
Received: August 20, 2021. Revised: September 16, 2021. 539

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Adaptive Grey Wolf Optimization Algorithm with Neighborhood Search

Operations: An Application for Traveling Salesman Problem

Ayad Mohammed Jabbar1* Ku Ruhana Ku-Mahamud2

1Department of Computer Science, Shatt Al-Arab University College, Basra, Iraq
2School of Computing, Universiti Utara Malaysia, Malaysia

*Corresponding author’s Email: AyadMohammed@sa-uc.edu.iq

Abstract: Grey wolf optimization (GWO) algorithm is one of the best population-based algorithms. GWO allows

sharing information in the wolf population based on the leadership hierarchy using the hunting mechanism behavior

of real wolves in nature. However, the algorithm does not represent any key exchange information sharing for the

traveling salesman problem because of two issues. The candidate solutions are improved dependently, similar to local

search concepts, losing their capability as a population-based algorithm. The algorithm is limited in its search process

in finding only the local regions and ignoring any chance to explore search space effectively. This study introduced

an adaptive grey wolf optimization algorithm (A-GWO) to solve the information-sharing problem. The proposed A-

GWO maintains sufficient diverse solutions among the best three wolves and the rest of the population. It also

improves its neighborhood search by obtaining more locally explored regions to enhance information sharing among

the wolves. An adaptive crossover operator with neighborhood search is proposed to inherit the information between

the wolves and provide several neighborhoods to find more solutions in the local region. Experiments are performed

on 25 benchmark datasets, and results are compared against 12 state-of-the-art algorithms based on three scenarios.

The credibility of the proposed algorithm produces approximately 53%, 58%, and 63% better tour distance in the first,

second, and third scenarios, respectively. The proposed A-GWO achieves approximately 87% better minimum tour

distance compared with the GWO algorithm.

Keywords: Crossover operator, Exploration, Exploitation, Machine learning, Position update, Swarm algorithms.

1. Introduction

The search for optimal solutions in artificial

intelligence aims to find the “best” solution among

various solutions in the search space. This type of

problem is known as combinatorial optimization and

is considered an NP-hard problem [1]. Several

examples of combinatorial optimization problems are

vehicle routing problem (VRP) [2], traveling

salesman problem (TSP), clustering [3],

classification [4], and feature selection [5]. Stochastic

methods have been introduced with alternative

randomness called metaheuristics because of the

many complexities and limitations in most

combinatorial optimization problems. This result

concerns the exponential expansion in the area of

search for the best solutions and avoids problems to

have early convergence and local optima problems.

Metaheuristics is a problem-independent algorithm in

finding several near-optimal solutions. The main

characteristic of metaheuristics combines several

heuristic methods that perform in higher-level

metaphors [7, 8]. These metaphors are inspired by

different behaviors, representing the swarm of insects,

including foraging, dancing of bees, collection of

eggs of ants, and odor for membership recognition in

a colony. The swarm approach, an intelligence

system, describes the collective behavior of social

insects while interacting with their environment and

one another to solve a specific problem [9, 10]. The

interaction occurs because of external influences

representing positive feedback used as a

communication in the population. For example,

pheromones in the ant colony optimization algorithm

(ACO) make the insects converge and perform a

Received: August 20, 2021. Revised: September 16, 2021. 540

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

unique behavior following one another [10]. The key

aspects of swarm intelligence are decentralization

and self-organization, wherein the population

represents the power concept. One of the popular

population bio-inspired behaviors is the evolutionary

genetic algorithm (GA). GA represents a key

overlapping feature, as introduced by Holland (1973).

Survival of the fittest is a fundamental concept

applied in which the candidate solutions are allowed

to procreate further solutions on the basis of results

obtained by previous iterations. The crossover and

mutation operators are used iteratively to produce a

new candidate solution.

Information sharing is a fundamental element of

swarm intelligence. However, such sharing is

implemented in several population-based algorithms,

such as ACO, artificial bee colony (ABC), grey wolf

optimizer (GWO), and GA. The crucial elements for

swarm intelligence algorithms include self-

organization, stigmergy, and positive feedback

concept. The principle of self-organization is a

process of building an organized and cohesive system

from a disordered system on the basis of basic issues

that are solved simultaneously [11]. Flocking of birds

and ant foraging are typical examples that

demonstrate the self-organization element of

activities [12]. Stigmergy is another important

concept that is represented as a chemical substance

used in a swarm intelligence system in which the

information is exchanged among different members

that belong to the same population in the colony. GA

does not have any stigmergy concept to exchange

information, whereas self-organization and positive

feedback are utilized to optimize the objective

function. Following the same concept of swarm

intelligence, GWO has a population of different

wolves responsible for various tasks. The three main

wolves are called alpha, beta, and delta, which are

responsible for heading the hunting activity. The

remaining wolves in the pack are called omega

wolves, which update their positions based on the

main three wolves.

Different combinatorial optimization problems

have employed GWO, which shows promising

results in optimizing the objective function of the

problem and exploring the search space using the best

wolves in the population. However, Sopto (2019)

showed a shortcoming in the mechanism of updating

the positions of omega wolves, which was locally

performed [13]. Therefore, the omega wolves would

update their positions based only on local changes,

similar to what local search algorithms do. Each

omega position is updated based on the neighborhood

search of the omega itself without looking for global

solutions of alpha, beta, and delta positions. The

algorithm is limited in its search process in finding

only the local regions and ignoring any chance to

explore other parts of the search space. The algorithm

does not represent any key exchange or sharing of

information between the wolves, allowing the

algorithm to improve different solutions during the

algorithm run.

In this study, an adaptive algorithm is proposed

with two new modifications for information sharing.

The modifications are on adaptive crossover operator

and neighborhood search to enhance the

neighborhood search in the best local regions at the

leadership hierarchy. The rest of the paper is

organized as follows. Section 2 discusses related

works. Section 3 introduces the proposed adaptive

algorithm. Section 4 presents the evaluation of the

proposed algorithm. Section 5 concludes the work

and highlights future research.

2. Related works

Stochastic algorithms ensure the construction of

solutions according to the quality of solutions guided

by some objective functions and compact with some

randomization to explore the search space and avoid

stacking in local optima. Stochastic algorithms utilize

different concepts, such as local search and tuning

parameters, to optimize the objective function deeply,

wherein the problem is formulated as the

optimization problem [14-16]. The three main

approaches popular in optimization are exact,

estimation, and approximation. Exact algorithms can

produce the optimal solution to an optimization

problem within a dependent runtime instance.

However, exact algorithms require exponential time,

especially with complex optimization problems, and

thus are difficult to use in complex problems. The

estimation approach does not guarantee an optimal

solution because the results are produced according

to a predefined range of inputs [17]. The optimal or

near-optimal solutions can be generated in a short

time using the approximation approach. Although

this approach does not guarantee finding the optimal

solution always, it can produce reasonable solutions.

This approach optimizes the problem on the basis of

a single or population approach. The single approach,

such as simulated annealing, tracks the improvement

of one single solution candidate, whereas the

population approach iteratively modifies a set of

candidate solutions based on the algorithm feedback

[18]. This popular approach can be either a swarm or

an evolutionary algorithm (EA).

EAs are a stochastic iterative search method,

which simulates the evolution of species in nature. A

set of candidate solutions evolves iteratively. These

Received: August 20, 2021. Revised: September 16, 2021. 541

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

candidate solutions are known as the population of

the algorithm, where each individual has its fitness

function for survival through life. The main

operations in EAs are selection, recombination, and

mutation. Each operation is responsible for

increasing the accuracy of the solution. The

probabilistic application is the search process used in

EAs to find better solutions. It is guided by the

objective function of the optimization problem,

which represents the survival of the best individuals.

