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Abstract: In the subject of software effort estimation, missing data is a significant issue that leads to information loss 

and bias in data analysis. The majority of data preprocessing procedures are simple reuse approaches built for 

numerical data, which presents a problem when missing data and irrelevant features are associated with categorical 

variables. The purpose of this paper is to evaluate and compare the performance of the proposed technique with the k-

nearest neighbor imputation (kNNI) technique, random forest imputation, and multiple imputation by chained 

equations in terms of error and accuracy in the ISBSG dataset when missing data is present. This study relied on five 

machine learning approaches as its foundation with hyperparameter tuning using grid search. The results show that the 

three imputation methods have almost the same performance. However, the combination of kNNI, Genetic feature 

selection, and classification and regression tree (CART) yielded better results than other combinations of methods with 

MAE (0.015), RMSE (0.037) and R-squared (0.804) values. 

Keywords: Missing data, Software effort preprocessing technique, Imputations, Machine learning. 

 

 

1. Introduction 

The field of software effort estimation (SEE) is a 

key factor in the successful development of software 

engineering [1]. Software success is highly 

dependent on consistency and accuracy to avoid 

inaccuracies and ambiguity in software development 

efforts [2, 3]. Unfortunately, the data also present a 

challenging problem for effort estimation [4]. 

Because, building an SEE model the main input is to 

use a software project dataset [5]. Although a large 

number of software projects are available, the value 

of the effort collected is usually damaged by data 

tampering due to human participation. 

However, problems arise when building the SEE 

model there are missing data. In software engineering, 

missing data is a severe issue since it can lead to 

information loss and bias in data analysis [6]. For 

instance, more than 40% of the variables in the 

International Software Benchmarking Standard 

Group (ISBSG) dataset are missing [7]. Missing data 

in key software attributes is a common occurrence 

that can lead to erroneous estimates and poor 

prediction ability [8, 9], and can have a negative 

impact on the learning process, leading to erroneous 

conclusions [10]. 

Little and Rubin (1989), mentions that there are 

three categories for missing value patterns, such as 

missing completely at random (MCAR), missing at 

random (MAR), and nonignorable missing (NIM) 

[11]. However, there have been many previous 

studies in developing data imputation methods based 

on artificial intelligence systems. In most cases, there 

are two methods for dealing with missing data: the 

embedded technique and the preprocessing method 

[12]. 

In addition, the empirical study of Yadav and 

Roychoudhury (2018), mentions a package of 

popular imputation methods available in R such as: 

k-nearest neighbor imputation (kNNI), Multiple 

imputations by chained equation (MICE), and 

random forest imputation (MissForest) [13]. The 

fundamental issue with imputation approaches is that 

they are more difficult to handle when missing data 
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occurs in categorical characteristics. According to 

Idri et al (2015), despite the fact that most software 

project data sets consist of mostly categorical features 

with many missing values, but most of the imputation 

techniques are applied to numeric data types [14]. 

kNNI is a well-known and computationally 

simple method for missing data imputation that uses 

observations in the environment to account for 

missing values [15-18]. In addition, kNN can predict 

categorical or numeric attributes using the value of 

mode/mean or median [19]. Several previous studies 

investigated the imputation of kNN in software 

engineering datasets with categorical attributes in a 

classical way, mainly using classical numbers or 

intervals and overlapping measures to evaluate the 

similarity between software projects [20]. This 

technique has proven to be the most frequent 

imputation technique for datasets in the SEE field. 

However, MICE and missForest they may be ignored 

as imputation methods in this field 

When targeting estimation accuracy, much effort 

has been devoted to improving machine learning 

(ML) methods [17]. For empirical validation, the ML 

algorithm is routinely tested on the SEE datasets. The 

use of data preprocessing (DP) techniques as a 

fundamental step in helping to increase machine 

learning performance [15, 16, 21]. 

To the author knowledge, there is very limited 

research focusing on DP techniques in the SEE 

literature. In many situations DP techniques, such as 

missing data imputation [15, 16, 22, 23], and feature 

selection [16,24-26] has been considered a necessary 

step for case-based reasoning (CBR), artificial neural 

networks (ANN), support vector regression (SVR) 

[27], while for Other ML methods, such as random 

forest (RF), classification and regression tree 

(CART) and k-nearest neighbor (kNN), they may be 

ignored.  

Sidra Tariq et al (2020) revealed that the DP 

phase was still limited to the sample data set, which 

included handling missing values and feature 

selection [28]. Strike et al (2001) simulated several 

incomplete data sets and discovered that imputing 

missing data with Z-score normalization produced 

the best regression model [29]. However, missing 

values must be discarded, if possible, to eliminate 

biases which can alter the accuracy of ML predictions 

[29]. In contrast, in Huang et al (2017), the list 

deletion in SEE has become less frequent because it 

reduces the exhaustiveness of the data and therefore 

makes it less appropriate for the application of the 

derived model [16].  

Proper data preprocessing improves the accuracy 

prediction in the end. However, machine learning 

techniques can have a negative effect on the 

prediction of performance without properly 

considering their features [15, 28]. According to 

Huang et al (2017), that DP techniques are an 

effective choice for effort estimation [16]. Several 

previous studies combining multiple scheme on DP 

techniques were examined first, but their impact on 

the ML approach was not investigated. 

The aim of this paper is to determine whether the 

imputation approach can be applied effectively to the 

DP technique for attributes containing mostly 

categorical attributes with many missing values, and 

in particular the relative performance of the 

imputation approach and how imputation changes the 

relationship between data properties. We tested three 

imputation approaches: kNNI, MICE, and missForest 

with data sets of more than 40% missing values. Then 

evaluate the performance of the approach by 

comparing the performance results of the imputation 

method using five predictor methods in machine 

learning (such as multilayer perceptron (MLP), SVR, 

kNN, CART, and RF). 

