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Abstract: Pigs have become an essential part of the cultural and economic life of the people in Nusa Tenggara 

Timur (NTT) Province. Diseases in pigs significantly affect the success of pig farming. Identification of disease in 

pigs is a classification problem. Metaheuristic algorithms are widely used in Neural Network (NN) optimization to 

solve classification problems. Flower Pollination Algorithm (FPA) is grouped into a metaheuristic algorithm that has 

been commonly used in optimization cases in the real world. To improve FPA performance, this study proposes 

replacing the FPA step vector parameter, namely Levy distribution, with Newton Polynomial Quadratic Interpolation 

(NPQI), known as Quadratic Interpolation Flower Pollination (QIFP). Quadratic Interpolation Flower Pollination 

Neural Network (QIFPNN), Flower Pollination Neural Network (FPNN), Bat Neural Network (BANN), and Particle 

Swarm Optimization Neural Network (PSONN) algorithms were used to train NN in real cases of disease 

identification in pigs, covering 11 diseases with 68 clinical symptoms. The results showed that the proposed 

algorithm, namely QIFPNN, outperformed FPNN, BANN, and PSONN in classification accuracy. QIFPNN is also 

able to improve classification accuracy and speed of convergence when compared to FPNN. QIFPNN and FPNN, 

respectively, provide 82.6159 % and 67.4766 % accuracy, and the training time is 6056.240 seconds and 6555.179 

seconds. QIFPNN accuracy increased by 22.40%, and training time was 7.61 % faster. It concluded that QIFPNN 

could be used as a complementary model in disease identification in pigs. 

Keywords: Disease identification in pigs, Flower pollination algorithm, Quadratic interpolation, Neural network. 

 

 

List of symbols 

𝑋 Population 

𝑥𝑖
𝑡 The pollen position vector or the 𝑖 -th 

solution vector in iteration 𝑡 

𝑥𝑖𝑐
𝑡  The 𝑐 -th element of the 𝑖 -th solution 

vector in iteration 𝑡 

𝑔∗ The best solution vector found among all 

solutions in the current iteration 

𝐿 The step vector of the Levy distribution 

𝛾 The scaling factor that controls the step 

size 

𝜖 Random walk 

𝑄 Quadratic interpolation step vector 

𝑃𝑚 The polynomial of degree 𝑚 

(𝑟𝑚, 𝑓𝑚) Data point (abscissa, ordinate) 

𝑟∗ Best abscissa 

𝐿𝑏𝑅𝑒𝑎𝑙 The lower limit of the original search 

space 

𝑈𝑏𝑅𝑒𝑎𝑙 The upper limit of the original search 

space 

𝐿𝑏 The lower limit of the search space 

𝑈𝑏 Upper limit of search space 

𝑥𝑥𝑒 The 𝑒-th neuron in the input layer 

𝑣𝑣𝑒𝑜 Connection weight between the input 

layer and hidden layer 
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𝑣𝑣0𝑜 The bias towards the hidden layer 

𝑧𝑧𝑜 The 𝑜-th neuron in the hidden layer 

𝑤𝑤𝑜𝑤 Connection weight between the hidden 

layer and output layer 

𝑤𝑤0𝑤 The bias towards the output layer 

𝑦𝑦𝑤 The 𝑤-th neuron in the output layer 

Subscripts 

𝑛 Population size or number of solutions 

𝑡 Iteration 

𝑑 Dimensions or number of solution 

variables 

𝑖, 𝑗, 𝑘 Solution (1, 2, …, n) 

𝑐 Dimension index (1, 2, …, d) 

𝑚 Interpolation degree 

ℎ Number of neurons in the input layer 

𝑒 The index of the neurons in the input layer 

(1, 2, …, h) 

𝑣 Number of neurons in the hidden layer 

𝑜 The index of the neurons in the hidden 

layer (1, 2, …, v) 

𝑧 Number of neurons in the output layer 

𝑤 The index of the neurons in the output 

layer (1, 2, …, z) 

1. Introduction 

The agricultural sector in the province of nusa 

tenggara timur (NTT) Indonesia is still the economic 

base of the people in rural areas, controls the 

livelihoods of most of the population and absorbs a 

lot of labor. The economic structure of NTT is still 

dominated by the agricultural sector, where its 

contribution to the formation of gross regional 

domestic product (GDP) during 2016-2019 is 

between 28.00 percent to 29.03 percent. From this 

agricultural sector, the livestock sub-sector 

contributes between 9.44 percent to 9.46 percent. 

Other sub-sectors contribute less than the livestock 

sub-sector, so it can be said that the livestock sub-

sector is the primary buffer for the agricultural 

sector [1]. 

Traditionally, pigs have played an essential role 

in various cultural activities, where these events are 

embedded in the social order of the people of NTT 

while also being a source of protein for domestic 

consumption. The health of pigs has been 

compromised. These disorders are caused by 

diseases, such as worm infections, dystocia, 

endometritis, myiasis, mastitis, pneumonia, eye 

inflammation, retensio secundinarum, scabies, 

streptococcosis, and septichaemia epizootica 

(Source: iSIKHNAS). 

Identification of disease in pigs is a 

classification problem. Several researchers have 

researched classification using NN in the 

management of pigs. J. Shao [2] investigated the 

behavior of pigs adapting to temperature using 

images of pig behavior in cages, then classified 

using neural network (NN). Y. Wang, W. Yang, P. 

Winter, and L. Walker [3] created a machine vision 

to determine pig liveweight based on pig image 

using NN. A. Apichottanakul, S. Pathumnakul, and 

K. Piewthongngam [4] applied NN to measure the 

average weight of pigs. S. K. Biswas, B. Baruah, B. 

Purkayastha, and M. Chakraborty [5] used NN for 

swine flu diagnosis. NNs often use gradient descent 

to update weights in the training process. However, 

gradient descent can result in the training process 

being trapped in the local optima [6]. This limitation 

of gradient descent encourages researchers to use 

metaheuristic algorithms for updating weights in the 

NN training process [7]. 