The most known algorithm under this category is the

GA. GA is one of the best EAs that have been

successfully applied in several application domains.

It has been used as the main part of many modern

algorithms because of its components’ popularity and

simplicity. The algorithm inspired by nature

represents the theory of Charles Darwin and includes

a selection of the best individuals for optimization.

The process consists of selecting individuals who are

most fit for reproduction to achieve the best offspring.

The offspring for the next generation completes the

cycle of Charles Darwin’s theory. The initial step in

GA initializes each chromosome as a single solution.

The reproduction consists of using a crossover

operator. The operator uses a set of chromosomes to

be mated to produce offspring better than the older

population. Parts of a chromosome are moved to

other parts of the chromosome to create new

offspring. However, a crossover can be performed in

many ways. Many genes are used, and the location of

the genes on a chromosome plays a vital role in

producing a better solution. A mutation operator is

used to maintain the diversity of the solution in GA.

The operator alters one or more genes in the

chromosome, such as moving one gene (city) to other

locations and modifying the route. Several

researchers have used an adaptive strategy in the GA

algorithm. An adaptive GA utilized three crossover

strategies [19]. A fit offspring was determined by

selecting the best strategy while running the

algorithm, which was adaptively performed.

Information reinforcement was conducted by

utilizing pheromone information, which was updated

using the best strategy according to the ACO model

pheromone update. However, the algorithm did not

use the evaporation procedure of ACO, which in the

end may converge quickly on one of these strategies

because of the wrong decision selected in the initial

algorithm run.

Sung and Jeong (2014) proposed an algorithm

that adaptively changed the crossover parameter and

the mutation parameter during the algorithm run to

generate a new population [20]. Nevertheless, the

algorithm showed better results only with small

datasets, where adaptive search could find the best

solution. Similar research proposed the adaptive

crossover algorithm using the 1Bit Adaptive

Crossover, where the specified crossover factor was

coded in the genotype [21]. Riff and Bonnaire (2002)

introduced this concept by using more operators [22].

It was extended in 2004 by encoding rate and reward

operators, where the value change according to the

fitness of the offspring was better or worse than its

parents [23]. Cruz-Salinas and Perdomo (2017)

extended this work by having a population of

operators that were exposed to evolution and

mutation and maintaining the operator selection

method [24] employed in [23]. However, the

algorithm used operators that were not suitable for the

ordered nature of TSP. Similar research has proposed

an adaptive two-opt mutation in the process of

mutation in the GA algorithm [25]. The strategy

changed the two-opt mutation to another operation

called exchange cities, where a pair of cities were

swapped one at a time adaptively. Nevertheless, the

adaptive strategy employed did not memorize either

the two-opt mutation or exchanges during the time. It

only used the best one according to the fitness of the

solution.

A kind of biology-inspired concept is swarm

intelligence, which expresses the regular behavior

practiced by living organisms to communicate or

solve different problems. Swarm intelligence is

motivated by groups of insects, such as ants, bees,

and bacteria, behaving intelligently as groups instead

of a single insect. Several algorithms, such as ACO,

ABC, and GWO, are examples of the swarm

intelligence category because they use the basic

swarm intelligence concepts, including self-

organization, stigmergy, and positive feedback.

Developed by Dorigo [26], ACO is a publication-

based swarm algorithm inspired by the foraging

behavior of ants. The algorithm has been successfully

applied in different NP-hard combinatorial problems,

including classification, clustering [27, 28], and

feature selection [29, 30]. Dorigo modeled the

foraging behavior to solve TSP when the stigmergy

concept was used as an indirect communication guide

for the colony to find the shortest route for TSP [31].

The algorithm has many parameters that control the

algorithm’s performance to produce better results in

different application domains, including clustering,

classification, and feature selection. The density of a

pheromone laid by an ant controls the probability of

choosing the best arc according to the value of the

pheromone, which is the core of the algorithm and

has been adaptively optimized by different

researchers. In ACO, stochastic methods are

performed by integrating randomization through the

Received: August 20, 2021. Revised: September 16, 2021. 542

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

ant movement from city to city. This integration

guarantees that the algorithm can avoid the local

optima problem and explore the search space

efficiently. The most important part of this algorithm

is its model, which simulates foraging behavior, such

as using the evaporation process, which is set by a

parameter (evaporation rate) optimized by different

researchers. The pheromone trail evaporates during

the time. Therefore, long-distance routes are

forgotten because ants have no desire to pass them.

Different modifications in ACO have been proposed

in the literature since the initial ant system proposed

by Dorigo and the ant colony system [32].

In 2012, the pheromone decay parameter

(pheromone evaporation rate) was adapted to avoid

local optima and adjust the convergence rate during

the algorithm run [33]. However, the adjustment was

performed by using significant value changes in a

descending manner, which did not guarantee to find

the best value (best evaporation rate) that represented

a particular dataset. Adaptive-related research has

utilized different groups of ants to select pheromone

arcs with different concentrations [34]. Nevertheless,

the major problem of the algorithm was the high

diversity of solutions and reinforcing the algorithm to

converge on the best solution in a long time. This

shortcoming occurred because different groups used

different transition probability rules during the

algorithm run. In 2021, another hybrid Harris’s Hawk

and ACS, a variant of the ACO algorithm (HHO-

ACS), was proposed to optimize the ACS parameters

[35]. Five parameters are subjected to optimization.

In the end, the algorithm’s performance is determined

by the pheromone coefficient, heuristic coefficient,

decision rule, and the evaporation rate of the

pheromone. This kind of optimization problem is

called online parameter tuning based on an extended

algorithm. HHO algorithm optimizes the five ACS

parameters during the algorithm run, thus find the

best value for each parameter in solving TSP. HHO-

ACS algorithm achieved better results than the ACS

algorithm but the exponential time required in the test

compared to both algorithms is long. Other related

swarm algorithms, namely the black hole algorithm

(BH) proposed to solve the problem of TSP [36]. The

algorithm produced promising results compared with

other swarm algorithms. However, two limitations

have been investigated in the BH algorithm. First, the

performance of the algorithm is achieved based on

the population that is randomly initialized. The

second showed a low exploitation-based search,

where its standard deviation was high compared with

other swarm algorithms.

TSP has also been solved by the ABC algorithm,

which is swarm-based inspired by a bee colony

looking for food, representing the foraging principle

in insects. The simple steps of the algorithm allow the

researchers to apply the algorithm in several

application domains. The algorithm consists of three

main bees. The core engine of the algorithm includes

the scout bee, employee bee, and onlooker bee. Each

bee has its tasks, such as exploration, that are relevant

to a scout bee. Exploration in the neighborhood of

solutions is related to an employee bee task. An

onlooker bee performs and exploits a task to find a

deeper region with high-quality solutions. However,

the algorithm has a limit parameter set statically by

users, indicating how many times the solution can be

accepted once the algorithm achieves the same result

for a while. This parameter has been optimized by

different researchers who included adaptive and self-

adaptive strategies [2, 36–39]. The purpose of the

parameter is to restart the search space process

frequently during the algorithm and allow the finding

of a better region on the search space by avoiding the

local optima solution. The algorithm generates the

initial solution randomly (initial city sequence),

whereby each bee represents a single solution

comprising a set of cities visited one at a time. Each

employee explores the local region by using a

neighborhood structure, modifying the sequence

locations of the cities. However, this step is

considered by some researchers as an exploitation

phase because the employee bee performs and

improves locally. This step ensures finding better

solutions in the neighborhood region.