Based on the analysis of previous empirical 

studies on several data preprocessing techniques for 

the ML method. The remainder of this paper is 

structured as follows: Section 2 presents a related 

work on the application of missing data techniques in 

SEE, Section 3 presents missing imputations 

techniques, Section 4 presents experimental design, 

Section 5 presents the experimental results and 

analysis, Section 6 concludes this work and points out 

future research directions. 

2. Related work 

A mapping study conducted by Idri et al (2015), 

they classified 35 papers related to the treatment of 

missing data in software engineering repositories. In 

their study, six criteria were taken, such as: research 

type, research approach, missing data technique, 

missing data type, data type, and purpose. The results 

of the study explained that 94% of the papers selected 

ISBSG were frequently used datasets, 54% of the 

selected papers only treated MCAR, 63% were 

dedicated to dealing with missing numerical and 

categorical data, and 97% of selected papers were 

treated with imputation techniques [14]. Table 1, 

shows several previous studies in the field of SEE 

that investigated missing data in categorical and 

numerical attributes explaining information about the 

investigated SEE techniques, missing data techniques 

used, and missing data mechanisms handled in each 

study. 

Based on the results of the summary of findings in 

Table 1, that analogy-based estimation and regression 

are the most studied effort estimation in the context 
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Table 1. Related work of the application of missing data techniques in SEE 

ID 
Effort 

technique 

Imputation 

methods 
Mechanism Findings 

[18] ABE Toleration, 

deletion and 

kNNI 

MCAR, 

MAR, NIM 

The results show that fuzzy analogy produces more accurate 

estimates in terms of standard accuracy measures. Another finding, 

that of kNN imputation, yields accurate estimates rather than 

toleration or deletion. 

[16] ABE MI, kNNI MCAR The findings also suggest that combining Z-score normalization, 

kNN imputation, and mutual information-based feature weighting 

for analogy-based effort estimate is a viable option. 

[29] Regression LD, MI, 

hot-deck 

imputation 

MCAR, 

MAR, NIM 

The simplest technique, listwise deletion, is an missing data 

strategies work well (with a bias value always less than 0.03). The 

best results are obtained by employing a hot-deck imputation with 

euclidean distance. 

[7] Regression LD, MI, 

SRPI, 

FIML 

MCAR, 

MAR 

For missing at random (MCAR) data, FIML works well. Also, for 

MD mechanisms other than MCAR, state that LD, MMSI, and 

SRPI were demonstrated to produce biased findings (MMRE 

values for LD of 48%, MI of 61%, SPRI of 68%, and FIML of 

74%). 

[15] CBR, 

ANN, 

CART 

LD, MI MCAR In terms of increasing predictive accuracy and resilience, LD is 

favoured over MI for data sets with a substantial number of missing 

values. CBR is a better fit for feature selection than ANN or CART. 

In our investigation, ANN performed worse than the other two ML 

approaches. 

[30] Regression Toleration, 

kNNI, MI 

MCAR Although MI improves accuracy over toleration, kNN produced the 

greatest results. MMRE = 155.1 percent for toleration, 62.1 percent 

for MI, and 28.2 percent for kNN in the first data set. No model 

could be developed for the toleration data in the second data set 

(MMRE values for SMI of 112% and kNN of 78%). 

[31] Decision 

tree 

NNSI (kNN 

single 

imputation), 

MI 

MCAR, 

MAR, NIM 

BAMI is a suggested ensemble missing data approach that 

incorporates kNN and multi imputation. The empirical findings 

reveal that BAMI is the better technique overall, with an excess 

error rate of 8.9% with 10.6% for NNSI. 

[23] C4.5 kNNI, 

toleration 

MCAR, 

MAR, NIM 

C4.5 prediction accuracy can be improved via kNN imputation. 

The missingness mechanism affects tolerance and kNN, 

nevertheless, the pattern and proportion of missing data have a 

significant detrimental impact on prediction accuracy, especially 

when the percentage of missing data approaches 40% 

[32] Regression LD, MI, 

EM, RI, 

MLR 

MCAR, 

MAR, NIM 

The efficiency of the suggested method is shown by the 

comparison of MLR with other strategies for dealing with missing 

data in various patterns and the percentage of missing data with 

standard deviation values: MLR = 178.410, EM = 214.848, MI = 

269.624, RI = 255.035, LD = 353.526) 

[33] ABE kNNI MCAR, 

MAR, NIM 

The results of an ensemble kNN imputation were compared to 

those of a single GS-kNN imputation and kNN without 

optimization. Result E-kNNI outperformed to other methods, 

according to our findings. 

[34] ABE 

(1NN), 

CART 

MI MCAR According to our findings, 1NN and CART perform worse on 

smaller data sets than on complete data sets. As a result, using these 

approaches without taking into account the magnitude of the data 

is not advised. 

[35] RT, RBF, 

MLP 

kNNI MCAR For ISBSG, which is anticipated to be more heterogeneous, 

approaches like kNN are more frequently among the best, whereas 

RT is more frequently among the best for PROMISE. The MAE of 

these approaches did not differ statistically significantly according 

to the Friedman test  (statistic Ff = 0.2612 F(4,48)=2.565). 