Flower pollination algorithm (FPA) is grouped 

into a metaheuristic algorithm that works 

stochastically inspired by nature. FPA imitates 

flower pollination behavior to get the best flowers. 

There are two pollination models: cross-pollination 

occurs from pollen from flowers of other plants, and 

self-pollination occurs from pollen from the same or 

different flowers on the same plant [8]. In this study, 

a new variant of FPA, namely quadratic 

interpolation flower pollination (QIFP), is proposed 

to improve cross-pollination ability in searching for 

solutions. Quadratic interpolation (QI) uses a 

parabolic curve to fit the objective function near the 

optima [9]. The use of QI in metaheuristic 

algorithms is auspicious in finding global optimum 

solutions [9–11] and very fast convergence to 

optimal solutions [9, 11]. 

Both gradient and linear interpolation techniques 

are based on two-point information. Inspired by the 

use of the gradient technique in gradient descent and 

its drawbacks, it is proposed to use QI in exploring 

promising areas based on information on three 

fitnesses, namely the prominent pollen and the other 

two pollens. QIFP views Levy's step vector in FPA 

as a step length. QI against three fitness produces a 

quadratic polynomial. This polynomial is derived to 

get the step length that produces the best fitness of 

the three existing fitness. Next, a random step vector 

is generated around the step length, hoping it does 

not move away from the global optima point. In 

FPA, the random step vector is generated by a levy 

distribution whose movement is not controlled so 

that it is possible to move away from the global 

optima point. 

To improve the accuracy and speed of FPNN 

convergence in disease identification in pigs, 

QIFPNN is proposed. QIFPNN performance was 
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also tested against other metaheuristic algorithms, 

namely BANN and PSONN. The BA and PSO 

algorithms used are based on [12]. As a result, 

QIFPNN outperformed FPNN, BANN, and PSONN 

in terms of accuracy. The convergence speed of 

QIFPNN exceeds FPNN, so the use of QI in 

QIFPNN can improve the performance of FPNN. 

2. Theory 

2.1 Population 

A population-based metaheuristic algorithm 

means that each individual (solution) in the 

population acts as a solution candidate. In each 

generation (iteration), the algorithm will improve 

the population. The population represents the set of 

solution vectors in the search space. The population 

and solution vectors are expressed as Eq. (1) and Eq. 

(2). 

 

𝑋 = {𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡 } (1) 

 

𝑥𝑖
𝑡 = (𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑑

𝑡 ) (2) 

 

where 𝑛  is the population size or number of 

solutions, 𝑡  and 𝑑  respectively represent the 

iterations and the dimensions or number of solution 

variables. Each element of the solution vector can be 

expressed in terms of 𝑥𝑖𝑐
𝑡 , where 𝑖 = 1,2, … , 𝑛  and 

𝑐 = 1,2, … , 𝑑. 

2.2 Flower pollination algorithm 

FPA is inspired by the pollination process in 

flowering plants with the following rules [8]: 

 

1. Biotic pollinators such as bees, insects, birds, 

and bats carry pollen and fly long distances 

resulting in cross-pollination. 

2. Abiotic pollinators such as wind, water, and rain 

can only pollinate at close range so that self-

pollination occurs. 

3. The probability of reproduction or flower 

toughness is proportional to the similarity 

between two flowers. 

4. Another parameter of the probability 

𝑝 𝜖 𝑟𝑎𝑛𝑑[0,1]  switch controls pollination in 

rules 1 and 2. 

 
Assuming that one flower produces only one 

pollen, then the potential solution to a problem is the 

same as either flower or pollen. This algorithm is 

then formulated by utilizing the concept of cross-

pollination and self-pollination. In cross-pollination, 

it is guaranteed that the best reproduction occurs in 

pollinators carrying pollen over long distances [13], 

so rules 1 and 3 can be presented as Eq. (3). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑔∗ − 𝑥𝑖
𝑡) (3) 

 

where 𝑥𝑖
𝑡  is the pollen position vector or the 𝑖 -th 

solution vector in iteration 𝑡, 𝑔∗ is the best solution 

vector found among all the solutions in the current 

iteration, 𝛾 is the scaling factor that controls the step 

size, and 𝐿 is the step vector or pollination power. 

Levy flight describes the step distance from the 

pollinator, where 𝐿  is derived from the Levy's 

distribution using Eq. (4). 

 

𝐿~
𝜆Γ(𝜆)𝑠𝑖𝑛(𝜋𝜆/2)

𝜋
 

1

𝑠1+𝜆  ,      (𝑠 ≫  𝑠0  > 0) (4) 

 

Γ(λ) is the standard gamma function and 𝜆 = 1.5, 

the Levy distribution at large steps applies 𝑠 > 0, 

and 𝑠 is determined from the gaussian distribution 𝑈 

and 𝑉 as in Eq. (5). 

 

𝑠 =
𝑈

|𝑉|1/𝜆  ,   𝑈~𝑁(0, 𝜎2),   𝑉~𝑁(0, 1)   (5) 

 

where 𝑈~𝑁(0, 𝜎2)  shows that a normal gaussian 

distribution with variance 𝜎2  and a mean of zero, 

and 𝑉~𝑁(0,1) indicates a standard gaussian normal 

distribution. 𝜎2 can be calculated by Eq. (6). 

 

𝜎2 = {
Γ(1+𝜆)

𝜆Γ(
1+𝜆

2
)

sin(
𝜋𝜆

2
)

2(𝜆−1)/2}

1/𝜆

 (6) 

 

Self-pollination involves neighbouring pollen, 

with rules 2 and 3 being presented in Eq. (7). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜖(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )   (7) 

 

where random walk 𝜖  is a uniform distribution 

vector [0,1], 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are pollen positions 𝑗 and 𝑘. 

