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Abstract: Grey wolf optimization (GWO) algorithm is one of the best population-based algorithms. GWO allows 

sharing information in the wolf population based on the leadership hierarchy using the hunting mechanism behavior 

of real wolves in nature. However, the algorithm does not represent any key exchange information sharing for the 

traveling salesman problem because of two issues. The candidate solutions are improved dependently, similar to local 

search concepts, losing their capability as a population-based algorithm. The algorithm is limited in its search process 

in finding only the local regions and ignoring any chance to explore search space effectively. This study introduced 

an adaptive grey wolf optimization algorithm (A-GWO) to solve the information-sharing problem. The proposed A-

GWO maintains sufficient diverse solutions among the best three wolves and the rest of the population. It also 

improves its neighborhood search by obtaining more locally explored regions to enhance information sharing among 

the wolves. An adaptive crossover operator with neighborhood search is proposed to inherit the information between 

the wolves and provide several neighborhoods to find more solutions in the local region. Experiments are performed 

on 25 benchmark datasets, and results are compared against 12 state-of-the-art algorithms based on three scenarios. 

The credibility of the proposed algorithm produces approximately 53%, 58%, and 63% better tour distance in the first, 

second, and third scenarios, respectively. The proposed A-GWO achieves approximately 87% better minimum tour 

distance compared with the GWO algorithm. 

Keywords: Crossover operator, Exploration, Exploitation, Machine learning, Position update, Swarm algorithms. 

 

 

 

1. Introduction 

The search for optimal solutions in artificial 

intelligence aims to find the “best” solution among 

various solutions in the search space. This type of 

problem is known as combinatorial optimization and 

is considered an NP-hard problem [1]. Several 

examples of combinatorial optimization problems are 

vehicle routing problem (VRP) [2], traveling 

salesman problem (TSP), clustering [3], 

classification [4], and feature selection [5]. Stochastic 

methods have been introduced with alternative 

randomness called metaheuristics because of the 

many complexities and limitations in most 

combinatorial optimization problems. This result 

concerns the exponential expansion in the area of 

search for the best solutions and avoids problems to 

have early convergence and local optima problems. 

Metaheuristics is a problem-independent algorithm in 

finding several near-optimal solutions. The main 

characteristic of metaheuristics combines several 

heuristic methods that perform in higher-level 

metaphors [7, 8]. These metaphors are inspired by 

different behaviors, representing the swarm of insects, 

including foraging, dancing of bees, collection of 

eggs of ants, and odor for membership recognition in 

a colony. The swarm approach, an intelligence 

system, describes the collective behavior of social 

insects while interacting with their environment and 

one another to solve a specific problem [9, 10]. The 

interaction occurs because of external influences 

representing positive feedback used as a 

communication in the population. For example, 

pheromones in the ant colony optimization algorithm 

(ACO) make the insects converge and perform a 
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unique behavior following one another [10]. The key 

aspects of swarm intelligence are decentralization 

and self-organization, wherein the population 

represents the power concept. One of the popular 

population bio-inspired behaviors is the evolutionary 

genetic algorithm (GA). GA represents a key 

overlapping feature, as introduced by Holland (1973). 

Survival of the fittest is a fundamental concept 

applied in which the candidate solutions are allowed 

to procreate further solutions on the basis of results 

obtained by previous iterations. The crossover and 

mutation operators are used iteratively to produce a 

new candidate solution.  

Information sharing is a fundamental element of 

swarm intelligence. However, such sharing is 

implemented in several population-based algorithms, 

such as ACO, artificial bee colony (ABC), grey wolf 

optimizer (GWO), and GA. The crucial elements for 

swarm intelligence algorithms include self-

organization, stigmergy, and positive feedback 

concept. The principle of self-organization is a 

process of building an organized and cohesive system 

from a disordered system on the basis of basic issues 

that are solved simultaneously [11]. Flocking of birds 

and ant foraging are typical examples that 

demonstrate the self-organization element of 

activities [12]. Stigmergy is another important 

concept that is represented as a chemical substance 

used in a swarm intelligence system in which the 

information is exchanged among different members 

that belong to the same population in the colony. GA 

does not have any stigmergy concept to exchange 

information, whereas self-organization and positive 

feedback are utilized to optimize the objective 

function. Following the same concept of swarm 

intelligence, GWO has a population of different 

wolves responsible for various tasks. The three main 

wolves are called alpha, beta, and delta, which are 

responsible for heading the hunting activity. The 

remaining wolves in the pack are called omega 

wolves, which update their positions based on the 

main three wolves. 

Different combinatorial optimization problems 

have employed GWO, which shows promising 

results in optimizing the objective function of the 

problem and exploring the search space using the best 

wolves in the population. However, Sopto (2019) 

showed a shortcoming in the mechanism of updating 

the positions of omega wolves, which was locally 

performed [13]. Therefore, the omega wolves would 

update their positions based only on local changes, 

similar to what local search algorithms do. Each 

omega position is updated based on the neighborhood 

search of the omega itself without looking for global 

solutions of alpha, beta, and delta positions. The 

algorithm is limited in its search process in finding 

only the local regions and ignoring any chance to 

explore other parts of the search space. The algorithm 

does not represent any key exchange or sharing of 

information between the wolves, allowing the 

algorithm to improve different solutions during the 

algorithm run.  

In this study, an adaptive algorithm is proposed 

with two new modifications for information sharing. 

The modifications are on adaptive crossover operator 

and neighborhood search to enhance the 

neighborhood search in the best local regions at the 

leadership hierarchy. The rest of the paper is 

organized as follows. Section 2 discusses related 

works. Section 3 introduces the proposed adaptive 

algorithm. Section 4 presents the evaluation of the 

proposed algorithm. Section 5 concludes the work 

and highlights future research. 

2. Related works 

Stochastic algorithms ensure the construction of 

solutions according to the quality of solutions guided 

by some objective functions and compact with some 

randomization to explore the search space and avoid 

stacking in local optima. Stochastic algorithms utilize 

different concepts, such as local search and tuning 

parameters, to optimize the objective function deeply, 

wherein the problem is formulated as the 

optimization problem [14-16]. The three main 

approaches popular in optimization are exact, 

estimation, and approximation. Exact algorithms can 

produce the optimal solution to an optimization 

problem within a dependent runtime instance. 