Abbreviations: Mean/mode imputation(MI); Listwide deletion(LD); similar response pattern imputation(SRPI); full 

information maximum likelihood(FIML); expectation maximization imputation (EM); regression imputation (RI); 

multinomial logistic regression (MLR); Regression tree (RT); Radial basis function (RBF); Analogy based estimation 

(ABE) 
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of missing data [16], kNNI is the most investigated 

imputation technique, found to be the best in most 

cases [6,16,33], and MCAR is the most effective 

omission mechanism widely used in the field of SEE 

[14], and data preprocessing as an effective approach 

in dealing with missing data [15, 16, 23, 35]. 

3. Software effort preprocessing techniques 

3.1 Ordinal Encoding 

Ordinal Encoding assigns for each category a 

unique number code [36] and as every category is 

displayed as a single input, the advantage is that the 

problem space dimensions do not increase [37]. Give 

value 𝑓  for the i-th object is 𝑥𝑖𝑓  and 𝑓  have status 

sorted 𝑀𝑓  which presented rank {1,2, … , 𝑀𝑓 }. 

Replace each 𝑥𝑖𝑓  be ranked accordingly 𝑟𝑖𝑓 =

{1,2, … , 𝑀𝑓}. Map the range of each attribute to [0, 1] 

so that each attribute has the same weight. Use 𝑧𝑖𝑓 to 

present attributes 𝑟𝑖𝑓 from the i-th object. 

 

𝑧𝑖𝑓 =
𝑟𝑖𝑓 − 1

𝑀𝑓 − 1
                                   (1) 

 

Dissimilarity is then calculated using one of the 

distance measurements, namely the Manhattan 

distance, formulated as follows: 

 

𝑑(𝑥𝑗, 𝑥𝑗) = ∑|𝑥𝑖 − 𝑥𝑗|

𝑁

𝑛=1

                   (2) 

 

Difference matrix (or object-per-object structure): 

This stores a set of approximations available for all 

pairs of n objects. These are often represented by 

tables n-by-n. Where 𝑑(𝑥𝑖 , 𝑥𝑗)  is the measured 

inequality or "difference" between objects 𝑥𝑖 and 𝑥𝑗. 

The similarity value for the ordinal attribute can be 

interpreted from dissimilarity as 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑗) = 1 −

𝑑(𝑥𝑖, 𝑥𝑗). 

3.2 Data normalization 

Data normalization (DN) changes the value of a 

feature according to preset guidelines to ensure that 

every scaled feature has the same influence [38]. In 

our study, we will use the interval [0,1] as a scaling 

target, as in Eq. (3) below: 

 

[0,1]𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑛 𝑥𝑘 =
𝑥𝑘 − x𝑚𝑖𝑛

x𝑚𝑎𝑥 − x𝑚𝑖𝑛
     (3) 

 

After the scaling is done, then the unstructured 

data can be normalized using the Z-score parameter, 

according to Eq. (4) [15, 16, 39]: 
 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑥𝑘 =
𝑥𝑘 − �̅�

𝑠𝑡𝑑(𝑥)
                                (4) 

 
Where, 𝑥 is the feature column in the data matrix. 

𝑥𝑘  represents the k-th value of 𝑥𝑚𝑖𝑛 corresponds to 

the minimum values, while 𝑥𝑚𝑎𝑥 corresponds to the 

maximum values in 𝑥 . While 𝑥  and 𝑠𝑡𝑑(𝑥)  are 

calculated using the mean and standard deviation 𝑥. 

3.3 Missing data imputation techniques 

3.3.1. K-nearest neighbors imputation 

The k-nearest neighbors imputation (kNNI) based 

analogy algorithms that have been shown to be an 

efficient method of estimating missing values of the 

attributes in various software engineering dataset [22, 

23, 30]. The kNNI approach has been extended to 

imputation of missing data across multiple dataset 

[40]. kNNI imputation is generally the right choice 

when we do not have prior knowledge of the 

distribution of data [41]. 

3.3.2. Multiple imputation by chained equations 

In the statistical literature, multiple imputations by 

chained equation (MICE) from Raghunathan et al 

(2001) have emerged as one of the principle methods 

of dealing with missing information, sometimes 

known as the "full condition specificities" or 

"sequential regressions multiple imputations" [42]. 

According to Schafer and Graham (2002), are 

explaining that missing values are calculated on the 

basis of the observed values of a particular individual 

and of the relations for other participants observed in 

the data provided that the observed variables are 

contained in the imputation model. This approach can 

reduce nonresponse bias and increase strength [43].  

3.3.3. Random forest imputation 

Random forest is a well-known machine learning 

technique that has been used to solve problems like 

regression and classification [44]. Currently, the 

random forest approach has been expanded as an 

iterative imputation method (dubbed "MissForest") 

to handle the problem of missing data [45]. There are 

two crucial parameters in the missForest function in 

the R package missForest. The first, ntree, is the 

number of trees per forest, and the second, mtry, is 

the total number of variables sampled at random 

within each tree split. The random forest original goal 
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was to choose these two parameters internally by 

looking for Out-Of-Bag (OOB) issues. 

3.4 Feature selection 

The use of genetic algorithms (GA) as feature 

selection (FS) uses a parallel search random strategy, 

directed to the search for high fitness points, i.e. the 

point at which the function to be minimized or 

maximized has a relatively low or high value [26], 

with the Genetic operators as follows [46]: selection, 

the process of selecting individuals from a population 

for further breeding using the roulette wheel selection 

method. The probability of selecting a specific 

individual ℎ𝑖 is defined as: 

 

𝑃(ℎ𝑖) =
𝐹(ℎ𝑖)

∑ 𝐹(ℎ𝑖)
𝑝
𝑖=1

                        (5) 

 

Where, 𝐹(ℎ𝑖)  is the fitness value of ℎ𝑖 .  