The adaptive ABC algorithm for a TSP proposed

in 2013 was adaptive-count initialized for each bee,

which changed dynamically during the algorithm run

[40]. Nevertheless, this study did not clarify which

count value was suitable for each dataset. Another

limitation was that the scout had multiple jumps, not

ensuring that all feasible solutions in the local region

were found. Another study on numerical optimization

was done in 2017 [41]. It proposed adaptive ABC on

the basis of source food ranking. Each source food

was ranked higher when more opportunities could be

selected. However, the algorithm could only imitate

if the selected food sources in the early search stages

had high fitness, forcing the algorithm to converge

quickly without exploring the local neighborhood

region. The same idea of food source perturbation

using a synergetic mechanism was proposed in 2020,

enhancing the population diversity in algorithm

initialization using a chaotic round map [42]. Another

study used adaptive elitism-based immigration,

which replaced the worse wolf in the population

during the algorithm run with an elite individual with

better fitness function with a controlled-mutation

parameter. However, the mutation value was

Received: August 20, 2021. Revised: September 16, 2021. 543

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

controlled in some cases to a random value, which

was distributed to an individual after the mutation

process in an unpromising region. A 2019 study

examined the performance of different variants of

ABC using several statistical tests with 15 TSP

instances. The test also included the convergence rate

and the parameter setting of the ABC algorithm, such

as the limit parameter. The limit parameter

significantly controlled the ABC algorithm; reporting

suitable parameter values for TSP [43].

Particle swarm algorithm (PSO) for a traveling

salesman problem has been improved by introducing

the best current solution [44]. The basic idea is to use

the best current iteration in the moving steps,

improving the movement of the particles toward the

best regains that have the best quality of solutions in

the search space. However, the algorithm quickly

stuck locally because the search process was only

guided by the objective function, which was limited

to the stochastic search to explore the search space

effectively. Another related study proposed a hybrid

PSO and ACO algorithm based on the best-worst ant

[45]. The improvement starts with the population,

which PSO initializes. The ACO algorithm is then

performed to improve the solutions. The first step

ensured that the generation of the initial population

was iteratively better than what ACO does in a

constructive manner. A new swarm algorithm,

chicken swarm optimization, was proposed in 2021

to solve the TSP problem [46]. Although the

algorithm produced promising results, it has

limitations in maintaining quality when feeding back

the algorithm to find more solutions in the

neighborhood. Other hybrid algorithm proposed

discrete whale optimization (DWO) with ACO

algorithm to improve the performance of DWO [47].

The initialization of individuals improved by the

ACO algorithm as the initial phase of DWO

algorithms. Although DWO has been improved, the

algorithm is still easily stacked in the local optima if

the ACO algorithm is produced an initial population

with high-quality solutions. DWO was improved by

other researchers in 2021 using a variable

neighborhood algorithm. [48]. This improvement

increases the exploitation-based capability to find

more local regions in the search space. However, the

proposed algorithm cannot explore the search space

when stagnation occurs. In 2019, another swarm

algorithm, dragonfly algorithm (DA), was proposed

to solve the problem of TSP [49] and showed

promising results compared with other swarm

algorithms.

The GWO literature indicates that the most

important issue is the use of the updated position

equations when GWO is utilized for different

combinatorial optimization problems. Maintaining

the balance between the two phases is the core engine

of the algorithm, and both phases are affected by the

updated position equations. The first three wolves

(alpha, beta, and delta) represent the best positions of

the hierarchy (in the search space of the problem).

The remaining wolves (omega) are improved during

the run according to that hierarchy level. The omega

wolf position depends only on three wolves. A study

done in 2019 had a mechanism for updating omega

position [13]. Its limitation is that it was locally

performed only when each solution was updated

based on the neighborhood search without looking

for a global region. Thus, omega wolves could be

densely settled in the same region or certain regions

during the prey catching process. In other cases, the

mechanism of updating the omega position is locally

performed only when each solution is updated based

on the neighborhood search, preventing the exchange

of information between the omega and the first three

wolves (alpha, beta, and delta). This issue has been

observed in the TSP problem, where omega wolves

are improved by only using the neighborhood

structure. No real update position is available to move

the omega wolves to the best region and provide a

chance during the run to explore a more promising

region in the search space [13]. Two methods have

been used in other related works to improve the

performance of GWA for competitive traveling

salesman problems [50]. The benefit of both methods

is to increase the exploration and exploitation of the

algorithm during the algorithm run. The static

method used as the first method to divide cities

evenly among salesmen, whereas the parallel method

was used as the second method for all cities available.

However, the methods are limited in the sharing of

information between agents.

3. Proposed adaptive algorithm

The grey wolf optimization algorithm is

metaheuristic. It simulates the social behavior and

leadership hierarchy of grey wolves in real life.

Social behaviors, such as hunting, organization, and

decision-making, make the algorithm a unique model

used by researchers to solve different optimization

problems. Each group of wolves usually contains

between 5 and 12 members. The members are sorted

according to the hierarchy level, where members are

known as alpha (α), beta (β), delta (δ), and omega (ω).

Each of the omega wolves in the group has its task in

the pack regardless of its position. The α wolf is

responsible for the leadership and decision to hunt in

addition to other tasks, such as sleeping and waking

up for all wolves. The β wolf helps the α wolf in the

Received: August 20, 2021. Revised: September 16, 2021. 544

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

A-GWO algorithm

1 Input: Data (TSP Instances)

2 Output: Best Solution

3 Generate initial wolf population;

4 Calculate fitness 𝑓(𝑋𝑖);

5 Identify three best wolves as Xα, Xβ, and Xδ;

6 IterationIndex=1;

7 WHILE (IterationIndex < Max)

8 Repeat

9 Update Position of 𝑋𝑖;

10 S*=Crossover();

11 IF(S*<𝑋𝑖)

12 𝑋𝑖= S*;

13 S*= NeighborhoodSearch(𝑋𝑖); /

14 IF(S*<𝑋𝑖)

15 𝑋𝑖= S*;

16 Compute break point;

17 Until termination condition meet

18 UpdateCoefficient();

19 Calculate fitness 𝑓(𝑋𝑖)

20 UpdatePosition();

21 IterationIndex = IterationIndex + 1;

22 UNTIL (IterationIndex = Max)

23 END-WHILE

Figure. 1 A-GWO algorithm

decision-making and is considered the best successor

for the group if the α wolf dies. The δ wolf, who is

the third level in the hierarchy, is responsible for

organizing the ω wolves. Without the δ wolf, the

group will encounter internal chaos. In hunting, grey

wolves form the main nerve for group survival, which

involves searching, tracking, encircling, and

attacking prey. Those tasks are mathematically

modeled as the GWO algorithm.

The process of encircling the prey is

mathematically modeled as the movement of the grey

wolf’s location to the prey location and circling it.

This task can be achieved by finding the distance

between the grey wolf and prey location in the search

space. The movement of the grey wolf involves the

exploration and exploitation processes in finding a

new location during the search and avoid falling into

the local optima problem. This study proposes an A-

GWO algorithm by introducing two new

modifications to the present GWO algorithm. These

modifications are essential to enhance the search

process of the algorithm. The adaptive crossover

operator and neighborhood search operations are

proposed as the core engine of the algorithm. The

standard GWO algorithm allows the sharing of

information in the wolf population using leadership

hierarchy. However, it ignores information sharing

between omega wolves and the three leadership

hierarchy wolves for the TSP problem [13]. In the A-

GWO algorithm, information sharing between the

best three wolves and the rest of the population is

maintained, improving the search in the

neighborhood regions. Both modifications are used to

explore the best solution found in global and local

regions from the search space. Figure 1 illustrates the

A-GWO algorithm.