However, exact algorithms require exponential time, 

especially with complex optimization problems, and 

thus are difficult to use in complex problems. The 

estimation approach does not guarantee an optimal 

solution because the results are produced according 

to a predefined range of inputs [17]. The optimal or 

near-optimal solutions can be generated in a short 

time using the approximation approach. Although 

this approach does not guarantee finding the optimal 

solution always, it can produce reasonable solutions. 

This approach optimizes the problem on the basis of 

a single or population approach. The single approach, 

such as simulated annealing, tracks the improvement 

of one single solution candidate, whereas the 

population approach iteratively modifies a set of 

candidate solutions based on the algorithm feedback 

[18]. This popular approach can be either a swarm or 

an evolutionary algorithm (EA).  

EAs are a stochastic iterative search method, 

which simulates the evolution of species in nature. A 

set of candidate solutions evolves iteratively. These 
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candidate solutions are known as the population of 

the algorithm, where each individual has its fitness 

function for survival through life. The main 

operations in EAs are selection, recombination, and 

mutation. Each operation is responsible for 

increasing the accuracy of the solution. The 

probabilistic application is the search process used in 

EAs to find better solutions. It is guided by the 

objective function of the optimization problem, 

which represents the survival of the best individuals. 

The most known algorithm under this category is the 

GA. GA is one of the best EAs that have been 

successfully applied in several application domains. 

It has been used as the main part of many modern 

algorithms because of its components’ popularity and 

simplicity. The algorithm inspired by nature 

represents the theory of Charles Darwin and includes 

a selection of the best individuals for optimization. 

The process consists of selecting individuals who are 

most fit for reproduction to achieve the best offspring. 

The offspring for the next generation completes the 

cycle of Charles Darwin’s theory. The initial step in 

GA initializes each chromosome as a single solution. 

The reproduction consists of using a crossover 

operator. The operator uses a set of chromosomes to 

be mated to produce offspring better than the older 

population. Parts of a chromosome are moved to 

other parts of the chromosome to create new 

offspring. However, a crossover can be performed in 

many ways. Many genes are used, and the location of 

the genes on a chromosome plays a vital role in 

producing a better solution. A mutation operator is 

used to maintain the diversity of the solution in GA. 

The operator alters one or more genes in the 

chromosome, such as moving one gene (city) to other 

locations and modifying the route. Several 

researchers have used an adaptive strategy in the GA 

algorithm. An adaptive GA utilized three crossover 

strategies [19]. A fit offspring was determined by 

selecting the best strategy while running the 

algorithm, which was adaptively performed. 

Information reinforcement was conducted by 

utilizing pheromone information, which was updated 

using the best strategy according to the ACO model 

pheromone update. However, the algorithm did not 

use the evaporation procedure of ACO, which in the 

end may converge quickly on one of these strategies 

because of the wrong decision selected in the initial 

algorithm run.  

Sung and Jeong (2014) proposed an algorithm 

that adaptively changed the crossover parameter and 

the mutation parameter during the algorithm run to 

generate a new population [20]. Nevertheless, the 

algorithm showed better results only with small 

datasets, where adaptive search could find the best 

solution. Similar research proposed the adaptive 

crossover algorithm using the 1Bit Adaptive 

Crossover, where the specified crossover factor was 

coded in the genotype [21]. Riff and Bonnaire (2002) 

introduced this concept by using more operators [22]. 

It was extended in 2004 by encoding rate and reward 

operators, where the value change according to the 

fitness of the offspring was better or worse than its 

parents [23]. Cruz-Salinas and Perdomo (2017) 

extended this work by having a population of 

operators that were exposed to evolution and 

mutation and maintaining the operator selection 

method [24] employed in [23]. However, the 

algorithm used operators that were not suitable for the 

ordered nature of TSP. Similar research has proposed 

an adaptive two-opt mutation in the process of 

mutation in the GA algorithm [25]. The strategy 

changed the two-opt mutation to another operation 

called exchange cities, where a pair of cities were 

swapped one at a time adaptively. Nevertheless, the 

adaptive strategy employed did not memorize either 

the two-opt mutation or exchanges during the time. It 

only used the best one according to the fitness of the 

solution. 

A kind of biology-inspired concept is swarm 

intelligence, which expresses the regular behavior 

practiced by living organisms to communicate or 

solve different problems. Swarm intelligence is 

motivated by groups of insects, such as ants, bees, 

and bacteria, behaving intelligently as groups instead 

of a single insect. Several algorithms, such as ACO, 

ABC, and GWO, are examples of the swarm 

intelligence category because they use the basic 

swarm intelligence concepts, including self-

organization, stigmergy, and positive feedback. 

Developed by Dorigo [26], ACO is a publication-

based swarm algorithm inspired by the foraging 

behavior of ants. The algorithm has been successfully 

applied in different NP-hard combinatorial problems, 

including classification, clustering [27, 28], and 

feature selection [29, 30]. Dorigo modeled the 

foraging behavior to solve TSP when the stigmergy 

concept was used as an indirect communication guide 

for the colony to find the shortest route for TSP [31]. 

The algorithm has many parameters that control the 

algorithm’s performance to produce better results in 

different application domains, including clustering, 

classification, and feature selection. The density of a 

pheromone laid by an ant controls the probability of 

choosing the best arc according to the value of the 

pheromone, which is the core of the algorithm and 

has been adaptively optimized by different 

researchers. In ACO, stochastic methods are 

performed by integrating randomization through the 
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ant movement from city to city. This integration 

guarantees that the algorithm can avoid the local 

optima problem and explore the search space 

efficiently. The most important part of this algorithm 

is its model, which simulates foraging behavior, such 

as using the evaporation process, which is set by a 

parameter (evaporation rate) optimized by different 

researchers. The pheromone trail evaporates during 

the time. Therefore, long-distance routes are 

forgotten because ants have no desire to pass them. 