Meanwhile, a single point crossover operator will be 

used for crossover. The crossover point i is chosen at 

random so that one parent contributes the first bit of i 

and the second parent contributes the remaining bits. 

Furthermore, each individual has a 𝑝𝑚  chance of 

mutating. 

3.5 Machine learning methods in study 

3.5.1. Support vector regression 

Support vector regression (SVR) is a new 

generation of machine learning techniques that can be 

used to model predictive data. SVR is a support 

vector machines based approach [47]. For 

pedagogical reasons, this is linear function 𝑓, which 

is presented in the Eq. (6). 

 

𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 𝑤𝑖𝑡ℎ 𝑤𝜖ℝ𝑑 , 𝑏𝜖ℝ        (6) 

 

Where 〈. . , . . 〉  represents the dot product in ℝ𝑑 . 
For case nonlinear regression 𝑓(𝑥) = 〈𝑤, ∅(𝑥)〉 + 𝑏, 

where ∅ represented as some nonlinear function that 

can map the input space to a higher dimensional 

feature space ℝ𝑑 . ε-SV, to optimize it is selected 

weight vector 𝑤 and threshold 𝑏. 

3.5.2. Multilayer perceptron 

Because of its rapid operation, ease of 

construction, and smaller training set needs, the 

multilayer perceptron (MLP) is the most often used 

feed-forward neural network [48, 49]. Each neuron 𝑗 

in the hidden layer adds up the input signals 𝑥𝑖 that 

are impinging on it after multiplying them by their 

connection weights 𝑤𝑗𝑖 . The following is a 

description of each neuron output: 

 

𝑦𝑗 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖)                            (7) 

 

Where 𝑓  represents the activation function. 𝐸  is 

the sum of the squared differences in the output 

neurons desired and actual values [48, 49]: 

 

𝐸 =
1

2
∑(𝑦𝑑𝑗 − 𝑦𝑗)2

𝑗

                 (8) 

 

Where 𝑦𝑑𝑗 is the desired value of output neuron 𝑗 

and 𝑦𝑗  is the neuron's actual output. Depending on 

the training algorithm used, each 𝑤𝑗𝑖  weight is 

adjusted to minimize the value E. 

3.5.3. Classification and regression tree 

Classification and regression tree (CART) builds 

a binary decision tree by breaking down data sets 

such that the data in the subsets is purer than the data 

in the parent set. For example, in a regression 

problem, suppose (𝑥𝑛, 𝑦𝑛)  represents the n-th 

example, where 𝑥𝑛 is the n-th sample vector of the 

independent variable and 𝑦𝑛  is the value of the 

dependent variable. If there are a total of N samples, 

CART calculates the best separation so that the 

following is maximized for all possible S separations 

[50]. 

 

∆𝑅(𝑠∗, 𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥∆𝑅(𝑠, 𝑡), 𝑠 ∈ 𝑆       (9) 

 

Where ∆𝑅(𝑠, 𝑡) = 𝑅(𝑡) − 𝑅(𝑡𝐿) − 𝑅(𝑡𝑅)  is an 

increase in the estimated replacement for separation 

s from t. 

3.5.4. K-narest neighbor 

The k-nearest neighbor (kNN) approach groups 

objects based on the feature space's nearest training 

sample. kNN is a sort of example-based learning, 

often known as lazy learning, in which functions are 

only estimated locally and all calculations are 

postponed until classification and regression are 

completed [51]. 𝑑 is the Euclidean distance between 

two d data points 𝑑(𝑥, 𝑦) . where N denotes the 

number of effort drivers that describe a specific 

historical project. The illustration in Eq. (10) [52]. 

 

𝑑(𝑥, 𝑦) = ∑ √(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

              (10) 
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3.5.5. Random forest 

For regression purposes, a random forest (RF) is 

created by developing a tree that relies on a random 

vector 𝜆  and performs numerical data rather than 

class labels with specifies that the tree predictor 

ℎ(𝑥, 𝜆). The predictor's output is ℎ(𝑥) and the actual 

work value is 𝑌. The common mean square error is 

calculated for each numerical predictor ℎ(𝑥) as: 

 

𝐸𝑥,𝑌(𝑌 − ℎ(𝑥))2                           (11) 

 

The RF predictor is modeled by calculating the 

mean value obtained in k trees ℎ(𝑥, 𝜆𝑘). 

3.6 Error metrics 

The metrics that are utilized for evaluation are 
mean absolute error (MAE), root mean square 
error (RMSE), and R-squared (R2). The model is 
better if its MAE and RMSE values are low, and its 
R2 value is high.  

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|

𝑚

𝑖=1

                        (12) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

                 (13) 

 

R2 = 1 −
∑ (Xi − Yi)

2m
i=1

∑ (Y̅ − Yi)
2m

i=1

                   (14) 

4. Experiment design 

The DP approach in our study is used for handling 

attributes that mostly contain categorical attributes 

with many missing values, with the DP stage, 

including: categorical conversion, missing data 

imputation, data normalization, and feature selection 

used in our study. The complete experimental 

technique is depicted in Fig. 1. As a first step, we will 

do a categorical conversion. The use of the ISBSG 

dataset is a heterogeneous dataset type, so to 

overcome categorical data using ordinal encoding. 

The next step is to solve missing data using 

imputation method, in our study compare 3 

imputation methods, such as: kNNI, MICE, and 

missForest. Next, it will be scaled into the range[0, 1]. 