Rule 4 aims to arrange pollination activity 

randomly to switch. A preliminary parametric study 

shows that 𝑝 = 0.8  can work better for most 

applications [8, 14]. 

2.3 Newton polynomial quadratic interpolation 

It has several 𝑚 + 1  data point information in 

the range of [𝑎, 𝑏] , namely (𝑟0, 𝑓0) , (𝑟1, 𝑓1) , …, 
(𝑟𝑚, 𝑓𝑚)  so to determine the 𝑃(𝑟)  function that 

replaces the original function, interpolation can be 

used. 𝑃(𝑟) is a polynomial function as in Eq. (8). 
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𝑃𝑚(𝑟) = 𝑎0 + 𝑎1(𝑟 − 𝑟0) + 𝑎2(𝑟 − 𝑟0)(𝑟 − 𝑟1) +
⋯ + 𝑎𝑚(𝑟 − 𝑟0)(𝑟 − 𝑟1) … (𝑟 − 𝑟𝑚−1)   (8) 

 

𝑎𝑚 = [𝑓0, … , 𝑓𝑚], is the dividend value recursively 

defined as Eq. (9). 

 
[𝑓0] = 𝑓0

[𝑓0, 𝑓1] =
𝑓1−𝑓0

𝑟1−𝑟0

[𝑓0, 𝑓1, … , 𝑓𝑚] =
[𝑓1,…,𝑓𝑚]−[𝑓0,…,𝑓𝑚−1]

𝑟𝑚−𝑟0

 (9) 

 

Quadratic interpolation is known as second-degree 

interpolation (𝑚 = 2)  where three data points are 

required, the polynomial form can be written as Eq. 

(10). 

 

𝑃2(𝑟) = 𝑓0 + [𝑓0, 𝑓1](𝑟 − 𝑟0) + [𝑓0, 𝑓1, 𝑓2](𝑟 −
𝑟0)(𝑟 − 𝑟1)   (10) 

2.4 Quadratic interpolation flower pollination 

In QIFP, modification of FPA is carried out in 

cross-pollination, where 𝛾𝐿 in Eq. (3) is replaced by 

the quadratic interpolation step vector, namely 𝑄, so 

that the equation looks like Eq. (11). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑄(𝑔∗ − 𝑥𝑖
𝑡) (11) 

 

The data points in the NPQI represent 𝑟  as 𝑄 , 

and 𝑓  as the fitness of an objective function. The 

determination of the three data points is carried out 

as follows: 

 

1. First data point (𝑟0, 𝑓0) 

Assuming 𝑄 = 0  in Eq. (11), the value 𝑓0 =

𝑓_𝑜𝑏𝑗(𝑥𝑖
𝑡), and 𝑟0 = 0. 

2. Second data point (𝑟1, 𝑓1) 

Assuming 𝑄 = 1 in Eq. (11), then the values for 

𝑓1 = 𝑓_𝑜𝑏𝑗(𝑔∗), and 𝑟1 = 1. 

3. Third data point (𝑟2, 𝑓2) 

Assuming 𝑄 = 1.25 in Eq. (11), then the value 

of 𝑓2 = 𝑓_𝑜𝑏𝑗(𝑥𝑖
𝑡+1) , and the value of 𝑟2 =

1.25. The value of 𝑥𝑖
𝑡+1 is calculated using Eq. 

(12). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 1.25(𝑔∗ − 𝑥𝑖
𝑡) (12) 

 

These three data points are then used to obtain the 

quadratic polynomial function 𝑃2(𝑟) . Since the 

optimization problem is a minimum or maximum 

problem, the value of 𝑟∗ which gives the minimum 

or maximum fitness of the quadratic polynomial 

function is found using Eq. (13). 

 
𝑑𝑃2

𝑑𝑟
= 0 

 

𝑟∗ =
𝑟1

2
+

𝑟0

2
+

𝑓(𝑟1)−𝑓(𝑟0)

𝑟1−𝑟0

2(
(

𝑓(𝑟2)−𝑓(𝑟1)
𝑟2−𝑟1

)−(
𝑓(𝑟1)−𝑓(𝑟0)

𝑟1−𝑟0
)

𝑟2−𝑟0
)

 (13)  

 

An illustration of the three data point representations 

for the minimum objective function can be seen in 

Fig. 1. To get the step vector 𝑄 at point 𝑟∗, this is 

done: 

 

1. 𝑄~𝑁(𝜇, 𝜎) is a normal distribution with mean 

𝜇 = 𝑟∗ and deviation standard 𝜎 = 𝑓1. 

2. So that the solution vector elements do not 

always change, some solution vector elements 

need to be maintained using the 20% step vector 

element 𝑄 is made zero using Eq. (14). 

 

𝑄𝑐 = {
0,

𝑄𝑐 ,
𝑐 = 𝑙

      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 

where 𝑙  is an integer random number [1, 𝑑] 
generated as much as 20 % of 𝑑. 

The search space defines the area the algorithm 

uses to find all possible solutions. The search space 
[𝐿𝑏𝑅𝑒𝑎𝑙, 𝑈𝑏𝑅𝑒𝑎𝑙]  says 𝐿𝑏𝑅𝑒𝑎𝑙  is the lower limit 

and 𝑈𝑏𝑅𝑒𝑎𝑙 is the upper limit. In the optimization 

problem with a single objective function, the 

metaheuristic algorithm may not get satisfactory 

results in the original search space. The original 

search space is divided into smaller search 

subspaces [15, 16]. The search technique in this 

 

r0=0

f

r1=1 r2=1.25r*

f0

f1

f2

r
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Figure. 1 An illustration of the representation of three 

data points for the minimum objective function. 

study was that the search starts from a small search 

space and then slowly expands to the area of the 

original search space. Expanding the search space 

follows the steps as follows: 

 

1. Identification of the initial search space:  

 