Different modifications in ACO have been proposed 

in the literature since the initial ant system proposed 

by Dorigo and the ant colony system [32]. 

In 2012, the pheromone decay parameter 

(pheromone evaporation rate) was adapted to avoid 

local optima and adjust the convergence rate during 

the algorithm run [33]. However, the adjustment was 

performed by using significant value changes in a 

descending manner, which did not guarantee to find 

the best value (best evaporation rate) that represented 

a particular dataset. Adaptive-related research has 

utilized different groups of ants to select pheromone 

arcs with different concentrations [34]. Nevertheless, 

the major problem of the algorithm was the high 

diversity of solutions and reinforcing the algorithm to 

converge on the best solution in a long time. This 

shortcoming occurred because different groups used 

different transition probability rules during the 

algorithm run. In 2021, another hybrid Harris’s Hawk 

and ACS, a variant of the ACO algorithm (HHO-

ACS), was proposed to optimize the ACS parameters 

[35]. Five parameters are subjected to optimization. 

In the end, the algorithm’s performance is determined 

by the pheromone coefficient, heuristic coefficient, 

decision rule, and the evaporation rate of the 

pheromone. This kind of optimization problem is 

called online parameter tuning based on an extended 

algorithm. HHO algorithm optimizes the five ACS 

parameters during the algorithm run, thus find the 

best value for each parameter in solving TSP. HHO-

ACS algorithm achieved better results than the ACS 

algorithm but the exponential time required in the test 

compared to both algorithms is long. Other related 

swarm algorithms, namely the black hole algorithm 

(BH) proposed to solve the problem of TSP [36]. The 

algorithm produced promising results compared with 

other swarm algorithms. However, two limitations 

have been investigated in the BH algorithm. First, the 

performance of the algorithm is achieved based on 

the population that is randomly initialized. The 

second showed a low exploitation-based search, 

where its standard deviation was high compared with 

other swarm algorithms. 

TSP has also been solved by the ABC algorithm, 

which is swarm-based inspired by a bee colony 

looking for food, representing the foraging principle 

in insects. The simple steps of the algorithm allow the 

researchers to apply the algorithm in several 

application domains. The algorithm consists of three 

main bees. The core engine of the algorithm includes 

the scout bee, employee bee, and onlooker bee. Each 

bee has its tasks, such as exploration, that are relevant 

to a scout bee. Exploration in the neighborhood of 

solutions is related to an employee bee task. An 

onlooker bee performs and exploits a task to find a 

deeper region with high-quality solutions. However, 

the algorithm has a limit parameter set statically by 

users, indicating how many times the solution can be 

accepted once the algorithm achieves the same result 

for a while. This parameter has been optimized by 

different researchers who included adaptive and self-

adaptive strategies [2, 36–39]. The purpose of the 

parameter is to restart the search space process 

frequently during the algorithm and allow the finding 

of a better region on the search space by avoiding the 

local optima solution. The algorithm generates the 

initial solution randomly (initial city sequence), 

whereby each bee represents a single solution 

comprising a set of cities visited one at a time. Each 

employee explores the local region by using a 

neighborhood structure, modifying the sequence 

locations of the cities. However, this step is 

considered by some researchers as an exploitation 

phase because the employee bee performs and 

improves locally. This step ensures finding better 

solutions in the neighborhood region.  

The adaptive ABC algorithm for a TSP proposed 

in 2013 was adaptive-count initialized for each bee, 

which changed dynamically during the algorithm run 

[40]. Nevertheless, this study did not clarify which 

count value was suitable for each dataset. Another 

limitation was that the scout had multiple jumps, not 

ensuring that all feasible solutions in the local region 

were found. Another study on numerical optimization 

was done in 2017 [41]. It proposed adaptive ABC on 

the basis of source food ranking. Each source food 

was ranked higher when more opportunities could be 

selected. However, the algorithm could only imitate 

if the selected food sources in the early search stages 

had high fitness, forcing the algorithm to converge 

quickly without exploring the local neighborhood 

region. The same idea of food source perturbation 

using a synergetic mechanism was proposed in 2020, 

enhancing the population diversity in algorithm 

initialization using a chaotic round map [42]. Another 

study used adaptive elitism-based immigration, 

which replaced the worse wolf in the population 

during the algorithm run with an elite individual with 

better fitness function with a controlled-mutation 

parameter. However, the mutation value was 
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controlled in some cases to a random value, which 

was distributed to an individual after the mutation 

process in an unpromising region. A 2019 study 

examined the performance of different variants of 

ABC using several statistical tests with 15 TSP 

instances. The test also included the convergence rate 

and the parameter setting of the ABC algorithm, such 

as the limit parameter. The limit parameter 

significantly controlled the ABC algorithm; reporting 

suitable parameter values for TSP [43].  

Particle swarm algorithm (PSO) for a traveling 

salesman problem has been improved by introducing 

the best current solution [44]. The basic idea is to use 

the best current iteration in the moving steps, 

improving the movement of the particles toward the 

best regains that have the best quality of solutions in 

the search space. However, the algorithm quickly 

stuck locally because the search process was only 

guided by the objective function, which was limited 

to the stochastic search to explore the search space 

effectively. Another related study proposed a hybrid 

PSO and ACO algorithm based on the best-worst ant 

[45]. The improvement starts with the population, 

which PSO initializes. The ACO algorithm is then 

performed to improve the solutions. The first step 

ensured that the generation of the initial population 

was iteratively better than what ACO does in a 

constructive manner. A new swarm algorithm, 

chicken swarm optimization, was proposed in 2021 

to solve the TSP problem [46]. Although the 

algorithm produced promising results, it has 

limitations in maintaining quality when feeding back 

the algorithm to find more solutions in the 

neighborhood. Other hybrid algorithm proposed 

discrete whale optimization (DWO) with ACO 

algorithm to improve the performance of DWO [47].  