After that, it is followed by the determination of "NA 

or NAN" which will automatically be assigned to 

each particular column value that has an empty string, 

while for the numeric column it will be 

 

 
Figure. 1 Experiment procedur 

 

filled with "0". Meanwhile, for the feature selection 

method, we compare 3 methods, such as GA (genetic 

algorithm), LVF (low variance filter) and CF 

(correlation filter). The test results from all data splits 

are aggregated after 10 iterations to calculate the error 

metrics. 

It should be noted that, our study will use 2 

subsets such as training as parameter setting (80%), 

and testing as predictive evaluation of the training 

method (20%) at random. We used five ML methods 

for the experiment. Meanwhile, to set the parameter 

values of a single technique using a grid search, show 

in Table 2 for more details. 

5. Result and discussion 

In this study, we used the publicly available ISBSG 

dataset from the PROMISE repository for empirical 

testing. The results of the first analysis carried out 

were to investigate the features, type, and total 

missing values in ISBSG which are show in Table 3.  
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Table 2. Grid search spaces for each ML technique 

parameter values 

ML Parameter Values 

SVR Kernel: RBF 

Kernel Parameter: {0.0001, 0.001, 0.01, 0.1} 

Degree: {3, 4, 5, 6, 7, 8, 9} 

Deviation tolerated: {0.001, 0.01, 0.1} 

Learning rate: {0.01, 0.02, 0.03, 0.04, 0.05} 

MLP Kernel: RBF 

Minimum instance per leaf: {1, 2, 3, 4, 5} 

Max iter: {100, 500, 1000} 

Momentum: {0.1, 0.2, 0.3, 0.4, 0.5} 

Random state: {1, 2, 3, 4, 5} 

Hidden layer sizes: {1, 3, 5, 9} 

CART Minimal Size for Split: {1, 2, 3, 4, 5} 

Minimal Leaf Size: {1, 2, 3, 4, 5} 

Confidence: 0.25  

Minimal Gain: 0.1  

Number of Prepruning: 3  

Maximal Depth: 20  

Number of Trees: 10 (*for RF) 

kNN K: {1, 2, 3, 5} 

Similarity measure: Euclidean Distance 

RF Number of Trees: 125  

Max depth of the tree: {100, 200, 300} 

Min samples split: {3, 5, 7, 9} 

Min sample leaf: {3, 4, 5, 6, 7} 

 
Table 3. Descriptive ISBSG10 

ID Feature Type 

Total 

missing 

(%) 

1 Functional Size Ratio 0 

2 Value Adjustment Factor Ratio 33.29 

3 Project Elapse Time Ratio 30.77 

4 Development Type  Nominal 0 

5 Business Area Type Nominal 77.31 

6 Client Server Nominal 71.95 

7 Development Platform  Nominal 50.84 

8 Language Type  Nominal 25.21 

9 First OS Nominal 68.17 

10 Maximum Team Size  Ratio 57.77 

11 Normalised Level 1 Work 

Effort  
Ratio 0 

5.1 Performance under categorical conversion 

scheme 

In this study, for the SEE method that handle 

numerical and categorical features separately, we use 

proximity measures as an example procedure for 

handling ordinal features on a training project from 

Eq. (1) with manhattan distance from Eq. (2). 

Categorical feature sorting has no influence on 

distance in this way. Our preprocessing may yield 

ordering information among categorical data, which 

can be misleading because SEE approaches can only 

 

Table 4. Descriptive statistics under MDI scheme 

ID 
kNNI MICE MissForest 

Mean std Mean std Mean std 

1 0.061 0.099 0.061 0.099 0.061 0.099 

2 0.602 0.130 0.606 0.121 0.603 0.130 

3 0.131 0.097 0.126 0.097 0.131 0.095 

4 0.230 0.421 0.230 0.421 0.230 0.421 

5 0.769 0.362 0.756 0.285 0.522 0.477 

6 0.750 0.365 0.659 0.450 0.558 0.453 

7 0.349 0.309 0.357 0.307 0.258 0.341 

8 0.361 0.438 0.371 0.418 0.342 0.442 

9 0.406 0.349 0.454 0.297 0.477 0.394 

10 0.022 0.037 0.029 0.040 0.026 0.039 

11 0.045 0.081 0.045 0.081 0.045 0.081 

 

handle numeric features. Meanwhile, a one-hot 

encoding/dummy variable that employs the values 0 

Eq. (1) to signal the absence (presence) of categorical 

feature values is used in preprocessing methods. 

However, the method has the potential to 

significantly increase the number of features. 

5.2 Performance under missing data imputation 

scheme 

Marginal mean and standard deviation of test error 

in terms of standardized accuracy when using the 

three missing data imputation (MDI) techniques are 

show in Table 4. From the table, the results show that 

MICE may be more effective than kNNI and 

MissForest (based on mean/average). The ISBSG 

repository has a serious problem with missing values. 

Our data analysis suggests that MissForest may not 

provide a strong estimate because it doesn't exist. 

MissForest is only slightly better under MICE and 

kNNI. MICE is somewhat superior than kNNI in 

terms of imputation of missing data, according to the 

marginal effect. MissForest greater standard 

deviation, on the other hand, suggests that in some 

cases, MissForest accuracy may be superior to kNNI 

and MICE. The properties of the ISBSG data, which 

have high skewness values and strong kurtosis (see 

Table 6), also influence MDI impact. To further 

explore the impact of MDI, it is necessary to combine 

DP to use other imputation methods. However, kNNI, 

MICE and missForest have nearly the same 

performance results. 