[𝐿𝑏, 𝑈𝑏]𝑑 = [−1,1]𝑑  (15) 

 

2. The next search space is expanded by: 

 

[𝐿𝑏, 𝑈𝑏]𝑑 =

{
[𝐿𝑏 − 1, 𝑈𝑏 + 1]𝑑 𝑡  MOD 50 = 0

[𝐿𝑏, 𝑈𝑏]𝑑 otherwise
 (16) 

 

3. Step 2 is repeated until 𝐿𝑏 = 𝐿𝑏𝑅𝑒𝑎𝑙 and 𝑈𝑏 =
𝑈𝑏𝑅𝑒𝑎𝑙 

 
Where 𝐿𝑏𝑅𝑒𝑎𝑙  and 𝑈𝑏𝑅𝑒𝑎𝑙  are integers, and the 

sum of 𝐿𝑏𝑅𝑒𝑎𝑙  and 𝑈𝑏𝑅𝑒𝑎𝑙  is zero. In each 

identified search space, a metaheuristic algorithm is 

used to find possible solutions. 

2.5 Feed-forward neural network 

Feed-forward neural network (FNN) is a 

classifier that carries out supervised forward 

learning in a pattern layer to obtain a classification 

model. FNN contains several neurons arranged in 

layers, neurons in each layer can be connected to 

neurons in the next layer, and each connection has a 

weight. FNN has at least one hidden layer that is 

between the input and output layers. Fig. 2 is an 

FNN with one hidden layer. The explanation of the 

three types of neurons in each layer is from Fig. 2, 

namely: 
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Figure. 2 FNN architecture. 

 

• Input neurons 𝑥𝑥𝑒 : neurons receive input from 

the outside world. No computation is done, only 

passing information to hidden neurons. Where 

𝑒 = 1,2, … ℎ. 

• Hidden neuron 𝑧𝑧𝑜 : information from input 

neuron 𝑥𝑥𝑒 , connection weight 𝑣𝑣𝑒𝑜  and bias 

𝑣𝑣0𝑜 are computed to produce output on hidden 

neuron 𝑧𝑧𝑜  which is then forwarded to the 

output neuron, where 𝑜 = 1,2, … 𝑣 . The 

calculation for hidden neurons can be seen in Eq. 

(17). 

 

𝑧𝑧𝑜 =
1

(1+exp(−(𝑣𝑣0𝑜+∑ 𝑥𝑥𝑒𝑣𝑣𝑒𝑜
ℎ
𝑒 )))

 (17) 

 

• Output neuron 𝑦𝑦𝑤 : output from the hidden 

neuron 𝑧𝑧𝑜, connection weights 𝑤𝑤𝑜𝑤 and bias 

𝑤𝑤0𝑤  are computed to produce output on the 

output neuron, where 𝑤 = 1,2, … 𝑧 . The 

calculation on the output neuron can be seen in 

Eq. (18). 

 

𝑦𝑦𝑤 =
1

(1+exp(−(𝑤𝑤0𝑤+∑ 𝑧𝑧𝑜𝑤𝑤𝑜𝑤
𝑧
𝑤 )))

 (18) 

 

Learning error is determined by Eq. (19). 

 

𝑀𝑆𝐸 =
∑ (

∑ (𝑑𝑡𝑤𝑦−𝑦𝑦𝑤𝑦)
2𝑧

𝑤=1
𝑧

)𝑁𝑑𝑡
𝑦=1

𝑁𝑑𝑡
 (19) 

 

where MSE (mean square error) is the average 

squared error, 𝑁𝑑𝑡 is the amount of training data, 𝑧 

is the number of neurons in the output layer, 𝑑𝑡𝑤𝑦 is 

the target of the 𝑦-th actual data on the 𝑤-element, 

and 𝑦𝑦𝑤𝑦  is the output of the 𝑤 -th neuron 

corresponding to the actual data-target 𝑦. 
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The calculation of classification accuracy using 

Eq. (20) is done by: 

 

• Use weights and biases for instances. 

• Perform forward propagation to get the output, 

compare the output with the actual class, and 

calculate the correct class. 

 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (20) 

2.6 k-Fold cross-validation 

k-fold cross-validation is used to evaluate and 

select a good classification model. k-fold-cross-

validation means that the dataset is divided into 𝑘 

parts, and cross-validation is carried out for 𝑘 

rounds so that each part has the opportunity to be 

tested [17]. Of the 𝑘 parts, 𝑘 − 1 parts are used as 

training data, and one part as validation data. In k 

cycles it will produce 𝑘 different exact models. 

2.7 Quadratic interpolation flower pollination 

neural network with k-fold cross-validation 

The weights and bias of the FNN are 

represented in pollen, as in Fig. 3. 

The objective function is the FNN function, as in 

Eq. (21). 

 
𝑣𝑣11 ⋯ 𝑣𝑣ℎ1 𝑣𝑣01 ⋯ 𝑣𝑣ℎ𝑣 𝑣𝑣0𝑣 𝑤𝑤11 ⋯ 𝑤𝑤𝑣1 𝑤𝑤01 ⋯ 𝑤𝑤𝑣𝑧 𝑤𝑤0𝑧 

↓ 
 

𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 ⋯ 𝑥𝑖𝑑  

Figure. 3 Arrangement of the weight and bias elements in 

the solution vector. 

 

𝑓_𝑜𝑏𝑗(𝑥) = 𝑀𝑆𝐸(𝑥) (21) 

 

Each pollen in the population produces its fitness. 

The set of fitness in the 𝑡-iteration is expressed as 

Eq. (22). 