The A-GWO algorithm has three stages:

encircling, hunting, and attacking the prey (Steps 1–

3). The modifications are performed in those stages,

including the crossover operator encircling the prey,

selecting the best solution, performing neighborhood

search in hunting the prey, and computing the

breakpoint in attacking the prey. The algorithm starts

with the initialization of all parameters and wolf

population. Step 4 calculates the fitness function of

all wolves, and Step 5 determines the best three

wolves, α, β, and δ, according to the fitness function

of each wolf in the population. Step 6 starts the

algorithm iterations by initializing the value of the

iteration index to 1. Step 7 initializes iterations by

checking each wolf, and Step 8 starts the algorithm

cycle. Step 9 checks each wolf’s position in the

search space. Step 10 has the first modification,

which represents encircling the prey, which is

Received: August 20, 2021. Revised: September 16, 2021. 545

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Figure. 2 Adaptive crossover and neighborhood search

processes

Figure. 3 Agent representation in A-GWO algorithm

mathematically modeled as the movement of the grey

wolf’s location to the prey location to be surrounded.

This task can be achieved by finding the distance

between the grey wolf and prey location in the search

space. The movement of the grey wolf maintains the

exploration and exploitation to find a new position

during the search and avoid falling into the local

optima problem. This process is articulated using the

crossover operator, as shown in Step 10. This step

represents the sharing of information between each ω

wolf with the α, β, and δ wolves. However, the

crossover operator is performed according to a

predefined breakpoint, which is adaptively changed

during the run and represents the matting process.

The best matting is selected as the new position for

the current ω wolf, which, in the end, represents the

prey hunting stage of steps 11–12. The hunting starts

by surrounding the position of the prey in the search

space. However, no real knowledge about the prey

position as in nature is available in the mathematical

model. The only information provided is the

positions of the three best wolves in the search space

α, β, and δ, representing the best solutions in the

algorithm. Therefore, the three candidate solutions

are used to guide the rest of the ω wolves toward the

best location that is surrounded by α, β, and δ. As a

result, each ω wolf updates its position according to

the best crossover operator between ω wolf and the

three best wolves. The process of attacking the prey

can be represented as the time of performing the

attack and determining the best time to make the

attack (steps 14–16). In the algorithm, the breakpoint

represents exploration and exploitation, controlled

according to the value of a that changes linearly. The

second modification (i.e., the neighborhood search)

(step 13) increases the probability of finding better

solutions in the neighborhood region of wolves

during the exploration that is performed in the

crossover operator.

Differences are observed between the proposed

algorithm, the original algorithm GWO in 2014 [51],

and the algorithm in 2019 to solve TSP [13]. The prey

encircling process in the original GWO uses absolute

distance to modify the position. In contrast, the A-

GWO algorithm uses the crossover operator but did

not explicitly specify this process. Sharing of

information can be seen in the original algorithm

GWO between the omega wolves and the leaders, but

no information sharing is found between the wolves

in [13] solving TSP. Finally, GWO and A-GWO

utilize a parameter in the attacking stage, where the

value changes linearly during the algorithm run.

However, in [13], no parameter is used, making the

algorithm unable to explore and exploit the search

space according to the changes in the parameter value

during the algorithm run.

Details of Steps 9–15 in Fig. 1, consisting of both

modifications, are highlighted in Fig. 2. A-GWO

constructs many solutions by performing high

exploration in the early search stages adaptively

based on the crossover operator, which linearly

changes during the algorithm run. The neighborhood

search using displacement and pair-swap operations

increases the probability of finding high-quality

solutions in the neighborhood region of wolves.

4. Updated position in A-GWO

Each agent (wolf) is given a unique number

representing a city to solve the problem of finding the

minimum tour length in TSP. Each agent denotes one

candidate solution of length (n+1), where n is the

maximum number of cities. The tour starts and ends

in the same city, which signifies a complete rule. In

A-GWO, each agent randomly generates a candidate

solution of one dimension, representing the initial

solution, as shown in Fig. 3.

The first modification, which is the adaptive

crossover, is linearly changed during the algorithm

run. The second is the use of neighborhood search to

explore more regions in the local neighborhood

structure [40, 51]. The crossover operation starts with

high exploration by exchanging the cities between

two tours. The exchange includes an omega tour with

alpha, beta, and delta tours, as shown in Fig. 4. The

purpose is to move omega wolves to the best position

near the three best wolves. In the beginning, the

exploration is high to explore more positions in the

search space. This condition increases the probability

of finding other prey positions with better fitness

functions (minimum tour distance). The crossover

operation gradually decreases in the advanced search

process to improve the prey position’s search.

Received: August 20, 2021. Revised: September 16, 2021. 546

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Figure. 4 Position updating in A-GWO

Figure. 5 Example of crossover operator using partially

mapped crossover technique

Figure. 6 Neighborhood search using pair-swap and

displacement

In each iteration, the crossover is performed if the

fitness function is better than the omega. Otherwise,

it is rejected, and the older tour is kept. The crossover

utilizes the technique called partially mapped

crossover. This technique changes one city

randomlyand swaps cities from two tours and within

the tour itself. This process guarantees that no city is

visited twice, which is a violation of the TSP rule.

This process is illustrated in Fig. 5. In the example

between omega and delta wolf tours, three cities are

moved from the omega wolf tour into the delta wolf

tour. The omega wolf updates its position according

to the new tour produced if it has better fitness,

ensuring that the wolf moves to a better position in

the search space.

The second modification improves the

exploitation capability, especially in the advanced

search space using the neighborhood search [52, 53].

This modification aims to avoid stagnation when

wolves are located in the same location. The slight

modification in the position of cities in the tour can

move the wolves into new locations within the

neighborhood structure. The neighborhood search

changes cities in the same tour (new tour in Fig. 5)

using two neighborhood operation approaches,

namely, displacement and pair-swap operations. The

pair-swap operation swaps only two cities randomly

to ensure moving the agent into a new location.

Meanwhile, displacement operation moves a

subsequence of cities (a length of the subsequence of

cities randomly) and instates them into a new position

in the tour, as illustrated in Fig. 6. The figure shows

the pair-swap between city numbers 6 and 2. The

displacement operation moves a subsequence of

cities 1 and 2, inserting them before city number 6.

• Pair-swap: Two cities (two city positions) are

randomly selected from the tour to be swapped.

• Displacement: A random position from the tour is

selected with a random subsequence of city

positions, and the subsequence of cities is moved

before the selected random position.

The tour is accepted as a new better tour if and

only if its quality is better than the omega tour Eq. (1).

However, the vital issue is how can the omega tour

provide better quality tour fitness. Such tour fitness

can be produced either based on the crossover

operator between the omega tour and the three best

wolves, alpha, beta, and delta or by keeping the

current omega tour if the fitness function of omega

wolf is better than that of crossover operation, as

reflected in the proposed Eq. (1). In Eq. (1), two

solutions are S* and S0, where S* represents the

improved solution, and S0 represents the non-

improved solution. S* is obtained according to Eq.

(2), which performs three crossover operations; only

one is accepted as the best solution, represented by

S*. S0, the non-improved solution, is accepted when

it has better fitness quality than S*. The crossover is

linearly changed during the iterations according to a

parameter proposed in this algorithm, namely, break

point. The breakpoint is used in the crossover to cut

the tour in each iteration. The crossover stops until

the value of breakpoint equals 0 or less, which

ensures that the crossover starts with high diversity in

the early search process and ends with low diversity

in the advanced search process. The breakpoint value,

as shown in Eq. (3), is computed according to the

value of 𝑎. This step is followed by the neighborhood

search, as shown in step 13 in Fig. 1., to improve the

tour fitness using either pair-swap or displacement.