The relationship between two variables using the 

pearson correlation method. Correlation ranges 

between -1 and 1. A number close to or equal to 0 

indicates that the two variables have little or no linear 

relationship. The linear relationship, on the other 

hand, is stronger the closer it gets to 1 or -1. In the 

next step, a heatmap is constructed to show the 

correlation between all the features, and its graph is 
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Figure. 2 Correlation heatmap dataset  

 
Table 5. Performance evaluation under MDI scheme 

for each ML methods  

MDI ML  
Testing Error Metrics 

MAE RMSE R2 SD 

kNNI  SVR 0.062 0.070 0.316 0.059 

MLP 0.052 0.085 -0.027 0.052 

CART 0.018 0.042 0.751 0.073 

kNN 0.022 0.044 0.718 0.063 

RF 0.025 0.045 0.710 0.053 

MIC

E  

SVR 0.053 0.062 0.450 0.070 

MLP 0.048 0.076 0.183 0.065 

CART 0.021 0.045 0.711 0.071 

kNN 0.016 0.038 0.797 0.065 

RF 0.025 0.045 0.707 0.051 

Miss 

Fores

t 

SVR 0.066 0.074 0.237 0.058 

MLP 0.047 0.070 0.308 0.071 

CART 0.019 0.040 0.774 0.074 

kNN 0.021 0.044 0.726 0.060 

RF 0.024 0.044 0.718 0.054 

 

given in Fig. 2. 

The following is the error metric value of the test 

error under the three MDI scheme for each ML 

method show in Table 5. 

In our imputation method assumptions, all test 

data values are missing. Because the imputation 

method returns a prediction column for each column 

of test data. In the training process, the imputation 

method is trained with the default hyperparameters 

on the training data. Meanwhile, in the machine 

learning method as an estimator, we use a 

hyperparameter tuning technique using a grid search. 

The actual value in the test data column is estimated 

during the imputation process. The model with the 

lowest MAE and RMSE gives more precise results. 

while, for the value of R2 and standard deviation (SD) 

if it has a higher value then it gives better accuracy 

results. For the performance of the three imputation 

methods that take into account the values of MAE, 

RMSE, R2, and SD have been given in Table 5.  

As shown in the table, the kNNI-CART has the 

best performance as indicated by the values of 

MAE(0.018), RMSE(0.042), R2(0.751), and 

SD(0.073). Meanwhile, kNNI-SVR and kNNI-MLP 

had the poor performance. Meanwhile, kNNI-kNN 

and kNNI-RF have almost the same good 

performance. For the MICE imputation method, it 

shows that MICE-kNN has the best performance with 

MAE(0.016), RMSE(0.038), and R2(0.797) values. 

Although MICE-CART has the highest value on 

SD(0.071) on the other hand, indicating that in some 

cases, the accuracy of MICE-CART may be superior 

to that of the MICE-kNN method. Meanwhile, 

MICE-CART and MICE-RF almost have the same 

performance. Meanwhile, MICE-MLP has the poor 

performance. Meanwhile, missForest-CART has the 

best performance with values of MAE(0.019), 

RMSE(0.040), R2(0.774), and SD(0.074). While 

missForest-SVR and missForest-MLP had the worst 

performance. Meanwhile, missForest-kNN and 

missForest-RF have almost the same good 

performance. Although, it is important that all three 

MDI scores are nearly equal in performance. The 

imputation method shows that CART, kNN, and RF 

have the best performance compared to SVR and 

MLP. Whereas MLP and SVR have the poor 

performance in this regard. MLP and SVR were 

consistently negatively affected by all three 

imputation methods, and were less sensitive to a 

small number of missing values. Meanwhile, CART, 

kNN, and RF are sensitive and have resistance to 

outliers. 

We compared imputation methods on data sets 

containing mostly categorical attributes with many 

missing values more than 40% missing data with 

three different imputation methods: kNNI, MICE, 

and missForest. To compare and evaluate the 

accuracy of the suggested ML algorithms for each 

imputation approach. In addition, statistical results 

were evaluated using a 5-fold cross-validation 

procedure. When, MAE and RMSE are low, the 

algorithm error is also low, on the contrary, R2 and 

SD values must have the highest values. In full, it will 

be show in Fig. 3 and Fig. 4, where the point that has 

the lowest value (MAE and RMSE) is the method that 

has the best accuracy value. While, R2 and SD show 

in Fig. 5, and Fig. 6 show a comparison of the 

methods, if they have the highest value as the method 

that has the best performance. 
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Figure. 3 MAE imputation error of MDI and  

ML methods 

 

 

 
Figure. 4 RMSE imputation error of MDI and  

ML methods 
 

 

 
Figure. 5 R2 imputation accuracy of MDI and  

ML methods 

 

 

 
Figure. 6 SD imputation accuracy of MDI and  

ML methods 

 

 

Table 6. Descriptive statistics under DN scheme 

ID Mean Skew Kurt std 

1 0.061 4.103 22.457 0.099 

2 0.596 0.124 1.906 0.138 

3 0.137 2.380 9.810 0.109 

4 0.230 1.284 -0.349 0.421 

5 0.810 -1.593 0.542 0.393 

6 0.797 -1.490 0.224 0.402 

7 0.301 0.666 -1.062 0.359 

8 0.352 0.618 -1.621 0.478 

9 0.384 0.413 -1.158 0.379 

10 0.025 14.249 247.123 0.055 

11 0.045 5.860 50.078 0.081 

5.3 Performance under data normalization 

scheme 

In this study, we use data normalization (DN) 

which is used as a scale of 0 and 1 values. The results 

of the study by Mensah et al (2018) found that 

normalized Z-score [0,1] resulted in the best 

prediction accuracy than box-cox and log transform 

for all dataset [53]. Huang et al (2017), the use of the 

[0, 1] scheme slightly outperformed the [-1, 1] 

scheme [15, 16]. And the Z-score scheme can 

improve the overall estimation accuracy. The results 

of data analysis show that for the marginal mean, 

skewness, kurtosis and standard deviation on 

standardized accuracy with the Z-score scheme, show 

in Table 6. 