 

QIFPNN algorithm: 

1 Objective minimize 𝑓_𝑜𝑏𝑗(𝑥), 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑) 

2 Initialize QIFPNN control parameters 

 [number of flowers/pollen gametes (n), max iteration (maxIteration), switch probability (p), 

problem dimensions (d), lower bound (Lb), upper bound (Ub), target error (targetError), NN 

structure, iteration threshold of convergence accuracy (iterThOfCA), lower bound  real (LbReal), 

upper bound real (UbReal)] 

3 Load the diseases of pig training data 

4 Load the diseases of pig validation data 

5 𝒕 = 1 

6 Initialize a population of n flowers/pollen gametes with random solutions[0,1] 
7 Find the candidate best solution 𝒈 ∗ in the initial population based on the fitness of training data 

8 Using 𝒈∗ to compute 𝒈𝒍𝒐𝒃𝒂𝒍𝑩𝒆𝒔𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 of validation data 

9 𝒄𝒐𝒖𝒏𝒕𝑰𝒕𝒆𝒓𝑶𝒇𝑪𝒐𝒏𝒗𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 1 

10 While (t ≤ maxIteration) and (fitness of 𝒈∗ ≥ targetError) and (countIterOfConvAccuracy ≤ 

iterThOfCA) 

11 For i = 1 : n  

12 If |𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝒙𝒊
𝒕 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝒈∗| < 10−2 then 𝒕𝒆𝒎𝒑(𝑖) = "1"  

13 If  𝑠𝑢𝑚(𝑐𝑜𝑢𝑛𝑡(𝒕𝒆𝒎𝒑, "1")) ≥ 90%  of population 

14 Generate the population via 𝑥𝑡 = 𝐿𝑏 + 𝑟𝑎𝑛𝑑[0,1](𝑈𝑏 − 𝐿𝑏) except the solution vector 

containing 𝒈∗ 

15 Empty 𝒕𝒆𝒎𝒑 

16 End if 

17 If rand < p 

18 If i ≠ CandidateBestSolutionIndex 

19 Draw a (d-dimensional) step vector Q based on quadratic interpolation mechanism 

20 Global pollination via Eq. (11) 

21 End if 

22 Else 

23 If i ≠ CandidateBestSolutionIndex 

24 Draw 𝝐 from a uniform distribution in [0,1] 

25 Do local pollination via Eq. (7) 
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26 End if 

27 End if 

28 
Check the bounds,  𝑥𝑖𝑐

𝑡+1 = {
𝐿𝑏 𝑥𝑖𝑐

𝑡+1 < 𝐿𝑏 

𝑈𝑏 𝑥𝑖𝑐
𝑡+1 > 𝑈𝑏

 

29 Using new solution 𝒙𝒊
𝒕+𝟏 to compute fitness of training data 

30 If the fitness of new solution < fitness of old solution then 𝑜𝑙𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

31 If the fitness of new solution < fitness of 𝒈∗ then update 𝒈∗ 

32 End for 

33 Compute classification accuracy of validation data (𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑶𝒇𝑽𝒂𝒍𝑫𝒂𝒕𝒂) using 𝒈∗ via Eq. (20) 

34 If (𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑶𝒇𝑽𝒂𝒍𝑫𝒂𝒕𝒂 ≥ 𝒈𝒍𝒐𝒃𝒂𝒍𝑩𝒆𝒔𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚) 

35 Update current best solution 𝒃𝒔 = 𝒈∗ 

36 globalBestAccuracy = accuracyOfValData 

37 countIterOfConvAccuracy = 0 

38 End if 

39 Expand of Lb and Ub coverage using Eq. (16) 

40 countIterOfConvAccuracy = countIterOfConvAccuracy + 1 

41 𝒕 = 𝒕 + 1 

42 End while 

43 Output the best solution 𝒃𝒔 found 

  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡 =
   {𝑀𝑆𝐸(𝑥1

𝑡), 𝑀𝑆𝐸(𝑥2
𝑡), … , 𝑀𝑆𝐸(𝑥𝑛

𝑡 )} (22) 

 

The optimization problem in FNN is to minimize 

learning errors. 

Training and validation data are used in the 

QIFPNN training process with the aim that the 

solution obtained is able to provide the best 

classification accuracy. This accuracy is obtained in 

two stages. First, find the solution that provides the 

best accuracy on the training data in each iteration 

indicated by the fitness value or minimum MSE of 

the solution. This solution is called the best 

candidate solution (𝑔∗). Second, check the accuracy 

of the validation data (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑓𝑉𝑎𝑙𝐷𝑎𝑡𝑎) of 𝑔∗. 

If 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑓𝑉𝑎𝑙𝐷𝑎𝑡𝑎 is greater than or equal to 

the best accuracy (𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) , then 

update the best solution (𝑏𝑠)  and 

𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , and reset the accuracy 

convergence counter(𝑐𝑜𝑢𝑛𝑡𝐼𝑡𝑒𝑟𝑂𝑓𝐶𝑜𝑛𝑣𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦). 

During iteration, the value of 

𝑐𝑜𝑢𝑛𝑡𝐼𝑡𝑒𝑟𝑂𝑓𝐶𝑜𝑛𝑣𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  is incremented. If 

𝑐𝑜𝑢𝑛𝑡𝐼𝑡𝑒𝑟𝑂𝑓𝐶𝑜𝑛𝑣𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  has reached the 

convergence accuracy (𝑖𝑡𝑒𝑟𝑇ℎ𝑂𝑓𝐶𝐴)  limit value, 

the training is stopped. 

2.8 Pig diseases data 

The disease dataset in pigs was obtained from 

the national animal health information system 

(iSIKHNAS) [18]. The data collected consisted of 

disease data and accompanying clinical symptoms. 