The acceptance criterion =

{

S ∗, 𝑖𝑓 Quality (S ∗) > Quality (o𝑚𝑒𝑔𝑎)

S0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

Received: August 20, 2021. Revised: September 16, 2021. 547

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Quality (S ∗) =

{

𝑆1 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑂𝑚𝑒𝑔𝑎, 𝐴𝑙𝑝ℎ𝑎),

𝑆2 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑂𝑚𝑒𝑔𝑎, 𝐵𝑒𝑡𝑎),

𝑆3 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑂𝑚𝑒𝑔𝑎, 𝐷𝑒𝑙𝑡𝑎),

 (2)

Breakpoint = (a. M𝑥_cities) − M𝑥_cities) (3)

The greedy process in Eq. (1) improves the tour

solution by accepting only the best solution from the

crossover based on the linear value changed during

the run. In the algorithm, the modifications are made

at the “compute breakpoint value” and “update

current position 𝑋𝑖.’ The calculation to compute the

breakpoint is performed using Eq. (3) is used to

calculate the current position of 𝑋𝑖 using Eq. (1). The

breakpoint in Eq. (3) decreases during the algorithm

run. Thus, the crossover operator in Eq (2) changes

the length of the solution adaptively, linearly

decreasing the long length. This step is followed by

using the neighborhood search to select the best

solution either from pair-swap or displacement. This

stage aims to increase the algorithm's exploitation

capability in finding more neighborhood solutions

from the best global region.

5. Performance evaluation

The performance of the proposed A-GWO

algorithm is evaluated using 25 TSP benchmark

datasets taken from TSPLIB [56]. These datasets

differ in the number of cities, including small and

medium numbers of cities, and the maximum and

minimum distances between the cities, as shown in

Table 1. Table 1 also lists the distribution of the

problems and the optimal solution of each problem.

Experimental results of A-GWO are performed in

three scenarios. The first scenario compares A-GWO

with four state-of-the-art algorithms that are best

known for providing the best tour distance: ACO, GA

[57], GWO [13], and the producer scrounger method

(PSM) [58], based on the minimum tour distance

across all cities in the first set of TSP instances. The

setting of the parameters for all the algorithms is set

similar to that in [13]. GA and PSM represent GA

and PSM, respectively. The population size is

initialized equally, where each algorithm’s

population size is set to 100. The number of iterations

is set to 500, and the number of runs is set to 10 for

all algorithms, which meant that all algorithms had

the same improvement time to produce the result

within the same parameters. The parameter mutation

is set to a small value to increase the diversity of

solutions, usually applied with a low probability of

approximately 0.001. A high probability indicated

that GA is reduced to a random search. The crossover

is set to 0.8, which guides to algorithm toward the

best quality solutions during the algorithm run. The

evaporation rate is set to 0.01 in ACO, which is

responsible for increasing and decreasing exploration

capability, where low evaporation means fast

convergence and vice versa. The other parameters,

such as the coefficients in GWO and A-GWO,

decreased from 2 to 0 throughout the iterations. Such

a decrease forces the algorithm to increase

exploitation capability in the advance iterations,

which is used to attack the prey when it stops moving

in the GWO algorithm. All parameters were

initialized as the literature in [57, 13] for a fair

comparison. The second scenario of the comparison

is performed with other benchmarks and other

optimization algorithms. The target of the scenario is

to indicate the effectiveness of the proposed

technique by finding the optimal solutions only. The

TSP instance used in the second scenario, as shown

in Table 1, belongs to the standard library and is

selected to test eil76, eli51, berlin52, kroa100, st70,

oliver30, pr76, pr107, ch150, d198, tsp225, and

f1417. The algorithms used in the second scenario are

discrete whale optimization algorithm (DWOA) [47],

discrete whale optimization algorithm with variable

neighborhood search (VDWOA) [48], bat algorithm

(BA) [59], GWO, moth-flame optimization (MFO)

[60], and PSO [61]. In this scenario, each algorithm

is performed 50 times, and the optimal solution

provided is used in the comparison. The parameters

of DWOA and VDWOA are similarly set in the

experiment, where constant-coefficient 𝑏 is set to 1,

and the ε value is set to 0.35. In BA, the maximum

pulse frequency value is set to 1, whereas the

minimum value is set to 0. The coefficient of sound

loudness is 0.9, the search frequency the

enhancement factor of is 0.9, the loudness of the

sound is between (0, 1), and the pulse emission rate

is between (0, 1). The spiral shape parameter is set to

1 in MFO. The inertia weight factor is set to 0.2, and

the acceleration factor is set to 2 in the PSO algorithm.

The third scenario was performed with other

optimization algorithms. Six optimization algorithms

used to indicate the effectiveness of the proposed

technique include HHO-ACS [35], ACO [57], PSO

[61], GA [57], BH [36], and DA [49]. The

benchmarks used in this scenario, as shown in Table

1, contain eight datasets: bays29, att48, eil51,

berlin52, st70, eil76, and eil101. In this scenario, the

maximum number of iterations is set to 200, and the

population size is set to 100 for all algorithms. All

parameters are set based on [35].

Table 2 shows the average results of the minimum

tour of the algorithms. The figures in brackets are the

standard deviation of the results, and the best result

Received: August 20, 2021. Revised: September 16, 2021. 548

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Table 1. Benchmark characteristics of each TSP dataset

NO Dataset Number of cities Distribution Optimal solution

1 burma14 14 14-cities in Burma 33.23

2 ulysses16 16 Odyssey of Ulysses 68.59

3 gr17 17 17-city problem (Groetschel) 2085

4 gr21 21 21-city problem (Groetschel) 2707

5 ulysses22 22 Odyssey of Ulysses (Groetschel and Padberg) 70.13

6 gr24 24 24-city problem (Groetschel) 1272

7 fri26 26 26-city problem (Fricker) 637

8 bays29 29 29-cties in Bavaria (street distance) 2020

9 hk48 48 48-city problem (Held/Karp) 11461

10 eil51 51 51-city problem (Christofides/Eilon) 426

11 berlin52 52 52-locations in Berlin (Germany) 7542

12 st70 70 70-city problem (Smith/Thompson) 675

13 eil76 76 76-city problem (Christofides/Eilon) 538

14 gr96 96 Africa-Subproblem of 666-city TSP (Groetschel) 55209

15 kroa100 100 100-city problem A (Krolak/Felts/Nelson) 21282

16 oliver30 30 30-city problem 420

17 pr76 76 76-city problem (Padberg/Rinaldi) 108159

18 pr107 107 107-city problem (Padberg/Rinaldi) 44303

19 ch150 150 150-city problem (Churritz) 6528

20 d198 198 Drilling problem (Reinelt) 15780

21 tsp225 225 A TSP problem (Reinelt) 3916

22 fl417 417 Drilling problem (Reinelt) 11861

23 bays29 29 29 Cities in Bavaria -

24 att48 48 48 capitals of the US -

25 eil101 101 101-city problem (Christofides/Eilon) 629

Table 2. Average tour distance for all algorithms (first experiment)

TSP instance GA ACO PSM GWO A-GWO

burma14 31.83 31.21 30.89 30.87 30.25

ulysses16 74.79 77.13 74.2 73.99 69.05

gr17 2458.36 2332.58 2375.39 2332.58 2321.08

gr21 3033.82 2954.58 2838.22 2714.65 2711.11

ulysses22 79.62 86.81 76.68 76.08 72.65

gr24 1402.01 1267.13 1372.57 1289.23 1277.03

fri26 689.49 646.48 675.24 644.67 639.06

bays29 9981.49 9964.78 9917.59 9219.40 9390.40

hk48 16033.31 12731.07 13870.94 12117.05 12122.63

eil51 592.3 504.83 474.58 463.29 459.02

berlin52 10413.61 8088.95 8865.08 8289.11 8115.18

st70 1203.35 748.65 845.40 800.14 755.12

eil76 926.4 601.77 631.58 629.24 618.92

gr96 1092.04 590.67 618.68 660.48 584.21

kroa100 57940 24623.01 30210.57 28340.42 25150.04

for each dataset is highlighted. The A-GWO

algorithm produced the best results in eight datasets,

followed by the ACO and GWO algorithms with five

and two datasets, respectively. A-GWO, GWO, and

ACO have more control over the exploration and

exploitation than GA and PSM, enabling the

algorithms to produce better results regardless of the

datasets’ characteristics. However, ACO has better

stability than GWO and A-GWO, as indicated by the

small values of the standard deviation. Furthermore,

the average standard deviation shows that ACO, A-

GWO, GWO, PSM, and GA receive 196, 2128, 2736,

4473, and 6802, respectively. The average standard

deviation indicates that the proposed A-GWO is

ranked as the second algorithm producing a better

standard deviation.