The results show that the schema [0, 1] for the 

ISBSG dataset is highly skewed, although there are 

some features that are less skewed. The ISBSG subset 

is therefore a high-order non-normality. If the number 

is larger than +1 or fewer than -1, the distribution is 

severely skewed, according to a standard skewness 

rule of thumb. The basic criterion for kurtosis is that 

if the number exceeds +1, the distribution is 

excessively peaked. A kurtosis of less than -1, on the 

other hand, denotes a distribution that is too flat. A 

distribution that exceeds these parameters in terms of 

skewness and/or kurtosis is considered abnormal. 

5.4 Performance under feature selection scheme 

The goal of feature selection (FS) utilizing GA is 

to determine the best option among a set of possible 

solutions. A population is a collection of solutions. 

Vectors, such as chromosomes or individuals, make 

up the population. A gene is the name given to each 

item in the vector. Chromosomes are represented as 

binary strings of 1 and 0 in the suggested method. The 

number 1 denotes feature selection, while the number 

0 denotes non-selection. Population size = 952, 

generations = 40, crossover rate = 0.5, mutation rate 

= 0.05, two-point crossover randomly selected,  



Received:  August 2, 2021.     Revised: September 18, 2021.                                                                                           563 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.49 

 

Table 7. Performance evaluation under FS scheme for each ML Methods 

Testing 

Error 

Metrics 

ML 

Methods  

kNNI MICE MissForest 

LVF CF GA LVF CF GA LVF CF GA 

MAE 

SVR 0.063 0.069 0.048 0.054 0.059 0.062 0.063 0.066 0.056 

MLP 0.039 0.044 0.039 0.046 0.044 0.042 0.039 0.039 0.033 

CART 0.020 0.023 0.015 0.017 0.023 0.022 0.024 0.025 0.021 

kNN 0.023 0.034 0.024 0.016 0.029 0.021 0.028 0.027 0.023 

RF 0.028 0.025 0.025 0.027 0.028 0.025 0.026 0.025 0.024 

RMSE 

SVR 0.071 0.080 0.059 0.063 0.073 0.068 0.071 0.077 0.064 

MLP 0.085 0.092 0.075 0.084 0.080 0.065 0.085 0.090 0.063 

CART 0.043 0.051 0.037 0.051 0.047 0.049 0.052 0.058 0.043 

kNN 0.045 0.071 0.048 0.038 0.066 0.045 0.057 0.056 0.047 

RF 0.050 0.047 0.044 0.048 0.052 0.045 0.047 0.048 0.043 

R2 

SVR 0.294 0.098 0.510 0.434 0.243 0.356 0.296 0.166 0.427 

MLP -0.027 -0.180 0.205 -0.002 0.092 0.395 -0.018 -0.141 0.431 

CART 0.739 0.636 0.804 0.636 0.680 0.656 0.618 0.517 0.733 

kNN 0.706 0.289 0.666 0.797 0.392 0.711 0.542 0.563 0.679 

RF 0.639 0.686 0.718 0.671 0.611 0.716 0.680 0.677 0.732 

SD 

SVR 0.059 0.041 0.071 0.070 0.048 0.060 0.062 0.050 0.066 

MLP 0.004 0.025 0.022 6.938 0.045 0.044 0.000 0.023 0.051 

CART 0.072 0.067 0.076 0.067 0.069 0.068 0.066 0.060 0.072 

kNN 0.063 0.032 0.051 0.065 0.039 0.056 0.046 0.053 0.054 

RF 0.051 0.061 0.056 0.050 0.048 0.055 0.053 0.053 0.054 

roulette wheel selection, and elitism replacement 

were the GA settings. Because the outcomes are 

dependent on the population randomly produced by 

the GA algorithm, we ran 10 simulations for dataset.  

The use of GA for subset selection can be a 

potential candidate when suitable parameters can be 

selected. However, sequential feature selection 

mostly selects 'Functional Size', 'Project Elapsed 

Time', 'Development Type', 'Business Area Type', 

'Language Type', 'Client Server', 'First OS', and 'Max 

Team Size' ' features from the ISBSG dataset. GA, on 

the other hand, selects the majority of the features 

from the data. The population is 952, divided into 40 

generations. At the 0.05 level, the mutations followed 

a uniform distribution. GA-based feature selection, 

which necessitates a 5-fold cross-validation step in 

order to find the optimal features. 

In this study, we compare GA feature selection 

with low variance filter (LVF) and correlation filter 

(CF). LVF is a useful dimension reduction algorithm. 

Removing low variance features, that is, low variance 

filtering feature selection. Calculate the variance for 

each of the sample's feature values. Filter if it is less 

than the threshold (delete). All zero-variance features 

are disabled by default. In the delete low-variance 

feature method, the feature with a lower variance than 

𝑝(1 − 𝑝) will be removed. In this study, only select 

columns that have a variance higher than 0.006. 

Meanwhile, the Pearson correlation is the most 

commonly used method for CF. First, we'll create a 

Pearson correlation heatmap and examine the 

correlation between the independent and output 

variables. Only features with a correlation of more 

than 0.5 (in absolute values) with the output variable 

will be considered. For the comparison results of the 

feature selection method, see Table 7.  