There were 11 diseases and 68 clinical symptoms, 

according to data availability. The eleven diseases 

consist of worm infections, dystocia, endometritis, 

myiasis, mastitis, pneumonia, eye inflammation, 

retensio secundinarum, scabies, streptococcosis, and 

septichaemia epizootica. sixty-eight clinical 

symptoms consist of: anorexia, limp, swollen joints, 

anemia, dull hair, thinness, weakness, lack of 

response, postpartum, diarrhea, fever, skin 

inflammation, parasitic feces, lack of body fluids, 

standing abnormal, injuries feet, paralyzed, 

difficulty in standing, cough, runny nose, 

abnormalities/difficulty breathing, pale mucosa, 

vaginal inflammation, itching, loss of hair, 

collapsing, abscess, bleeding sores, skin disorders, 

vulva abnormalities, inflammation of vulva, 

vomiting, abnormal walk, unsteadiness, constipation, 

nose with mucus, vulvar pus discharge, 

inflammation of the eyes, ear scabs, ulcers, 

temperature disorders, snoring, (jaw) / (lower jaw) 

swelling, respiratory system disorders, green feces, 

abdominal abnormalities, purulent eyes, difficulty 

birth , bad smell vulva, miscarriage, vaginal 

abnormalities, stillbirth, excessive saliva, tremor, 

swollen udder, inflammation of nipples, blisters on 

udder, Scrotum Hernia, Swollen Testicles, Nose 

problems, blindness, light sensitive eyes, placental 

retention, cloudy eye corneas, swollen head, milk 

disorders, difficulty chewing/swallowing, and 

hypothermia. 

The disease dataset in pigs was categorical, so it 

needs to be converted into numeric. The value of 

clinical symptoms that appear in specific diseases is 

set to 1 while others are 0. Sixty-eight clinical 

symptoms become 𝑥𝑥𝑒  input neurons and 11 

diseases were converted in binary to produce four 
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output neurons 𝑦𝑦𝑤. The dataset of diseases in pigs 

can be categorized into medical datasets. It had 68 

input attributes and 11 class attributes. The input 

 
Table 1. Class characteristics 

Class Information 

Worm infections 17 data (11%) 

Dystocia 3 data (2%) 

Endometritis 10 data (6%) 

Myiasis 10 data (6%) 

Mastitis 6 data (4%) 

Pneumonia 21 data (13%) 

Eye Inflammation 4 data (3%) 

Retensio Secundinarum 3 data (2%) 

Scabies 22 data (14%) 

Streptococcosis 44 data (28%) 

Septichaemia Epizootica 18 data (11%) 

Total 158 data (100%) 

attribute had binary characteristics. Class 

characteristics can be seen in Table 1. 

3. Experiment setup 

3.1 System configuration 

The QIFPNN algorithm proposed in this study 

was used to identify diseases in pigs. QIFPNN was 

coded and implemented using MATLAB R2018b on 

a computer with an Intel Core i7-9750H 

configuration, CPU @ 2.6GHz - Up to 4.6GHz, 

16GB RAM, 64-bit operating system. All 

experiments were carried out on the specified 

machine. The training and testing process was based 

on a parallel computing model, which took 

advantage of the six physical cores available on the 

Intel Core i7-9750H. 

3.2 Parameter settings 

The optimal solution obtained by a 

metaheuristic algorithm was to control the 

parameters in the iteration cycle. However, the exact 

way to create parameter diversity was unknown  

[19]. QIFPNN, FPNN, BANN, and PSONN were 

vulnerable to the parameters used, similar to other 

metaheuristic algorithms, which were also 

susceptible to their parameters. In this experiment, 

the population parameter 𝑛 = 30  [20] and the 

original search space for all dimensions 𝐿𝑏𝑅𝑒𝑎𝑙 =
−80 and 𝑈𝑏𝑅𝑒𝑎𝑙 = 80 were determined. For FPNN, 

BANN and PSONN, the search space is directly 

performed against the original search space so that 

𝐿𝑏 = 𝐿𝑏𝑅𝑒𝑎𝑙 = −80  and 𝑈𝑏 = 𝑈𝑏𝑅𝑒𝑎𝑙 = 80 . 

Especially for QIFPNN and FPNN, the switch 

probability parameter is 𝑝 = 0.8 . In BANN, 

parameter 𝑙𝑜𝑢𝑑𝑛𝑒𝑠𝑠 = 0.25  and parameter 

𝑝𝑢𝑙𝑠𝑒𝑅𝑎𝑡𝑒 = 0,5 , while in PSONN, learning 

parameters 𝛼 ≈ 𝛽 ≈ 2 [12]. 

In FNN, a hidden layer was used, given the fact 

that one hidden layer is relatively close to function 

with arbitrary accuracy [21]. The determination of 

the number of hidden neurons, according to [22], 

uses Eq. (23). 

 

𝑣 = √(ℎ + 𝑧) + 𝑎𝑎 (23) 

 

where 𝑣  is the number of neurons in the hidden 

layer, ℎ is the number of neurons in the input layer, 

𝑧 is the number of neurons in the output layer, and 

𝑎𝑎 is an integer. By choosing 𝑎𝑎 = 1, we get 𝑣 = 9 

so that the FNN architecture used is 68-9-4. 

The specified stopping parameters for the 

QIFPNN, FPNN, BANN and PSONN criteria were 

the maximum iteration (𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 4000) , 

the target error (𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑟𝑟𝑜𝑟 = 0.001)  and the 

iteration allowance limit for the convergence 

condition of classification accuracy 

(𝑖𝑡𝑒𝑟𝑇ℎ𝑂𝑓𝐶𝐴 = 700). 

3.3 Comparison algorithms and running the 

proposed QIFPNN 

The disease dataset in pigs is divided into three 

subsets, i.e. 90 % of the data for the training and 

validation subsets are based on 10-fold cross-

validation, and 10 % of the data for the test subset. 

The test records the minimum (Min), maximum 

(Max), and average (Ave) values of the 

classification accuracy values for QIFPNN, FPNN, 

BANN, and PSONN. 

4. Result and discussion 

Finding optimal solutions resistant to uncertainty 

in real-world problems is very difficult, so an 

algorithm must be treated on various data groups. k-

fold cross-validation is very helpful in measuring 

the performance of algorithms in different data 

groups. The algorithm performance measurement 

used is the minimum, maximum, and average 

classification accuracy per fold. 