The second scenario experiments with VDWOA,

DWOA, BA, GWO, MFO, and PSO algorithms, as

shown in Table 3. The experiment is performed

according to the optimal solution (minimum value as)

Received: August 20, 2021. Revised: September 16, 2021. 549

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Table 3. Optimal Solution of seven algorithms (second experiment)

TSP instance VDWOA DWOA BA GWO MFO PSO A-GWO

Oliver30 420 420 420 422 423 424 420

Eil51 429 445 439 441 449 445 427

Berlin52 7542 7727 7694 7898 8184 7862 7544

St70 676 712 718 726 710 732 675

Eil76 554 579 561 565 577 595 545

Pr76 108,353 111,511 111,989 114,261 114,377 115,265 108,321

KroA100 21,721 22,471 23,424 22,963 23,456 23,480 21,717

Pr107 45,030 45,780 46,419 46,083 47,437 46,919 45,042

CH150 6863 7329 7440 7384 7329 7833 6858

D198 16,313 16,603 16,849 17,109 16,911 18,130 16,509

Tsp225 4136 4399 4427 4620 4469 5049 4133

Fl417 12,462 13,886 15,532 15,492 14,087 18,688 12,476

Table 4. Average tour distance for all algorithms (third experiment)

TSP instance HHO-ACS ACO PSO GA BH DA A-GWO

bays29 9079.60 9823.20 9195.91 10015.2 9463.25 9480.29 9390.86

bayg29 9077.20 9882.22 9947.03 9771.95 9375.44 9547.75 9011.100

att48 33580.2 39436.2 47018.4 43620.6 34473.8 37759.7 33570.223

eil51 429.600 461.018 574.802 453.477 458.925 475.16 457.98

berlin52 7589.00 8522.90 11089.5 9288.45 8455.83 9486.70 8120.13

st70 685.200 757.754 1321.81 1158.85 797.575 839.01 745.543

eil76 548.600 594.144 975.64 652.059 659.102 644.89 619.432

eil101 654.200 763.921 1499.99 838.831 897.381 997.60 654.180

provided in 50 runs by each algorithm according to

the setting in [48]. It indicates that the proposed A-

GWO algorithm produces the best results in seven

TSP instances: Eil51, St70, Eil76, Pr76, KroA100,

CH150, and Tsp225 (approximately 58%). It also

shows that the VDWOA algorithm produced the best

results in four TSP instances: Berlin52, Pr107, D198,

and F1417 (about 33%). Table 3 reports that the A-

GWO algorithm produces the best results because it

is the best algorithm compared with DWOA, BA,

GWO, MFO, and PSO algorithms. The algorithm

produces better results (100%) compared with all

mentioned algorithms. Table 3 illustrates the results

of algorithm performance based on the optimal

solution by each algorithm.

In the third scenario, an experiment was

performed with six optimization algorithms to

indicate the effectiveness of the proposed algorithm.

The several algorithms used in the experiment are

HHO-ACS, ACO, PSO, GA, BH, and DA, as

reported in Table 4. The experiment is performed

according to the average tour distance of each

algorithm. It indicates that the A-GWO algorithm

produces better results than DA and BH algorithms

in all TSP instances (100%). The comparison

between A-GWO and GA and PSO algorithms

indicated that A-GWO produces the best results in

seven TSP instances. In contrast, GA and PSO

algorithms produce the best results only in one TSP

instance. The performance of the A-GWO algorithm

is evaluated with other swarm algorithms,

particularly the ACO algorithm. A-GWO

outperforms the ACO algorithm in seven TSP

instances (i.e., bays29, bays29, att48, eil51, berlin52,

and st70 [75%]), whereas the ACO algorithm

produces the best results only in one TSP instance

(i.e., eli76). The final comparison between HHO-

ACS and A-GWO algorithm indicates that HHO-

ACS results better than A-GWO, where the former

outperforms A-GWO in five TSP instances

(approximately 63%). The HHO-ACS algorithm

produces the best results in bays29, eil51, berlin52,

st70, and eil76, whereas the A-GWO algorithm

produces the best results only in bayg29, att48, and

eil101 (approximately 38%). The reason is that the

HHO-ACS algorithm can optimize its parameter

better than the A-GWO. Table 3 illustrates the results

of algorithm performance based on the optimal

solution by each algorithm. However, A-GWO and

HHO-ACS have better stability, providing a standard

deviation than other optimization algorithms. HHO-

ACS, as indicated by the third experiment, provides

small values of the standard deviation because it is

the best algorithm in the ranking. The average

standard deviation showed by HHO-ACS

(approximately 16.6111). The second algorithm in

the ranking is A-GWO, which provides a standard

deviation of a value of approximately 18.3766. DA

Received: August 20, 2021. Revised: September 16, 2021. 550

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

with 89.6325 is the third algorithm in the ranking, BH

with 210.7414 is the fourth, and GA with 493.2315 is

the fifth. ACO has an average standard deviation of

approximately 948.8546. The last algorithm that

provides a high standard deviation is PSO with

1696.3588. The average standard deviation proves

that the proposed A-GWO algorithm converges on

the same results during the algorithm run. However,

the HHO-ACS algorithm is approximately the same

in each algorithm run. HHO-ACS convergence is

better than A-GWO because its parameters have been

optimized, forcing the algorithm to provide similar

results in the search history.

The proposed algorithm produces a better

minimum distance tour than all other algorithms. The

modifications (i.e., the adaptive crossover operators

and neighborhood search) improve the results by

enhancing information sharing among the wolves

during the algorithm run and intensifying the search

process for more promising regions in the

neighborhood of the three best wolves’ locations.

6. Conclusion and future work

This study aims to solve the problem of exchange

information among the leadership hierarchy in the

traveling salesman problem. The proposed adaptive

algorithm (A-GWO) has two contributions using the

crossover operator as the first contribution and

neighborhood search as the second contribution. The

crossover operator allows the information to be

inherited between the leadership hierarchy during the

algorithm run. The neighborhood search provides

different neighborhoods regions with different

solutions quality during the run, which could

generate several landscapes to support the algorithm

in finding more solutions in the local region of the

best solution. The scientific contribution of this study

is to employ a linear crossover that changes during

the algorithm run. The benefit is a high exploration

ratio at the beginning of the run.

 The other scientific contribution increases the

exploitation using neighborhood search. Thus, this

search is locally performed to find the global

solutions in the local region based on the quality of

best solutions reached. The advantage of both

contributions is the trade-off between the exploration

search-based and the exploitation search-based,

guiding the search toward the best regions in the

search space.

The limitation of the study is that it requires long

convergence because of the crossover operator that is

linearly exchanged through the time run. Due to the

advantage of both modifications, the improvement is

achieved using a crossover operator between the

omega wolf and the hierarchy level (alpha, beta, and

delta). Cumulative iterations with neighborhood

search including displacement and pair-swap

operations improve the quality of tour distance in the

neighborhood region of the hierarchy level. The

proposed algorithm’s performance provides a better

minimum tour distance among all optimization

algorithms. The evaluation conducted using 25 TSP

instances is differed in the number of cities against 12

state-of-the-art algorithms. The 12 algorithms are GA,

ACO, PSM, GWO, VDWOA, DWOA, BA, MFO,

PSO, HHO-ACS, BH, and DA. The experiment

indicates that the proposed A-GWO is approximately

58% better than all algorithms, except the HHO-ACS

algorithm.

