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Abstract: This research attempted to control a Four-Leg Inverter (FLI) on microgrid rooftop solar (MGRS), which 

connects to a distribution network (grid) via a distribution transformer. The connected load on an MGRS system 

comprises two loads: nonlinear load and unbalanced linear load. Rooftop Solar (RS) injection current on each grid 

phase fluctuated depending on irradiation value. Load and irradiation fluctuations and RS capacity differences on every 

phase caused the transformer’s current unbalance and harmonic. Since the pulled current load varied between grid 

phases, the current load’s instantaneous fundamental power demand (active and reactive) also differs for each phase. 

Optimized Constructive Neural Network (OCNN) with single-phase PQ theory was utilized to independently control 

FLI in every phase determined by fundamental power demand. Therefore, a transformer would perceive load and RS 

injection as balanced despite varied and unbalanced conditions. OCNN builds networks by self-constructive methods. 

Each training session enables the addition of new hidden layers and neurons inside each layer. The OCNN network 

compares the error value associated with the training results to the error value associated with the temporary best 

network (TBN). Throughout each training session, this comparison is made to determine the network with the lowest 

error value or the global best network (GBN). The frequent irradiation fluctuation indicated that the system often 

stayed in a transient rather than a steady-state. In high transient conditions, the performance of the proposed controlling 

method had been tested in simulations. The result revealed that the OCNN controller obtains the lowest peak values 

under high transient conditions, namely 2.62% for PCU and 6.73%, 7.33%, and 6.63% for THDi, respectively, at 

phases A, B, and C. 

Keywords: Current unbalanced, Optimized constructive neural network (OCNN), Rooftop solar, Microgrid, Single-

phase PQ theory, Four-leg inverter, Boost rectifier. 

 

 

1. Introduction 

In several countries, the usage of rooftop solar or 

RS has been significantly increased. Nowadays, 

rooftop solar is installed not only in industrial settings 

but also in typical household backgrounds. For 

example, in India, a solar power plant is targeted to 

produce 100 GW in 2022, which the 40 GW it 

generated by rooftop solar. In Japan, in November 

2009, the feed-in-tariff (FIT) scheme for rooftop solar 

was introduced. This Japan FIT scheme supported 

rooftop solar generator development to 

approximately 1 GW in 2010 [1]. The increasing 

number of RS consumers indirectly creates a 

microgrid (MG) at an electrical distribution system. 

This practice has been proven to change consumers’ 

load patterns from conventional (passive) to active. 

The approach also allows consumers to act as 

electricity producers, especially if the RS system has 

produced an electrical surplus[2–4]. 

Fig. 1 demonstrated the basic structure of Micro 

Grid (MG) with Rooftop Solar (RS) as a power 

source (MGRS) using radial topology. All RSs are 

connected by a single-phase inverter and linked to a 

distribution network. Connecting MGRS with a grid  
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Figure. 1 Rooftop solar on microgrid system with 

unbalanced loads 

 

revealed advantages, such as decreased 

transmission/distribution losses and higher MGRS 

efficiency [5]. However, the presence of RS inside 

MG has a drawback since it increases the uncertainty 

of the electric current due to natural conditions. 

Additionally, the significant prevalence of renewable 

energy contributes to challenges of stability and 

power quality. This issue arises due to RS’s 

stochastic and intermittent attributes [6, 7], which 

created several issues that must be addressed 

carefully to maintain acceptable power quality. 

The most frequent issue on MGRS is current 

unbalance and harmonic [8–12]. An unbalanced 

MGRS was caused by irradiation difference, RS 

capacity, and a fluctuated load. In addition, unbalance 

current would impact the rising number of copper 

losses in a network. Copper losses are proportionate 

to the square root of current, and these losses will 

surge as current unbalance rises [13–15]. Current 

unbalance also produces excessive heat at the 

electrical motor and transformer, which leads to 

melted winding insulation. Furthermore, if an electric 

motor’s torsion becomes unequal, it will reduce its 

efficiency and increase its vibration, raising the motor 

and equipment’s chances of being broken. However, 

there is not any standard limit for the current 

unbalance [16].   