The performance comparison results of QIFPNN, 

FPNN, BANN, and PSONN are presented in Table 

2-6 and Fig. 4-11. Table 2 and Fig. 4-5 represent 

information on a mean of 20 runs of classification 

accuracy per fold and an average of 10 folds of the 

training subset. Table 3 and Fig. 6-7 represent 

information on a mean of 20 runs of classification 

accuracy per fold and an average of 10 folds of the 

validation subset.  
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Table 4 and Fig. 8-9 represent information on a 

mean of 20 runs of classification accuracy per fold 

and a mean of 10 folds of the test subset. Table 5 

describes the information recapitulation of the 

average classification accuracy of the training, 

validation, and test subsets for ten folds. In 

comparison, Table 6 and Fig. 10-11 represent the 

average information of 20 runs of training time per 

fold and an average of 10 folds of training time. 

Based on the classification accuracy 

measurement results on the training, validation, and 

test subsets between QIFPNN, FPNN, BANN, and 

PSONN, it can be seen that QIFPNN provides 

promising results in experiments than FPNN, 

BANN, and PSONN. The average value of 

classification accuracy in training, validation, and 

test subsets for each fold obtained by QIFPNN is 

higher than FPNN, BANN, and PSONN. Likewise, 

 
Table 2. Average 20 runs of classification accuracy per fold in the training subset of disease in pigs 

Fold 

Method 

QIFPNN (%) FPNN (%) BANN (%) PSONN (%) 

Min Max Ave Min Max Ave Min Max Ave Min Max Ave 

1 89.0625 99.2188 96.4453 40.625 92.9688 82.8906 8.5938 100 68.6328 10.9375 32.8125 21.2891 

2 90.5512 99.2126 96.5354 22.8347 92.126 68.2284 7.0866 98.4252 72.2047 13.3858 40.1575 24.9606 

3 87.4016 99.2126 95.63 52.7559 95.2756 79.4095 7.0866 99.2126 72.126 11.0236 31.4961 20.7874 

4 75 99.2188 91.4453 56.25 92.1875 74.5313 8.5938 98.4375 71.7969 5.4688 39.8438 21.1328 

5 85.9375 99.2188 95.8984 40.625 90.625 69.5313 14.0625 100 76.25 7.0313 38.2813 22.0703 

6 75 99.2188 94.6094 46.875 89.8438 69.2578 13.2813 98.4375 75.3125 12.5 36.7188 23.0859 

7 89.8438 99.2188 95.625 32.0313 92.1875 75.1953 9.375 99.2188 78.9844 4.6875 31.25 18.4375 

8 85.1563 98.4375 95.1172 33.5938 90.625 65.7422 5.4688 99.2188 70.5469 8.5938 35.1563 19.9609 

9 90.625 99.2188 97.5 50 93.75 76.1719 5.4688 100 71.1719 10.1563 36.7188 22.1094 

10 76.5625 100 93.6328 59.375 94.5313 79.1797 10.9375 99.2188 79.1406 14.0625 38.2813 21.6016 

Mean 84.514 99.2175 95.2439 43.4966 92.412 74.0138 8.9955 99.2169 73.6167 9.7847 36.0716 21.5436 

 
Table 3. Average 20 runs of classification accuracy per fold in the validation subset of disease in pigs 

Fold 

Method 

QIFPNN (%) FPNN (%) BANN (%) PSONN (%) 

Min Max Ave Min Max Ave Min Max Ave Min Max Ave 

1 64.2857 92.8571 72.8571 57.1429 85.7143 67.8571 7.1429 78.5714 46.4286 7.1429 42.8571 26.7857 

2 80 93.3333 84.3333 40 86.6667 68.6667 13.3333 86.6667 56.3333 13.3333 40 30.3333 

3 60 86.6667 73 60 80 69.3333 6.6667 73.3333 51.6667 20 46.6667 25.3333 

4 57.1429 92.8571 79.2857 57.1429 85.7143 72.1429 14.2857 92.8571 58.5714 7.1429 50 26.7857 

5 64.2857 85.7143 76.0714 50 78.5714 66.4286 21.4286 85.7143 58.5714 7.1429 42.8571 26.4286 

6 71.4286 92.8571 79.2857 50 92.8571 69.6429 0 85.7143 57.1429 14.2857 35.7143 26.0714 

7 71.4286 92.8571 83.9286 57.1429 85.7143 74.6429 7.1429 85.7143 63.9286 14.2857 42.8571 27.8571 

8 71.4286 92.8571 81.0714 50 78.5714 63.5714 7.1429 85.7143 55.3571 7.1429 42.8571 25 

9 71.4286 85.7143 79.2857 64.2857 92.8571 72.1429 21.4286 85.7143 61.0714 14.2857 50 29.6429 

10 71.4286 78.5714 75.3571 64.2857 78.5714 72.8571 7.1429 78.5714 57.1429 7.1429 35.7143 26.7857 

Mean 68.2857 89.4286 78.4476 55 84.5238 69.7286 10.5714 83.8571 56.6214 11.1905 42.9524 27.1024 
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Figure. 4 Average 20 runs per fold of classification 

accuracy of the training subset of diseases in pigs 

 
Figure. 5 Average 10 fold of classification accuracy of 

the training subset of diseases in pigs 
Table 4. Average 20 runs of classification accuracy per fold in the test subset of disease in pigs 

Fold 

Method 

QIFPNN (%) FPNN (%) BANN (%) PSONN (%) 