Future research will focus on applying the

algorithm directly to similar problems, such as VRP,

and employing online parameter adaption to optimize

the parameter of A-GWO to include self-adaptive and

search-based strategies. Other neighborhood search

operators can be tested in the proposed algorithm

with other application problems, such as clustering

and classification, to guide future research plans.

Conflicts of interest

The author declares no conflict of interest.

Author contributions

The main author (“Ayad”) contributed to coding,

implementation, discussion of results, and

preparation. The co-author “Ku Ruhana Ku-

Mahamud” contributed to the planning, presentation

and supervision.

Acknowledgments

The author would like to thank Shatt Al-Arab

University College and Universiti Utara Malaysia for

supporting this manuscript financially.

References

[1] H. N. K. A. Behadili, R. Sagban, and K. R. K.

Mahamud, “Hybrid ant colony optimization and

iterated local search for rules-based

classification”, Journal of Theoretical and

Applied Information Technology, Vol. 98, No. 4,

pp. 657–671, 2020.

[2] M. Alzaqebah, S. Abdullah, and S. Jawarneh,

“Modified artificial bee colony for the vehicle

routing problems with time windows”,

Springerplus, Vol. 5, No. 1, 2016.

[3] D. Arimbi, A. Bustamam, and D. Lestari,

“Implementation of Hybrid Clustering Based on

Received: August 20, 2021. Revised: September 16, 2021. 551

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

Partitioning Around Medoids Algorithm and

Divisive Analysis on Human Papillomavirus

DNA”, In: Proc. of AIP Conference Proceedings,

Vo.1825, pp. 1–8, 2017.

[4] H. Ismanto, A. Azhari, S. Suharto, and L. Arsyad,

“Classification of the mainstay economic region

using decision tree method”, Indonesian Journal

of Electrical Engineering and Computer Science,

Vol. 12, No. 3, pp. 1037–1044, 2018.

[5] H. Almazini and K. R. K. Mahamud, “Grey

Wolf Optimization Parameter Control for

Feature Selection in Anomaly Detection”,

International Journal of Intelligent Engineering

and Systems, Vol. 14, No. 2, pp. 474–483, 2021.

[6] M. Kohli and S. Arora, “Chaotic grey wolf

optimization algorithm for constrained

optimization problems”, Journal of

Computational Design and Engineering , Vol. 5,

No. 4, pp. 458–472, 2018.

[7] L. Xinwu, “Research on Text Clustering

Algorithm Based on Improved K-means”, In:

Proc. of International Conf. on Future

Computer and Communication, Vol. 4, pp. 573–

576, 2010.

[8] U. Chandrasekhar and P. Naga, “Recent trends

in Ant Colony Optimization and data clustering:

A brief survey”, In: Proc. of International Conf.

on Intelligent Agent & Multi-Agent Systems, pp.

32–36, 2011.

[9] C. Huang, W. Huang, H. Chang, C. Yeh, and C.

Tsai, “Hybridization strategies for continuous

ant colony optimization and particle swarm

optimization applied to data clustering”, Applied

Soft Computing, Vol. 13, No. 9, pp. 3864-3872,

2013.

[10] K. Ye, C. Zhang, J. Ning and X. Liu, “Ant-

colony algorithm with a strengthened negative-

feedback mechanism for con- straint-satisfaction

problems”, Information Sciences, Vol. 4, pp. 29-

41, 2017.

[11] E. Bonabeau, M. Dorigo, and G. Theraulaz, “A

Primer on Multiple Intelligences”, Cham:

Springer, pp. 213-250,1999.

[12] M. Worall and M. Worall, “Homeostasis in

nature: Nest building termites and intelligent

buildings”, Intelligent Buildings International,

pp. 87–95, 2011.

[13] S. Sopto, S. Ayon, M. Akhand, and N. Siddique,

“Modified Grey Wolf Optimization to Solve

Traveling Salesman Problem”, In: Proc. of

International Conf. on Innovation in

Engineering and Technology, pp. 1–4, 2019.

[14] B. Anari, J. A. Torkestani, and A. M. Rahmani,

“A learning automata-based clustering

algorithm using ant swarm intelligence”, Expert

Systems, Vol 35, No. 6, pp. 1-26, 2018.

[15] R. Xu, J. Xu, and D. Wunsch, “A Comparison

Study of Validity Indices on Swarm-

Intelligence-Based Clustering”, IEEE

Transactions on Systems, Man, and Cybernetics,

Vol. 42, No. 4, pp. 1243–1256, 2012.

[16] S. Zhu and L. Xu, “Many-objective fuzzy

centroids clustering algorithm for categorical

data”, Expert Systems with Applications, Vol. 96,

pp. 230–248, 2018.

[17] A. M. Jabbar, “Rule Induction with Iterated

Local Search”, International Journal of

Intelligent Engineering and Systems, Vol. 14,

No. 4, pp. 289–298, 2021.

[18] C. Blum and A. Roli, “Metaheuristics in

combinatorial optimization: overview and

conceptual comparison”, ACM Computing

Surveys, Vol. 35, No. 3, pp. 189–213, 2003.

[19] S. Mukherjee, S. Ganguly, and S. Das, “A

strategy adaptive genetic algorithm for solving

the travelling salesman problem”, In: Proc. of

International Conf. on Swarm, Evolutionary,

and Memetic Computing, pp. 778–784, 2012.

[20] J. Sung and B. Jeong, “An Adaptive

Evolutionary Algorithm for Traveling

Salesman”, The Scientific World Journal, Vol.

14, pp. 1–11, 2014.

[21] J. Mcdonnell, R. Reynolds, and D. Fogel,

“Adapting crossover in evolutionary

algorithms”, In: Proc. of in the Fourth Annual

Conf. on Evolutionary Programming, pp. 367-

384, 1995.

[22] M. Riff and X. Bonnaire, “Inheriting parents

operators: A new dynamic strategy for

improving evolutionary algorithms”, In: Proc. of

International Conf. on Methodologies for

Intelligent Systems, pp. 333-343, 2002.

[23] J. Gomez, “Self adaptation of operator rates in

evolutionary algorithms”, In: Proc. of Genetic

and Evolutionary Computation Conf., pp. 1162-

1173 , 2004.

[24] A. C. Salinas and J. Perdomo, “Self-adaptation

of genetic operators through genetic

programming techniques”, In: Proc. of Genetic

and Evolutionary Computation Conf., pp. 913-

920, 2017.

[25] Y. Yang, H. Dai, and H. Li, “Adaptive genetic

algorithm with application for solving traveling

salesman problems”, In: Proc. of International

Conf. on Internet Technology and Applications,

pp. 1–4, 2010.

[26] T. Stützle and H. H. Hoos, “MAX –MIN Ant

System”, Future Generation Computer Systems,

Vol. 16, pp. 889–914, 2000.

[27] A. G, Pardo, J. Jung, and D. Camacho, “ACO-

Received: August 20, 2021. Revised: September 16, 2021. 552

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

based clustering for Ego Network analysis,”

Future Generation Computer Systems, Vol. 66,

pp. 160–170, 2017.

[28] H. Menéndez, F. Otero, and D. Camacho,

“SACOC:A Spectral-Based ACO Clustering

Algorithm”, In: Proc. of International Conf. on

Intelligent Distributed Computing, pp. 185–194,

2014.

[29] H. Kanan, K. Faez, and S. M. Taheri, “Feature

selection using Ant Colony Optimization

(ACO): A new method and comparative study in

the application of face recognition system”, In:

Proc. of Industrial Conference on Data Mining,

pp. 63–76, 2007.