The initialization of individuals improved by the 

ACO algorithm as the initial phase of DWO 

algorithms. Although DWO has been improved, the 

algorithm is still easily stacked in the local optima if 

the ACO algorithm is produced an initial population 

with high-quality solutions. DWO was improved by 

other researchers in 2021 using a variable 

neighborhood algorithm. [48]. This improvement 

increases the exploitation-based capability to find 

more local regions in the search space. However, the 

proposed algorithm cannot explore the search space 

when stagnation occurs. In 2019, another swarm 

algorithm, dragonfly algorithm (DA), was proposed 

to solve the problem of TSP [49] and showed 

promising results compared with other swarm 

algorithms.  

The GWO literature indicates that the most 

important issue is the use of the updated position 

equations when GWO is utilized for different 

combinatorial optimization problems. Maintaining 

the balance between the two phases is the core engine 

of the algorithm, and both phases are affected by the 

updated position equations. The first three wolves 

(alpha, beta, and delta) represent the best positions of 

the hierarchy (in the search space of the problem). 

The remaining wolves (omega) are improved during 

the run according to that hierarchy level. The omega 

wolf position depends only on three wolves. A study 

done in 2019 had a mechanism for updating omega 

position [13]. Its limitation is that it was locally 

performed only when each solution was updated 

based on the neighborhood search without looking 

for a global region. Thus, omega wolves could be 

densely settled in the same region or certain regions 

during the prey catching process. In other cases, the 

mechanism of updating the omega position is locally 

performed only when each solution is updated based 

on the neighborhood search, preventing the exchange 

of information between the omega and the first three 

wolves (alpha, beta, and delta). This issue has been 

observed in the TSP problem, where omega wolves 

are improved by only using the neighborhood 

structure. No real update position is available to move 

the omega wolves to the best region and provide a 

chance during the run to explore a more promising 

region in the search space [13]. Two methods have 

been used in other related works to improve the 

performance of GWA for competitive traveling 

salesman problems [50]. The benefit of both methods 

is to increase the exploration and exploitation of the 

algorithm during the algorithm run. The static 

method used as the first method to divide cities 

evenly among salesmen, whereas the parallel method 

was used as the second method for all cities available. 

However, the methods are limited in the sharing of 

information between agents. 

3. Proposed adaptive algorithm 

The grey wolf optimization algorithm is 

metaheuristic. It simulates the social behavior and 

leadership hierarchy of grey wolves in real life. 

Social behaviors, such as hunting, organization, and 

decision-making, make the algorithm a unique model 

used by researchers to solve different optimization 

problems. Each group of wolves usually contains 

between 5 and 12 members. The members are sorted 

according to the hierarchy level, where members are 

known as alpha (α), beta (β), delta (δ), and omega (ω). 

Each of the omega wolves in the group has its task in 

the pack regardless of its position. The α wolf is 

responsible for the leadership and decision to hunt in 

addition to other tasks, such as sleeping and waking 

up for all wolves. The β wolf helps the α wolf in the  
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A-GWO algorithm  

1 Input: Data (TSP Instances) 

2 Output: Best Solution 

3 Generate initial wolf population; 

4 Calculate fitness 𝑓(𝑋𝑖); 

5 Identify three best wolves  as Xα, Xβ, and Xδ; 

6 IterationIndex=1; 

7 WHILE (IterationIndex < Max) 

8 Repeat  

9 Update Position of 𝑋𝑖; 

10 S*=Crossover();    

11 IF(S*<𝑋𝑖) 

12 𝑋𝑖= S*;  

13 S*= NeighborhoodSearch(𝑋𝑖);  / 

14 IF(S*<𝑋𝑖) 

15 𝑋𝑖= S*;  

16 Compute break point;        

17 Until termination condition meet 

18 UpdateCoefficient(); 

19 Calculate fitness 𝑓(𝑋𝑖) 

20 UpdatePosition(); 

21 IterationIndex = IterationIndex + 1;  

22 UNTIL (IterationIndex = Max)  

23 END-WHILE 

Figure. 1 A-GWO algorithm 
 

decision-making and is considered the best successor 

for the group if the α wolf dies. The δ wolf, who is 

the third level in the hierarchy, is responsible for 

organizing the ω wolves. Without the δ wolf, the 

group will encounter internal chaos. In hunting, grey 

wolves form the main nerve for group survival, which 

involves searching, tracking, encircling, and 

attacking prey. Those tasks are mathematically 

modeled as the GWO algorithm.  

The process of encircling the prey is 

mathematically modeled as the movement of the grey 

wolf’s location to the prey location and circling it. 

This task can be achieved by finding the distance 

between the grey wolf and prey location in the search 

space. The movement of the grey wolf involves the 

exploration and exploitation processes in finding a 

new location during the search and avoid falling into 

the local optima problem. This study proposes an A-

GWO algorithm by introducing two new 

modifications to the present GWO algorithm. These 

modifications are essential to enhance the search 

process of the algorithm. The adaptive crossover 

operator and neighborhood search operations are 

proposed as the core engine of the algorithm. The 

standard GWO algorithm allows the sharing of 

information in the wolf population using leadership 

hierarchy. However, it ignores information sharing 

between omega wolves and the three leadership 

hierarchy wolves for the TSP problem [13]. In the A-

GWO algorithm, information sharing between the 

best three wolves and the rest of the population is 

maintained, improving the search in the 

neighborhood regions. Both modifications are used to 

explore the best solution found in global and local 

regions from the search space. Figure 1 illustrates the 

A-GWO algorithm. 

The A-GWO algorithm has three stages: 

encircling, hunting, and attacking the prey (Steps 1–

3). The modifications are performed in those stages, 

including the crossover operator encircling the prey, 

selecting the best solution, performing neighborhood 

search in hunting the prey, and computing the 

breakpoint in attacking the prey. The algorithm starts 

with the initialization of all parameters and wolf 

population. Step 4 calculates the fitness function of 

all wolves, and Step 5 determines the best three 

wolves, α, β, and δ, according to the fitness function 

of each wolf in the population. Step 6 starts the 

algorithm iterations by initializing the value of the 

iteration index to 1. Step 7 initializes iterations by 

checking each wolf, and Step 8 starts the algorithm 

cycle. Step 9 checks each wolf’s position in the 

search space. Step 10 has the first modification, 

which represents encircling the prey, which is  
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Figure. 2 Adaptive crossover and neighborhood search 

processes 

 

 
Figure. 3 Agent representation in A-GWO algorithm 

 

mathematically modeled as the movement of the grey 

wolf’s location to the prey location to be surrounded. 