Min Max Ave Min Max Ave Min Max Ave Min Max Ave 

1 56.25 87.5 75.3125 37.5 81.25 63.75 0 87.5 41.875 0 43.75 20 

2 62.5 87.5 77.8125 25 81.25 56.5625 6.25 75 51.875 12.5 50 27.5 

3 62.5 93.75 78.4375 31.25 81.25 61.25 6.25 81.25 51.5625 6.25 37.5 22.1875 

4 56.25 81.25 68.125 31.25 75 56.875 6.25 75 48.4375 0 50 21.875 

5 68.75 87.5 77.8125 25 75 54.375 6.25 81.25 56.5625 6.25 37.5 21.875 

6 62.5 87.5 72.8125 31.25 75 53.4375 6.25 87.5 54.375 6.25 37.5 22.5 

7 62.5 87.5 75.3125 37.5 81.25 64.375 6.25 81.25 53.4375 0 37.5 19.375 

8 50 87.5 76.5625 31.25 75 51.875 0 87.5 44.6875 6.25 43.75 22.1875 

9 56.25 87.5 73.75 31.25 93.75 63.75 6.25 81.25 51.875 0 37.5 19.375 

10 50 81.25 65.625 31.25 75 60.625 6.25 68.75 48.75 0 37.5 20.9375 

Mean 58.75 86.875 74.1563 31.25 79.375 58.6875 5 80.625 50.3438 3.75 41.25 21.7813 

 

 
Table 5. Recapitulation of mean classification accuracy of 

the training, validation, and test subsets for the ten folds 

of disease in pigs 

Method 

Average 

accuracy 

of 

training 

subset 

(%) 

Average 

accuracy 

of 

validation 

subset 

(%) 

Average 

accuracy 

of test 

subset 

(%) 

Mean 

accuracy of 

training, 

validation, 

and test 

subsets (%) 

QIFPNN 95.2439 78.4476 74.1563 82.6159 

FPNN 74.0138 69.7286 58.6875 67.4766 

BANN 73.6167 56.6214 50.3438 60.194 

PSONN 21.5436 27.1024 21.7813 23.4758 

 
Table 6. Average 20 runs of training time per fold 

Fold 

Method 

QIFPNN 

(seconds) 

FPNN 

(seconds) 

BANN 

(seconds) 

PSONN 

(seconds) 

1 6122.22 7850.327 5304.251 5069.914 

2 5568.101 5523.534 5917.551 3812.06 

3 5808.79 7062.422 4680.401 4273.359 

4 4839.996 6728.211 5473.157 3645.717 

5 7166.274 6054.811 5709.082 4095.621 

6 6800.633 5656.272 6231.315 4774.752 

7 5516.892 7134.534 6109.82 4029.035 

8 5872.615 5550.709 6364.938 3690.586 

9 7512.588 7136.171 5075.679 3193.189 

10 5354.292 6854.8 4879.294 3488.122 

Mean 6056.240 6555.179 5574.549 4007.235 
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Figure. 6 Average 20 runs per fold of classification 

accuracy of the validation subset of diseases in pigs 

 

 
Figure. 7 Average 10 fold of classification accuracy of 

the validation subset of diseases in pigs  

 
Figure. 8 Average 20 runs per fold of classification 

accuracy of the test subset of diseases in pigs 

 

 
Figure. 9 Average 10 fold of classification accuracy of 

the test subset of diseases in pigs  
 

the average value of classification accuracy for ten 

folds shows the QIFPNN 82.6159 % higher than 

FPNN 67.4766 %, BANN 60.194 %, and PSONN 

23.4758 %. The measurement of training time per 

fold QIFPNN 6056.240 seconds is relatively faster 

than FPNN 6555.179 seconds. 

QIFPNN accuracy increased by 22.40 %, and 

training time was 7.61 % faster against FPNN. 

However, the QIFPNN training time is slower than 

BANN and PSONN. 

QIFPNN was applied to identify disease in pigs 

based on data on clinical symptoms of pigs that 

were tested to see the identification ability of 

QIFPNN. Disease identification in pigs by FPNN 

outperformed the accuracy of BANN and PSONN 

but with a slower convergence rate. 

As expected, the proposed QIFPNN can improve 

the accuracy and speed of convergence of the FPNN. 

This shows that QIFPNN managed to avoid local  

 
Figure. 10 Average of 20 runs per fold of training time 
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Figure. 11 Average of 10 folds of training time 

 

minima and has the ability to explore the search 

space to find the best weights and biases that result 

in minimum MSE training, thereby increasing 

classification accuracy. The QI concept adopted by 

QIFPNN can accelerate convergence. The poor 

classification accuracy of FPNN, BANN, and 

PSONN is caused by poor exploration and 

exploitation capabilities. 

Overall, QIFPNN is accurate and promises to 

solve real-life optimization problems. The proposed 

QIFPNN algorithm can be used as a complementary 

model for human expertise, provided that data on 

clinical symptoms of disease in pigs is well 

available. 

5. Conclusion 

In this study, the QI approach was used to 

improve accuracy and accelerate the convergence of 

QIFPNN in disease identification in pigs. It is a 

complementary model that can be used to identify 

diseases in pigs. Updating the weights in NN 

training using metaheuristic algorithms such as FPA, 

BA, and PSO compared to QIFP aims to obtain an 

appropriate disease identification model in pigs. It 

was found that the proposed QIFPNN performs 

better than FPNN, BANN, and PSONN in terms of 

accuracy, and the convergence speed of QIFPNN is 

faster than FPNN but slower than BANN and 

PSONN. This is evidenced by the average value of 

classification accuracy for ten fold, showing 

QIFPNN 82.6159 % higher than FPNN 67.4766 %, 

BANN 60.194 %, and PSONN 23.4758 %. The 

measurement of training time per fold QIFPNN 

6056.24 seconds is relatively faster than FPNN 

6555.179 seconds. QIFPNN accuracy increased by 

22.4 %, and training time was 7.61 % faster against 

FPNN. In addition, QIFP can be used as an 

alternative method of NN training. In the future, we 

recommend the QIFPNN step vector using the 

Cauchy distribution and testing it on various 

datasets with various data types. 
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