[30] P. Shunmugapriya and S. Kanmani, “A hybrid

algorithm using ant and bee colony optimization

for feature selection and classification”, Swarm

and Evolutionary Computation, Vol 36, pp. 27-

36, 2017.

[31] M. Dorigo and L. M. Gambardella, “Ant colony

system: a cooperative learning approach to the

traveling salesman problem”, IEEE

Transactions on Evolutionary Computation, Vol.

1, No. 1, pp. 53–66, 1997.

[32] M. Dorigo and L. M. Gambardella, “Ant

colonies for the travelling salesman problem”,

Biosystems, Vol. 43, No. 2, pp. 73–81, 1997.

[33] L. Yangyang, S. Xuanjing, and C. Haipeng, “An

Adaptive Ant Colony Algorithm Based on

Common Information for Solving the Traveling

Salesman Problem”, In: Proc. of International

Conf. on Systems and Informatics, Vol. 35, pp.

1263–1277, 2012.

[34] G. Ping, X. Chunbo, C. Jing, and L. Yanqing,

“Adaptive ant colony optimization algorithm”,

In: Proc. of International Conf. on Mechatronics

and Control, pp. 95–98, 2015.

[35] S. A. Yasear and K. R. K. Mahamud, “Fine-

Tuning the Ant Colony System Algorithm

Through Harris’s Hawk Optimizer for

Travelling Salesman Problem”, International

Journal of Intelligent Engineering and Systems,

Vol. 14, No. 4, pp. 136–145, 2021.

[36] A. Hatamlou, “Solving travelling salesman

problem using black hole algorithm”, Soft

Computing, Vol. 22, No. 24, pp. 8167–8175,

2018.

[37] S. Anuar, A. Selamat, and R. Sallehuddin, “A

modified scout bee for artificial bee colony

algorithm and its performance on optimization

problems”, Journal of King Saud University -

Computer and Information Sciences, Vol. 28,

No. 4, pp. 395–406, 2016.

[38] N. Veček, S. Liu, M. Črepinšek, and M. Mernik,

“On the importance of the artificial bee colony

control parameter ‘limit”, Information

Technology And Control, Vol. 46, No. 4, pp.

566–604, 2017.

[39] S. Mortada and Y. Yusof, “A Neighbourhood

Search for Artificial Bee Colony in Vehicle

Routing Problem with Time Windows”,

International Journal of Intelligent Engineering

and Systems, Vol. 14, No. 3, pp. 255–266, 2021.

[40] A. Rekaby, A. Youssif, and A. S. Eldin,

“Introducing Adaptive Artificial Bee Colony

algorithm and using it in solving traveling

salesman problem”, In: Proc. of Science and

Information Conf., pp. 502–506, 2013.

[41] C. Laizhong, L.Genghui, W. Xizhao, L.Qiuzhen,

C. Jianyong, L.Na, and L. Jian “A ranking-based

adaptive artificial bee colony algorithm for

global numerical optimization”, Information

Sciences, Vol. 417, pp. 169–185, 2017.

[42] Y. Wang, T. Wang, S. Dong, and C. Yao, “An

Improved Grey-Wolf Optimization Algorithm

Based on Circle Map”, In: Proc. of International

Conf. on Machine Learning and Computer

Application, pp. 1-7, 2020.

[43] D. Karaboga and B. Gorkemli, “Solving

Traveling Salesman Problem by Using

Combinatorial Artificial Bee Colony

Algorithms”, International Journal on Artificial

Intelligence Tools, Vol. 28, No. 1, 2019.

[44] M. Yousefikhoshbakht, “Solving the Traveling

Salesman Problem: A Modified Metaheuristic

Algorithm”, Complexity Journal, Vol. 20, pp. 1-

13, 2021.

[45] M. Qamar, S. Muhammad, T. Shanshan, A.

Farman, A. Ammar, F. Muhammad, A. Fayadh,

M. Fazal, A. Asar, and N. Alnaim,

“Improvement of traveling salesman problem

solution using hybrid algorithm based on best-

worst ant system and particle swarm

optimization”, Applied Sciences, Vol. 11, No. 11,

2021.

[46] Y. Liu, Q. Liu, and Z. Tang, “A discrete chicken

swarm optimization for traveling salesman

problem”, In: Proc. of International Conf. on

Physics, Mathematics and Statistics, pp. 1-7,

2021.

[47] J. Li and M. Le, “Application of Discrete Whale

Optimization Hybrid Algorithm in Multiple

Travelling Salesmen Problem”, In: Proc. of

Advanced Information Technology, Electronic

and Automation Control Conf., pp. 588–595,

2019.

[48] J. Zhang, L. Hong, and Q. Liu, “An improved

whale optimization algorithm for the traveling

salesman problem”, Symmetry Journal, Vol. 13,

No. 1, pp. 1–13, 2021.

Received: August 20, 2021. Revised: September 16, 2021. 553

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.48

[49] A. Hammouri, E. Samra, M. A. Betar, R. Khalil,

Z. Alasmer, and M. Kanan, “A dragonfly

algorithm for solving traveling salesman

problem”, In: Proc. of International Conf. on

Control System, Computing and Engineering, pp.

136–141, 2019.

[50] M. Taha, B. A. Khateeb, Y. Hassan, O. Ismail,

and A. Rawash, “Solving competitive traveling

salesman problem using gray wolf optimization

algorithm”, Periodicals of Engineering and

Natural Sciences, Vol. 8, No. 3, pp. 1331–1344,

2020.

[51] S. Mirjalili, M. Mirjalili, and A. Lewis, “Grey

Wolf Optimizer”, Advances in Engineering

Software, Vol. 69, pp. 46–61, 2014.

[52] P. Pellegrini, T. Stützle, and M. Birattari, “A

critical analysis of parameter adaptation in ant

colony optimization”, Swarm Intelligence

Journal, Vol. 6, No. 1, pp. 23–48, 2012.

[53] L. Manuel, M. Maur, and M. Oca, “Parameter

Adaptation in Ant Colony Optimization”,

Autonomous Search Journal, Vol. 3, No. 1, pp.

191–215, 2010.

[54] C. Fan, Q. Fu, G. Long, and Q. Xing, “Hybrid

artificial bee colony algorithm with variable

neighborhood search and memory mechanism”,

Journal of Systems Engineering and Electronics,

Vol. 29, No. 2, pp. 405–414, 2018.

[55] P. Hansen and N. Mladenović, “Variable

neighborhood search”, in Handbook of

Heuristics, 2018.

[56] TSPLIB, “Symmetric traveling salesman

problem (TSP)”, 1995.

[57] S. Alharbi and I. Venkat, “A Genetic Algorithm

Based Approach for Solving the Minimum

Dominating Set of Queens Problem”, Journal of

Optimization, Vol. 6, No. 2, pp. 1–9, 2017.

[58] M. H. Akhand, P. Shill, and M. Hossain,

“Producer-Scrounger Method to Solve

Traveling Salesman Problem”, International

Journal of Intelligent Systems and Applications,

Vol. 7, No. 3, pp. 29–36, 2015.

[59] E. Osaba, X. Yang, F. Diaz, P. L. Garcia, and R.

Carballedo, “An improved discrete bat

algorithm for symmetric and asymmetric

Traveling Salesman Problems”, Engineering

Applications of Artificial Intelligence, Vol. 48,

pp. 59–71, 2016.

[60] A. Helmi and A. Alenany, “An enhanced Moth-

flame optimization algorithm for permutation-

based problems”, Evolutionary Intelligence, Vol.

13, No. 4, pp. 741–764, 2020.

[61] X. Xu, X. Cheng, Z. Yang, X. H. Yang, and W.

L. Wang, “Improved particle swarm

optimization for Traveling Salesman Problem”,

In: Proc. of International Conf. on Intelligent

Computing, pp. 857–862, 2013.