This task can be achieved by finding the distance 

between the grey wolf and prey location in the search 

space. The movement of the grey wolf maintains the 

exploration and exploitation to find a new position 

during the search and avoid falling into the local 

optima problem. This process is articulated using the 

crossover operator, as shown in Step 10. This step 

represents the sharing of information between each ω 

wolf with the α, β, and δ wolves. However, the 

crossover operator is performed according to a 

predefined breakpoint, which is adaptively changed 

during the run and represents the matting process. 

The best matting is selected as the new position for 

the current ω wolf, which, in the end, represents the 

prey hunting stage of steps 11–12. The hunting starts 

by surrounding the position of the prey in the search 

space. However, no real knowledge about the prey 

position as in nature is available in the mathematical 

model. The only information provided is the 

positions of the three best wolves in the search space 

α, β, and δ, representing the best solutions in the 

algorithm. Therefore, the three candidate solutions 

are used to guide the rest of the ω wolves toward the 

best location that is surrounded by α, β, and δ. As a 

result, each ω wolf updates its position according to 

the best crossover operator between ω wolf and the 

three best wolves. The process of attacking the prey 

can be represented as the time of performing the 

attack and determining the best time to make the 

attack (steps 14–16). In the algorithm, the breakpoint 

represents exploration and exploitation, controlled 

according to the value of a that changes linearly. The 

second modification (i.e., the neighborhood search) 

(step 13) increases the probability of finding better 

solutions in the neighborhood region of wolves 

during the exploration that is performed in the 

crossover operator.  

Differences are observed between the proposed 

algorithm, the original algorithm GWO in 2014 [51], 

and the algorithm in 2019 to solve TSP [13]. The prey 

encircling process in the original GWO uses absolute 

distance to modify the position. In contrast, the A-

GWO algorithm uses the crossover operator but did 

not explicitly specify this process. Sharing of 

information can be seen in the original algorithm 

GWO between the omega wolves and the leaders, but 

no information sharing is found between the wolves 

in [13] solving TSP. Finally, GWO and A-GWO 

utilize a parameter in the attacking stage, where the 

value changes linearly during the algorithm run. 

However, in [13], no parameter is used, making the 

algorithm unable to explore and exploit the search 

space according to the changes in the parameter value 

during the algorithm run. 

Details of Steps 9–15 in Fig. 1, consisting of both 

modifications, are highlighted in Fig. 2.  A-GWO 

constructs many solutions by performing high 

exploration in the early search stages adaptively 

based on the crossover operator, which linearly 

changes during the algorithm run. The neighborhood 

search using displacement and pair-swap operations 

increases the probability of finding high-quality 

solutions in the neighborhood region of wolves. 

4. Updated position in A-GWO 

Each agent (wolf) is given a unique number 

representing a city to solve the problem of finding the 

minimum tour length in TSP. Each agent denotes one 

candidate solution of length (n+1), where n is the 

maximum number of cities. The tour starts and ends 

in the same city, which signifies a complete rule. In 

A-GWO, each agent randomly generates a candidate 

solution of one dimension, representing the initial 

solution, as shown in Fig. 3. 

The first modification, which is the adaptive 

crossover, is linearly changed during the algorithm 

run. The second is the use of neighborhood search to 

explore more regions in the local neighborhood 

structure [40, 51]. The crossover operation starts with 

high exploration by exchanging the cities between 

two tours. The exchange includes an omega tour with 

alpha, beta, and delta tours, as shown in Fig. 4. The 

purpose is to move omega wolves to the best position 

near the three best wolves. In the beginning, the 

exploration is high to explore more positions in the 

search space. This condition increases the probability 

of finding other prey positions with better fitness 

functions (minimum tour distance). The crossover 

operation gradually decreases in the advanced search 

process to improve the prey position’s search. 
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Figure. 4 Position updating in A-GWO 
 

Figure. 5 Example of crossover operator using partially 

mapped crossover technique 

 

Figure. 6 Neighborhood search using pair-swap and 

displacement 
 

In each iteration, the crossover is performed if the 

fitness function is better than the omega. Otherwise, 

it is rejected, and the older tour is kept. The crossover 

utilizes the technique called partially mapped 

crossover. This technique changes one city 

randomlyand swaps cities from two tours and within 

the tour itself. This process guarantees that no city is 

visited twice, which is a violation of the TSP rule. 

This process is illustrated in Fig. 5. In the example 

between omega and delta wolf tours, three cities are 

moved from the omega wolf tour into the delta wolf 

tour. The omega wolf updates its position according 

to the new tour produced if it has better fitness, 

ensuring that the wolf moves to a better position in 

the search space. 

The second modification improves the 

exploitation capability, especially in the advanced 

search space using the neighborhood search [52, 53]. 

This modification aims to avoid stagnation when 

wolves are located in the same location. The slight 

modification in the position of cities in the tour can 

move the wolves into new locations within the 

neighborhood structure. The neighborhood search 

changes cities in the same tour (new tour in Fig. 5) 

using two neighborhood operation approaches, 

namely, displacement and pair-swap operations. The 

pair-swap operation swaps only two cities randomly 

to ensure moving the agent into a new location. 

Meanwhile, displacement operation moves a 

subsequence of cities (a length of the subsequence of 

cities randomly) and instates them into a new position 

in the tour, as illustrated in Fig. 6. The figure shows 

the pair-swap between city numbers 6 and 2. The 

displacement operation moves a subsequence of 

cities 1 and 2, inserting them before city number 6. 

 

• Pair-swap: Two cities (two city positions) are 

randomly selected from the tour to be swapped. 

• Displacement: A random position from the tour is 

selected with a random subsequence of city 

positions, and the subsequence of cities is moved 

before the selected random position. 

 

The tour is accepted as a new better tour if and 

only if its quality is better than the omega tour Eq. (1). 

