increased by

22.4 %, and training time was 7.61 % faster against

FPNN. In addition, QIFP can be used as an

alternative method of NN training. In the future, we

recommend the QIFPNN step vector using the

Cauchy distribution and testing it on various

datasets with various data types.

Conflicts of interest

The authors declare there are no conflict interest

in this work.

Author contributions

The contributions of each author are described

as follows: "Conceptualization and methodology,

Hartati, Suprapto, and Polly; implementation of

methodology, Polly; data validation, Sumiarto and

Polly; formal analysis, Hartati, Suprapto, and

Sumiarto; investigation, Hartati, Suprapto, Sumiarto,

and Polly; writing—original draft preparation, Polly;

writing—review and editing, Hartati, Suprapto and

Sumiarto; supervision, Hartati, Suprapto and

Sumiarto; funding acquisition, Polly".

Acknowledgments

The authors would like to thank the LPDP

(lembaga pengelola dana pendidikan) for funding

this research. The author also would thank The

directorate general of livestock and animal health

services, ministry of agriculture, Indonesia, for

supporting this research in providing data via

iSIKHNAS.

References

[1] BPS NTT, Profil Sektor Pertanian Provinsi

Nusa Tenggara Timur 2019. Kupang: © Badan

Pusat Statistik Provinsi Nusa Tenggara Timur,

2020.

[2] J. Shao, “Classification of swine thermal

comfort behavior by image processing and

neural network”, Paper 12033 (Iowa State

University), 1997.

[3] Y. Wang, W. Yang, P. Winter, and L. Walker,

“Walk-through weighing of pigs using machine

vision and an artificial neural network”, Biosyst.

Eng., Vol. 100, No. 1, pp. 117–125, 2008, doi:

10.1016/j.biosystemseng.2007.08.008.

[4] A. Apichottanakul, S. Pathumnakul, and K.

Piewthongngam, “The role of pig size

prediction in supply chain planning”, Biosyst.

Eng., Vol. 113, No. 3, pp. 298–307, 2012, doi:

10.1016/j.biosystemseng.2012.07.008.

[5] S. K. Biswas, B. Baruah, B. Purkayastha, and

M. Chakraborty, “An ANN based Classification

Algorithm for Swine Flu Diagnosis”, Int. J.

Knowl. Based Comput. Syst., Vol. 3, No. 1,

Received: July 31, 2021. Revised: October 6, 2021. 628

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.55

2015, doi: 10.21863/ijkbcs/2015.3.1.005.

[6] M. Mavrovouniotis and S. Yang, “Training

neural networks with ant colony optimization

algorithms for pattern classification”, Soft

Comput., Vol. 19, No. 6, pp. 1511–1522, 2015,

doi: 10.1007/s00500-014-1334-5.

[7] V. K. Ojha, A. Abraham, and V. Snášel,

“Metaheuristic design of feedforward neural

networks: A review of two decades of research”,

Eng. Appl. Artif. Intell., Vol. 60, No. January,

pp. 97–116, Apr. 2017, doi:

10.1016/j.engappai.2017.01.013.

[8] X. S. Yang, “Flower Pollination Algorithm for

Global Optimization”, Unconventional

Computation and Natural Computation, Vol.

7445, 2012, pp. 240–249.

[9] Y. Yang, X. Zong, D. Yao, and S. Li,

“Improved Alopex-based evolutionary

algorithm (AEA) by quadratic interpolation and

its application to kinetic parameter estimations”,

Appl. Soft Comput., Vol. 51, pp. 23–38, Feb.

2017, doi: 10.1016/j.asoc.2016.11.037.

[10] K. Deep and J. C. Bansal, “Hybridization of

particle swarm optimization with quadratic

approximation”, OPSEARCH, Vol. 46, No. 1,

pp. 3–24, Mar. 2009, doi: 10.1007/s12597-009-

0002-5.

[11] D. Singh and S. Agrawal, “Self organizing

migrating algorithm with quadratic

interpolation for solving large scale global

optimization problems”, Appl. Soft Comput.,

Vol. 38, pp. 1040–1048, Jan. 2016, doi:

10.1016/j.asoc.2015.09.033.

[12] X. S. Yang, Nature-Inspired Optimization

Algorithms, Elsevier Inc, 2014.

[13] E. Nabil, “A Modified Flower Pollination

Algorithm for Global Optimization”, Expert

Syst. Appl., Vol. 57, pp. 192–203, Sep. 2016,

doi: 10.1016/j.eswa.2016.03.047.

[14] X. S. Yang, “Chapter 11 - Flower Pollination

Algorithms”, Nature-Inspired Optimization

Algorithms, 2014, pp. 155–173.

[15] M. Rajora, P. Zou, Y. Guang, Z. W. Fan, H. Y.

Chen, W. C. Wu, B. Li, and S. Y. Liang, “A

split-optimization approach for obtaining

multiple solutions in single-objective process

parameter optimization”, Springerplus, Vol. 5,

No. 1, p. 1424, Dec. 2016, doi:

10.1186/s40064-016-3092-6.

[16] Q. Fan, X. Yan, Y. Zhang, and C. Zhu, “A

Variable Search Space Strategy Based on

Sequential Trust Region Determination

Technique”, IEEE Trans. Cybern., pp. 1–13,

2019, doi: 10.1109/TCYB.2019.2914060.

[17] S. Raschka, “Model Evaluation, Model

Selection, and Algorithm Selection in Machine

Learning”, arXiv, Nov. 2018, [Online].

Available: http://arxiv.org/abs/1811.12808.

[18] iSIKHNAS, “Informasi Penyakit pada Babi

dari iSIKHNAS”, 2019.

https://www.isikhnas.com/.

[19] X. S. Yang, Cuckoo Search and Firefly

Algorithm, Vol. 516. Cham: Springer

International Publishing, 2014.

[20] D. Chakraborty, S. Saha, and S. Maity,

“Training feedforward neural networks using

hybrid flower pollination-gravitational search

algorithm”, In: Proc. of 2015 International

Conference on Futuristic Trends on

Computational Analysis and Knowledge

Management (ABLAZE), Feb. 2015, pp. 261–

266, doi: 10.1109/ABLAZE.2015.7155008.

[21] H. Chiroma, A. Khan, A. I. Abubakar, Y. Saadi,

M. F. Hamza, L. Shuib, A. Y. Gital, and T.

Herawan, “A new approach for forecasting

OPEC petroleum consumption based on neural

network train by using flower pollination

algorithm”, Appl. Soft Comput., Vol. 48, pp.

50–58, Nov. 2016, doi:

10.1016/j.asoc.2016.06.038.

[22] H. Lin, Z. Chen, L. Wu, P. Lin, and S. Cheng,

“On-line Monitoring and Fault Diagnosis of PV

Array Based on BP Neural Network Optimized

by Genetic Algorithm”, Multi-disciplinary

Trends in Artificial Intelligence, Vol. 9426, B.

A and Z. X, Eds. Switzerland: Springer, Cham,

2015, pp. 102–112.