As shown in the table, the lowest MAE (0.015) 

and RMSE (0.037) values were obtained using the 

CART algorithm for the kNNI imputation methods 

and GA feature selection. With R2 (0.804) and SD 

(0.076) having the highest value, this shows that 

CART has the best performance. Even though, it is 

significant that these three feature selection methods 

have values that are close to the same. In combining 

the feature selection and imputation methods, it 

shows that CART has the best performance than SVR 

and MLP. While, for RF (MAE: 0.024; RMSE: 

0.043; R2: 0.732; SD: 0.054) have almost the same 

performance as CART, by using a combination of 

missForest as MDI and GA as FS. Meanwhile, kNN 

only had the best performance on the combination of 

MICE as MDI and LVF as FS (MAE: 0.016; RMSE: 

0.038; R2: 0.797; SD: 0.065). Thus, it can be 

concluded that CART, kNN, and RF have almost the 

same performance, both using a combination (LVF, 

CF, and GA as FS) with (kNNI, MICE, and 

missForest as MDI). Whereas MLP and SVR have 

the worst performance in this regard. Surprisingly, 

the results reveal that feature selection has no effect 

on the accuracy of the MLP and SVR approaches. 

Applying feature selection to MLP as a whole can 
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Figure. 7 Compare ML methods using MAE and 

prediction values 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure. 8 Residual plot: (a) SVR, (b) MLP, (c) CART, (d) 

kNN, and (e) RF 

 

lower the number of hidden nodes in data sets with a 

small number of features, reducing its approximation 

ability. This could be due to the limitations of the 

specific feature selection approach used in this study. 

SVR, on the other hand, is ineffective in dealing with 

outliers in training data, which are common in 

practical applications. As a result, some outliers 

result in poor regression. 

This research demonstrates that using LVF or CF 

for feature selection does not always increase effort 

estimation accuracy. On the other hand, when 

suitable parameters can be chosen, using GA for 

subset selection can be a viable option. GA does well 

in a more complete search to find the optimal solution 

[54].  

5.5 Overall performance ML 

We conducted extensive simulation studies to 

evaluate each ML method. Based on Fig. 7, provides 

a calculation of the mean absolute error between the 

list of expected and predicted values. The perfect 

mean absolute error value is 0.0, which means that all 

predictions exactly match the expected values.  

A graph is created to provide a basic statistical 

picture of the data showing the comparative value of 

the five ML performance. All variations on the graph 

were reviewed using the median on the MAE and 

predictive values. The results showed that the CART 

method had the best performance as indicated by the 

lowest MAE value, followed by RF and kNN. While 

the SVR and MLP methods have poor performance. 

However, in this study, it is shown that the dataset 

can significantly affect the accuracy of ML 

performance. 

Based on Fig. 8, it shows that some of the 

characteristics of a good residual plot lie in the CART 

method, which is followed by kNN and RF. This can 

be seen because it has a high point density close to 

the origin and a low point density from the origin. 

Residue indicates the quality of the model. If the 

expected residual value is not close to 0, this implies 

that the model is systematically biased towards over 

or under prediction. In addition, if the residuals 

contain a pattern, it is likely that the model fails to 

explain some of the relationships in the data and is, 

therefore, qualitatively inconsistent. So, it is also 

necessary to check whether the residuals are normally 

distributed, homoscedastic, or heteroscedastic. 

6. Conclusion 

We learned that the imputation approach can be 

applied effectively to the DP technique (with four 

stages in the context of SEE) for attributes containing 

mostly categorical attributes with many missing 

values. His paper has empirically evaluated and 

compared the effectiveness of missing imputation of 

the three imputation methods (kNNI, MICE, and 

missForest) and the three feature selection methods 

(GA, LVF, and CF) aimed at addressing missing data 

and irrelevant features. An empirical study was 

conducted using the ISBSG dataset. The ML model 

was assessed using error metrics (MAE, RMSE, R2, 

and SD). 

The results, suggest that kNNI and MICE may be 

more effective than MissForest (based on mean). 

MissForest is only slightly better under kNNI and 

MICE with larger standard deviation values, on the 

other hand, indicating that in some cases, 
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MissForest's accuracy may be superior. However, 

kNNI, MICE and missForest generally have almost 

the same performance results. 

Meanwhile, for the ML model test on the 

imputation method the results show that kNNI-

CART (MAE: 0.018; RMSE: 0.042; R2: 0.751; SD: 

0.073) and missForest-CART (MAE: 0.019; RMSE: 

0.040; R2: 0.774; SD: 0.074) has the best 

performance accuracy improvement. On the other 

hand, MICE-kNN (MAE: 0.016; RMSE: 0.038; R2: 

0.797; SD: 0.065) and missForest-RF (MAE:  0.024; 

RMSE: 0.044; R2: 0.718; SD: 0.054) had the best 

performance accuracy improvement. Whereas MLP 

and SVR have poor performance in this regard. 

Finally, for the performance of the feature 

selection GA works well in a more complete search 

to find the optimal solution. On the other hand, the 

use of LVF or CF for feature selection does not 

always improve the accuracy of the effort estimate. 

Nevertheless, it can be concluded that the application 

of three feature selection methods to the ML model 

such as: CART, kNN, and RF can improve 

performance accuracy. Surprisingly, the results 

reveal that feature selection has no effect on the 

accuracy of the MLP and SVR approaches. 

As future work, more empirical studies can be 

carried out to further support the findings of this 

study and to gather knowledge using other datasets. 

Investigating other types of imputation methods, or 

performing combinations using ensemble learning, is 

another direction for future work. It is also important 

to investigate the effectiveness of other feature 

selection methods or reinforce with optimization 

parameters on the software effort estimation. 
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