However, the vital issue is how can the omega tour 

provide better quality tour fitness. Such tour fitness 

can be produced either based on the crossover 

operator between the omega tour and the three best 

wolves, alpha, beta, and delta or by keeping the 

current omega tour if the fitness function of omega 

wolf is better than that of crossover operation, as 

reflected in the proposed Eq. (1). In Eq. (1), two 

solutions are S* and S0, where S* represents the 

improved solution, and S0 represents the non-

improved solution. S* is obtained according to Eq. 

(2), which performs three crossover operations; only 

one is accepted as the best solution, represented by 

S*. S0, the non-improved solution, is accepted when 

it has better fitness quality than S*. The crossover is 

linearly changed during the iterations according to a 

parameter proposed in this algorithm, namely, break 

point. The breakpoint is used in the crossover to cut 

the tour in each iteration. The crossover stops until 

the value of breakpoint equals 0 or less, which 

ensures that the crossover starts with high diversity in 

the early search process and ends with low diversity 

in the advanced search process. The breakpoint value, 

as shown in Eq. (3), is computed according to the 

value of 𝑎. This step is followed by the neighborhood 

search, as shown in step 13 in Fig. 1., to improve the 

tour fitness using either pair-swap or displacement. 

 

The acceptance criterion = 

{

S ∗, 𝑖𝑓 Quality (S ∗) > Quality (o𝑚𝑒𝑔𝑎)
 
 

S0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (1) 
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Quality (S ∗) = 

{

𝑆1 =  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑂𝑚𝑒𝑔𝑎, 𝐴𝑙𝑝ℎ𝑎),

𝑆2  = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑂𝑚𝑒𝑔𝑎, 𝐵𝑒𝑡𝑎),

𝑆3 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑂𝑚𝑒𝑔𝑎, 𝐷𝑒𝑙𝑡𝑎),

            (2) 

 

Breakpoint = (a. M𝑥_cities) − M𝑥_cities)     (3) 

 

The greedy process in Eq. (1) improves the tour 

solution by accepting only the best solution from the 

crossover based on the linear value changed during 

the run. In the algorithm, the modifications are made 

at the “compute breakpoint value” and “update 

current position 𝑋𝑖.’ The calculation to compute the 

breakpoint is performed using Eq. (3) is used to 

calculate the current position of 𝑋𝑖 using Eq. (1). The 

breakpoint in Eq. (3) decreases during the algorithm 

run. Thus, the crossover operator in Eq (2) changes 

the length of the solution adaptively, linearly 

decreasing the long length. This step is followed by 

using the neighborhood search to select the best 

solution either from pair-swap or displacement. This 

stage aims to increase the algorithm's exploitation 

capability in finding more neighborhood solutions 

from the best global region. 

5. Performance evaluation 

The performance of the proposed A-GWO 

algorithm is evaluated using 25 TSP benchmark 

datasets taken from TSPLIB [56]. These datasets 

differ in the number of cities, including small and 

medium numbers of cities, and the maximum and 

minimum distances between the cities, as shown in 

Table 1. Table 1 also lists the distribution of the 

problems and the optimal solution of each problem. 

Experimental results of A-GWO are performed in 

three scenarios. The first scenario compares A-GWO 

with four state-of-the-art algorithms that are best 

known for providing the best tour distance: ACO, GA 

[57], GWO [13], and the producer scrounger method 

(PSM) [58], based on the minimum tour distance 

across all cities in the first set of TSP instances. The 

setting of the parameters for all the algorithms is set 

similar to that in [13]. GA and PSM represent GA 

and PSM, respectively. The population size is 

initialized equally, where each algorithm’s 

population size is set to 100. The number of iterations 

is set to 500, and the number of runs is set to 10 for 

all algorithms, which meant that all algorithms had 

the same improvement time to produce the result 

within the same parameters. The parameter mutation 

is set to a small value to increase the diversity of 

solutions, usually applied with a low probability of 

approximately 0.001. A high probability indicated 

that GA is reduced to a random search. The crossover 

is set to 0.8, which guides to algorithm toward the 

best quality solutions during the algorithm run. The 

evaporation rate is set to 0.01 in ACO, which is 

responsible for increasing and decreasing exploration 

capability, where low evaporation means fast 

convergence and vice versa. The other parameters, 

such as the coefficients in GWO and A-GWO, 

decreased from 2 to 0 throughout the iterations. Such 

a decrease forces the algorithm to increase 

exploitation capability in the advance iterations, 

which is used to attack the prey when it stops moving 

in the GWO algorithm. All parameters were 

initialized as the literature in [57, 13] for a fair 

comparison. The second scenario of the comparison 

is performed with other benchmarks and other 

optimization algorithms.  The target of the scenario is 

to indicate the effectiveness of the proposed 

technique by finding the optimal solutions only.  The 

TSP instance used in the second scenario, as shown 

in Table 1, belongs to the standard library and is 

selected to test eil76, eli51, berlin52, kroa100, st70, 

oliver30, pr76, pr107, ch150, d198, tsp225, and 

f1417. The algorithms used in the second scenario are 

discrete whale optimization algorithm (DWOA) [47], 

discrete whale optimization algorithm with variable 

neighborhood search (VDWOA) [48], bat algorithm 

(BA) [59], GWO, moth-flame optimization (MFO) 

[60], and PSO [61]. In this scenario, each algorithm 

is performed 50 times, and the optimal solution 

provided is used in the comparison. The parameters 

of DWOA and VDWOA are similarly set in the 

experiment, where constant-coefficient 𝑏 is set to 1, 

and the ε value is set to 0.35. In BA, the maximum 

pulse frequency value is set to 1, whereas the 

minimum value is set to 0. The coefficient of sound 

loudness is 0.9, the search frequency the 

enhancement factor of is 0.9, the loudness of the 

sound is between (0, 1), and the pulse emission rate 

is between (0, 1). The spiral shape parameter is set to 

1 in MFO. The inertia weight factor is set to 0.2, and 

the acceleration factor is set to 2 in the PSO algorithm. 

The third scenario was performed with other 

optimization algorithms. Six optimization algorithms 

used to indicate the effectiveness of the proposed 

technique include HHO-ACS [35], ACO [57], PSO 

[61], GA [57], BH [36], and DA [49]. The 

benchmarks used in this scenario, as shown in Table 

1, contain eight datasets: bays29, att48, eil51, 

berlin52, st70, eil76, and eil101. In this scenario, the 

maximum number of iterations is set to 200, and the 

population size is set to 100 for all algorithms. All 

parameters are set based on [35]. 

Table 2 shows the average results of the minimum 

tour of the algorithms. The figures in brackets are the 

standard deviation of the results, and the best result  
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Table 1. Benchmark characteristics of each TSP dataset 

NO Dataset Number of cities Distribution Optimal solution 

1 burma14 14 14-cities in Burma 33.23 

2 ulysses16 16 Odyssey of Ulysses 68.59 

3 gr17 17 17-city problem (Groetschel) 2085 

4 gr21 21 21-city problem (Groetschel) 2707 

5 ulysses22 22 Odyssey of Ulysses (Groetschel and Padberg) 70.13 

6 gr24 24 24-city problem (Groetschel) 1272 

7 fri26 26 26-city problem (Fricker) 637 

8 bays29 29 29-cties in Bavaria (street distance) 2020 

9 hk48 48 48-city problem (Held/Karp) 11461 

10 eil51 51 51-city problem (Christofides/Eilon) 426 

11 berlin52 52 52-locations in Berlin (Germany) 7542 

12 st70 70 70-city problem (Smith/Thompson) 675 

13 eil76 76 76-city problem (Christofides/Eilon) 538 

14 gr96 96 Africa-Subproblem of 666-city TSP (Groetschel) 55209 

15 kroa100 100 100-city problem A (Krolak/Felts/Nelson) 21282 

16 oliver30  30 30-city problem 420 

17 pr76  76 76-city problem (Padberg/Rinaldi) 108159  

18 pr107  107 107-city problem (Padberg/Rinaldi) 44303  

19 ch150  150 150-city problem (Churritz) 6528  

20 d198  198 Drilling problem (Reinelt) 15780  

21 tsp225  225 A TSP problem (Reinelt) 3916  

22 fl417  417 Drilling problem (Reinelt) 11861  

23 bays29 29 29 Cities in Bavaria - 

24 att48 48 48 capitals of the US - 

25 eil101 101 101-city problem (Christofides/Eilon) 629 

 
Table 2. Average tour distance for all algorithms (first experiment) 

TSP instance GA ACO PSM GWO A-GWO 

burma14 31.83  31.21  30.89  30.87 30.25 

ulysses16 74.79  77.13  74.2 73.99 69.05 

gr17 2458.36  2332.58  2375.39  2332.58  2321.08  

gr21 3033.82  2954.58  2838.22  2714.65 2711.11 

ulysses22 79.62  86.81  76.68  76.08  72.65 

gr24 1402.01 1267.13  1372.57  1289.23  1277.03 

fri26 689.49 646.48  675.24 644.67 639.06  

bays29 9981.49 9964.78  9917.59  9219.40  9390.40 

hk48 16033.31 12731.07  13870.94  12117.05 12122.63 

eil51 592.3 504.83  474.58  463.29  459.02  

berlin52 10413.61 8088.95  8865.08  8289.11 8115.18 

st70 1203.35 748.65  845.40  800.14  755.12 

eil76 926.4  601.77  631.58 629.24  618.92 

gr96 1092.04 590.67  618.68  660.48  584.21 

kroa100 57940 24623.01  30210.57  28340.42 25150.04 

for each dataset is highlighted. The A-GWO 

algorithm produced the best results in eight datasets, 

followed by the ACO and GWO algorithms with five 

and two datasets, respectively. A-GWO, GWO, and 

ACO have more control over the exploration and 

exploitation than GA and PSM, enabling the 

algorithms to produce better results regardless of the 

datasets’ characteristics. However, ACO has better 

stability than GWO and A-GWO, as indicated by the 

small values of the standard deviation. Furthermore, 

the average standard deviation shows that ACO, A-

GWO, GWO, PSM, and GA receive 196, 2128, 2736, 

4473, and 6802, respectively. The average standard 

deviation indicates that the proposed A-GWO is 

ranked as the second algorithm producing a better 

standard deviation. 

The second scenario experiments with VDWOA, 

DWOA, BA, GWO, MFO, and PSO algorithms, as 

shown in Table 3. The experiment is performed 

according to the optimal solution (minimum value as)  
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Table 3. Optimal Solution of seven algorithms (second experiment) 

TSP instance VDWOA DWOA BA GWO MFO PSO A-GWO 

Oliver30 420 420 420 422 423 424 420 

Eil51 429 445 439 441 449 445 427 

Berlin52 7542 7727 7694 7898 8184 7862 7544 

St70 676 712 718 726 710 732 675 

Eil76 554 579 561 565 577 595 545 

Pr76 108,353 111,511 111,989 114,261 114,377 115,265 108,321 

KroA100 21,721 22,471 23,424 22,963 23,456 23,480 21,717 

Pr107 45,030 45,780 46,419 46,083 47,437 46,919 45,042 

CH150 6863 7329 7440 7384 7329 7833 6858 

D198 16,313 16,603 16,849 17,109 16,911 18,130 16,509 

Tsp225 4136 4399 4427 4620 4469 5049 4133 

Fl417 12,462 13,886 15,532 15,492 14,087 18,688 12,476 

 

Table 4. Average tour distance for all algorithms (third experiment) 

TSP instance HHO-ACS ACO PSO GA BH DA A-GWO 

bays29 9079.60 9823.20 9195.91 10015.2 9463.25 9480.29 9390.86 

bayg29 9077.20 9882.22 9947.03 9771.95 9375.44 9547.75 9011.100 

att48 33580.2 39436.2 47018.4 43620.6 34473.8 37759.7 33570.223 

eil51 429.600 461.018 574.802 453.477 458.925 475.16 457.98 

berlin52 7589.00 8522.90 11089.5 9288.45 8455.83 9486.70 8120.13 

st70 685.200 757.754 1321.81 1158.85 797.575 839.01 745.543 

eil76 548.600 594.144 975.64 652.059 659.102 644.89 619.432 

eil101 654.200 763.921 1499.99 838.831 897.381 997.60 654.180 

provided in 50 runs by each algorithm according to 

the setting in [48]. It indicates that the proposed A-

GWO algorithm produces the best results in seven 

TSP instances: Eil51, St70, Eil76, Pr76, KroA100, 

CH150, and Tsp225 (approximately 58%). It also 

shows that the VDWOA algorithm produced the best 

results in four TSP instances: Berlin52, Pr107, D198, 

and F1417 (about 33%). Table 3 reports that the A-

GWO algorithm produces the best results because it 

is the best algorithm compared with DWOA, BA, 

GWO, MFO, and PSO algorithms. The algorithm 

produces better results (100%) compared with all 

mentioned algorithms. Table 3 illustrates the results 

of algorithm performance based on the optimal 

solution by each algorithm. 

In the third scenario, an experiment was 

performed with six optimization algorithms to 

indicate the effectiveness of the proposed algorithm. 

The several algorithms used in the experiment are 

HHO-ACS, ACO, PSO, GA, BH, and DA, as 

reported in Table 4. The experiment is performed 

according to the average tour distance of each 

algorithm. It indicates that the A-GWO algorithm 

produces better results than DA and BH algorithms 

in all TSP instances (100%). The comparison 

between A-GWO and GA and PSO algorithms 

indicated that A-GWO produces the best results in 

seven TSP instances. In contrast, GA and PSO 

algorithms produce the best results only in one TSP 

instance. The performance of the A-GWO algorithm 

is evaluated with other swarm algorithms, 

particularly the ACO algorithm. A-GWO 

outperforms the ACO algorithm in seven TSP 

instances (i.e., bays29, bays29, att48, eil51, berlin52, 

and st70 [75%]), whereas the ACO algorithm 

produces the best results only in one TSP instance 

(i.e., eli76). The final comparison between HHO-

ACS and A-GWO algorithm indicates that HHO-

ACS results better than A-GWO, where the former 

outperforms A-GWO in five TSP instances 

(approximately 63%). The HHO-ACS algorithm 

produces the best results in bays29, eil51, berlin52, 

st70, and eil76, whereas the A-GWO algorithm 

produces the best results only in bayg29, att48, and 

eil101 (approximately 38%). The reason is that the 

HHO-ACS algorithm can optimize its parameter 

better than the A-GWO. Table 3 illustrates the results 

of algorithm performance based on the optimal 

solution by each algorithm. However, A-GWO and 

HHO-ACS have better stability, providing a standard 

deviation than other optimization algorithms. HHO-

ACS, as indicated by the third experiment, provides 

small values of the standard deviation because it is 

the best algorithm in the ranking. The average 

standard deviation showed by HHO-ACS 

(approximately 16.6111). The second algorithm in 

the ranking is A-GWO, which provides a standard 

deviation of a value of approximately 18.3766. DA 



Received:  August 20, 2021.     Revised: September 16, 2021.                                                                                         550 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.48 

 

with 89.6325 is the third algorithm in the ranking, BH 

with 210.7414 is the fourth, and GA with 493.2315 is 

the fifth. ACO has an average standard deviation of 

approximately 948.8546. The last algorithm that 

provides a high standard deviation is PSO with 

1696.3588. The average standard deviation proves 

that the proposed A-GWO algorithm converges on 

the same results during the algorithm run. However, 

the HHO-ACS algorithm is approximately the same 

in each algorithm run. HHO-ACS convergence is 

better than A-GWO because its parameters have been 

optimized, forcing the algorithm to provide similar 

results in the search history.  

The proposed algorithm produces a better 

minimum distance tour than all other algorithms. The 

modifications (i.e., the adaptive crossover operators 

and neighborhood search) improve the results by 

enhancing information sharing among the wolves 

during the algorithm run and intensifying the search 

process for more promising regions in the 

neighborhood of the three best wolves’ locations. 

6. Conclusion and future work 

This study aims to solve the problem of exchange 

information among the leadership hierarchy in the 

traveling salesman problem. The proposed adaptive 

algorithm (A-GWO) has two contributions using the 

crossover operator as the first contribution and 

neighborhood search as the second contribution. The 

crossover operator allows the information to be 

inherited between the leadership hierarchy during the 

algorithm run. The neighborhood search provides 

different neighborhoods regions with different 

solutions quality during the run, which could 

generate several landscapes to support the algorithm 

in finding more solutions in the local region of the 

best solution. The scientific contribution of this study 

is to employ a linear crossover that changes during 

the algorithm run. The benefit is a high exploration 

ratio at the beginning of the run. 

 The other scientific contribution increases the 

exploitation using neighborhood search. Thus, this 

search is locally performed to find the global 

solutions in the local region based on the quality of 

best solutions reached. The advantage of both 

contributions is the trade-off between the exploration 

search-based and the exploitation search-based, 

guiding the search toward the best regions in the 

search space. 

The limitation of the study is that it requires long 

convergence because of the crossover operator that is 

linearly exchanged through the time run. Due to the 

advantage of both modifications, the improvement is 

achieved using a crossover operator between the 

omega wolf and the hierarchy level (alpha, beta, and 

delta). Cumulative iterations with neighborhood 

search including displacement and pair-swap 

operations improve the quality of tour distance in the 

neighborhood region of the hierarchy level. The 

proposed algorithm’s performance provides a better 

minimum tour distance among all optimization 

algorithms. The evaluation conducted using 25 TSP 

instances is differed in the number of cities against 12 

state-of-the-art algorithms. The 12 algorithms are GA, 

ACO, PSM, GWO, VDWOA, DWOA, BA, MFO, 

PSO, HHO-ACS, BH, and DA. The experiment 

indicates that the proposed A-GWO is approximately 

58% better than all algorithms, except the HHO-ACS 

algorithm. 

Future research will focus on applying the 

algorithm directly to similar problems, such as VRP, 

and employing online parameter adaption to optimize 

the parameter of A-GWO to include self-adaptive and 

search-based strategies. Other neighborhood search 

operators can be tested in the proposed algorithm 

with other application problems, such as clustering 

and classification, to guide future research plans. 
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