The RS power plant utilized an electronic power 

converter, which requires multiple stages of DC/AC 

or DC/DC/AC conversion. The use of a converter 

degrades the quality of power delivered to a 

distribution network. When operated, the current 

value was below or above nominal; however, the 

resulting non-sinusoidal current caused harmonic 

distortion at the source and load. As a result, the issue 

becomes more critical when the nonlinear load is 

added to the network. 

Numerous research has identified a range of 

control methods for voltage and current balance. For 

instance, Vechiu et al. [17–19] proposed a Four-Leg 

Inverter (FLI) with a modified synchronous reference 

frame management technique. This approach is based 

on decomposing three-phase voltage and current in a 

synchronous reference frame into symmetrical 

components (positive, negative, and zero). 

Previous research has conducted thoroughly 

comprehensive studies about several ways to address 

the weaknesses of the linear control method on 

harmonic and unbalance compensation, such as 

utilizing nonlinear control of dead beat (DB), model 

predictive control (MPC), and shift mode control 

(SMC). Moreover, another method that has been used 

to increase the control system’s performance so the 

system will be more stable and dynamic was a mixed 

controller such as the combination of DB repetitive 

control and feedforward compensation technique 

[20]. However, the hybrid combination is a 

convoluted method, which makes it hard to be 

implemented. A method based on H∞ optimization 

is more comfortable implementing [21], but this 

method only compensates for unbalanced voltage’s 

negative sequence component.  

Nevertheless, earlier studies still left some issues, 

such as a DC power source still required to store 

energy to conduct compensation. Therefore, this 

energy storage will be utilized as a DC source of 

compensator while injecting power to a distribution 

network via a two-way converter. However, this 

control technique’s main disadvantage is that it 

required an enormous DC storage media and a limited 

storage element, which led to limited compensation 

duration. As a result, several researchers have 

replaced power sources with RS [22]. However, RS 

usage is not the best solution as the compensator 

cannot work correctly due to RS’s stochastic and 

intermittent properties. 

This research will focus on the control scheme for 

each FLI phase which operated unbalanced and 

varied. The main goal is to effectively balance the 

current grid while supplying loads with a lower 

harmonic load. This study aims to give several 

contributions to addressing the preceding research 

weakness. First, an implemented method is a single-

phase PQ that compensates each stage independently. 

Power calculations are conducted instantaneously to 
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provide real-time active compensation, especially 

during transient conditions. The fundamental 

instantaneous active power demanded by each load 

phase is previously calculated. Therefore, the active 

power will re-distribute equally to the distribution 

transformer and IEL. Second, DC source utilization 

of a three-phase output boost rectifier originates from 

the same distribution network; thus, it will provide 

unlimited compensation duration. Additionally, the 

solution proposed utilizes an Artificial Neural 

Network (ANN). 

ANN, especially Levenberg Marquardt Neural 

Network (LMNN), is employed because they are 

great at estimating nonlinearity, do not require an 

accurate mathematical model system, and provide 

reference tracking control, particularly during 

transients [23–27]. In several investigations, an 

LMNN controller was utilized to operate the FLI. 

Generally, this approach is constructed by 

determining the number of hidden layers and neurons 

included within each layer [15, 28, 29]. The 

disadvantage is that training must be repeated 

numerous times to obtain minor differences between 

the target and the training results. As a result, the 

process is lengthy. This issue will deteriorate more if 

there are a large number of LMNN input signals. 

The LMNN controller utilized in this article is an 

Optimized Constructive Neural Network (OCNN). 

OCNN is a modification of the LMNN technique. 

OCNN constructs Levenberg Marquardt networks by 

self-constructive approaches. Each training session 

allows for an increase in the number of hidden layers 

and neurons inside each layer. The OCNN network 

compares the training results’ error value to the error 

value on the temporary best network (TBN). This 

comparison is conducted throughout each training 

session to obtain the network with the lowest error 

value or the global best network (GBN). Additionally, 

the amount of OCNN inputs will be minimized by 

employing the Pearson correlation approach to 

correlate each input variable with the output [30]. The 

proposed controller’s response is compared to that of 

standard LMNN control approaches for transient 

operation. 

This research is divided into five sections. The 

first section serves as an introduction, while the 

second addresses MGRS modeling. This section 

examines microgrid circumstances in which the RSs 

fluctuate, and the load is unbalanced and nonlinear. 

The third section describes the control strategy for 

single-phase PQ theory that is based on OCNN. The 

fourth section will explain the simulation results and 

discussion. The final section will address the research 

conclusion. 
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Figure. 2 MGRS System connected to distribution 

network with unbalanced and nonlinear loads 

2. Modeling of MGRS system which 

connected to a distribution network 

Fig. 2 revealed a grid diagram of the MGRS 

system connected to a low voltage distribution 

network with FLI. An FLI is installed between bus 1 

(bus transformer) and bus 3 (bus total load). 

Transformer supplied FLI via a three-phase boost 

rectifier. There was one RS for each stage, and each 

RS represented the n-number of RS in the same phase. 

RS was designed based on research by Setiawan et al. 

[31]. 

This study used two approaches to load the 

system. It had an active load equal to the power 

demand and a changeable reactive load. The second 

load was a nonlinear harmonic generator. The 

nonlinear load included a three-phase diode bridge 

rectifier, an R–L load, and harmonics created by the 

RS system’s inverter. Table 1 listed the parameters 

for each system component. 

2.1 Boost rectifier modeling 

A three-phase boost rectifier with Voltage Oriented  
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Figure. 3 Boost rectifier modeling in MGRS 
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Figure. 4 FLI using PQ theory controller 

 

Table 1. System parameter 

Parameters Value 

Inverter  

Rated input voltage (VDC) 700 V 

Rated output voltage (VAC) 220 V 

Frequency 50 Hz 

Transformer  

Rated input voltage 20 kV 

Rated output voltage 380 V 

Frequency 50 Hz 

Capacity 630 kVA 

 

Control (VOC) feedforward control system was 

utilized in this research Fig. 3 displayed the rectifier’s 

position and configuration in the system. A series of 

filters and choke-linked a rectifier to Four-Leg 

Distribution Network (FLDN) . The control system 

was comprised of a voltage and current regulator. The 

voltage regulator’s primary function was to control 

DC link current and generate current reference (id*). 

During the controller designing process, DC voltage 

alteration was assumed to be slower than DC current 

in a higher dynamic system [32]. Therefore, id 

current could trace the current reference correctly. 

2.1 Three-Phase FLI based on single-phase PQ 

theory 

Figs. 2 and 4 illustrate FLI with MGRS linked to 

a distribution network. The system is composed of a  
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Figure. 5 Transformation diagram of the current signal 

and single-phase sinusoidal voltage to α-β coordinate 

 

boost rectifier, a DC link, a filter, an FLI, and a 

controller. Direct current control and indirect current 

control techniques are often used in the current 

control mode of an inverter. Indirect current control 

mode, the resultant reference signal is employed as a 

current inverter. Indirect current control mode, the 

reference signal created is a current supply. Indirect 

current control was used in this study, and a 

controlling approach based on PQ theory was 

developed, as seen in Fig. 4. The controller was 

divided into active power estimation on each phase 

and a current reference generator. 

2.1.1. Fundamental Active Power Estimation 

Voltage and current on α-β coordinate 

The three-phase PQ concept theory was extended 

to include single-phase systems [33]. A single-phase 

signal, according to this theory, may be described as 

an imaginer two-phase system produced by moving 

the phase π/2 lead or π/2 lag. The αβ coordinate 

denoted a system with two phases. Thus, each voltage 

and current in a three-phase system may be regarded 

as independent of the others. These principles apply 

to three-phase systems that are balanced or 

unbalanced. 

The main idea was to produce a fictitious 

orthogonal signal with a real current network and 

voltage value for each phase, as demonstrated by Fig. 

5. The orthogonal signal was built by establishing 

actual voltage (vTL) and current (iTL) load as α-axis 

components. In comparison, the lead signal of π/2 or 

lag π/2 was determined as the β-axis component. 

According to Eqs. (1) and (2), this investigation used 

π/2 lead as a β-axis component. 

 

𝑣𝑇𝐿𝛼 = 𝑣𝑇𝐿;  𝑣𝑇𝐿𝛽 = 𝑣𝑇𝐿𝛼∠π
2⁄               (1) 

 

𝑖𝑇𝐿𝛼 = 𝑖𝑇𝐿;  𝑖𝑇𝐿𝛽 = 𝑖𝑇𝐿𝛼∠π
2⁄              (2) 

 

The voltage load of vTLa, vTLb, and vTLc for a three-

phase system, at α-β coordinate, could be represented 

as π/2 in equation number Eqs. (3-5). 

 

[
𝑣𝑇𝐿𝑎𝛼

𝑣𝑇𝐿𝑎𝛽
] = [

𝑣𝑇𝐿𝑚𝑠𝑖𝑛(𝜔𝑡)

𝑣𝑇𝐿𝑚𝑐𝑜𝑠(𝜔𝑡)
]               (3) 

 

[
𝑣𝑇𝐿𝑏𝛼

𝑣𝑇𝐿𝑏𝛽
] = [

𝑣𝑇𝐿𝑚𝑠𝑖𝑛(𝜔𝑡 − 2𝜋
3⁄ )

𝑣𝑇𝐿𝑚𝑐𝑜𝑠(𝜔𝑡 − 2𝜋
3⁄ )

]              (4) 

 

[
𝑣𝑇𝐿𝑐𝛼

𝑣𝑇𝐿𝑐𝛽
] = [

𝑣𝑇𝐿𝑚𝑠𝑖𝑛(𝜔𝑡 + 2𝜋
3⁄ )

𝑣𝑇𝐿𝑚𝑐𝑜𝑠(𝜔𝑡 + 2𝜋
3⁄ )

]              (5) 

 

Shifting technique used π/2 lead, current load for 

iTLa, iTLb, and iTLc phase at αβ coordinate as displayed 

by Eqs. (6-8). Variables vTLm and iTLm represented 

current magnitude and total current load, respectively. 

 

[
𝑖𝑇𝐿𝑎𝛼

𝑖𝑇𝐿𝑎𝛽
] = [

𝑖𝑇𝐿𝑚𝑠𝑖𝑛(𝜔𝑡)+𝜑𝑇𝐿

𝑖𝑇𝐿𝑚𝑐𝑜𝑠(𝜔𝑡+𝜑𝑇𝐿)
]          (6) 

 

[
𝑖𝑇𝐿𝑏𝛼

𝑖𝑇𝐿𝑏𝛽
] = [

𝑖𝑇𝐿𝑚𝑠𝑖𝑛(𝜔𝑡+𝜑𝑇𝐿 − 2𝜋
3⁄ )

𝑖𝑇𝐿𝑚𝑐𝑜𝑠(𝜔𝑡+𝜑𝑇𝐿 − 2𝜋
3⁄ )

] (7) 

 

[
𝑖𝑇𝐿𝑐𝛼

𝑖𝑇𝐿𝑐𝛽
] = [

𝑖𝑇𝐿𝑚𝑠𝑖𝑛(𝜔𝑡+𝜑𝑇𝐿 + 2𝜋
3⁄ )

𝑖𝑇𝐿𝑚𝑐𝑜𝑠(𝜔𝑡+𝜑𝑇𝐿 + 2𝜋
3⁄ )

] (8) 

Reactive and active power based on single-phase 

PQ theory 

Based on the definition of three-phase PQ theory, 

in a balanced system, the instantaneous active power 

(PTLabc) and instantaneous reactive power (QTLabc) 

component load as depicted in Eqs. (9) and (10). 

 

𝑃𝑇𝐿𝑎𝑏𝑐 = 𝑣𝑇𝐿𝑎𝑏𝑐𝛼𝑖𝑇𝐿𝑎𝑏𝑐𝛼 + 𝑣𝑇𝐿𝑎𝑏𝑐𝛽𝑖𝑇𝐿𝑎𝑏𝑐𝛽   (9) 

 

𝑄𝑇𝐿𝑎𝑏𝑐 = 𝑣𝑇𝐿𝑎𝑏𝑐𝛼𝑖𝑇𝐿𝑎𝑏𝑐𝛼 − 𝑣𝑇𝐿𝑎𝑏𝑐𝛽𝑖𝑇𝐿𝑎𝑏𝑐𝛽 

(10) 

 

PTLabc and QTLabc above could be illustrated in a 

matrix below: 

 

[
𝑃𝑇𝐿𝑎𝑏𝑐

𝑄𝑇𝐿𝑎𝑏𝑐
] = [

𝑣𝑇𝐿𝑎𝑏𝑐𝛼 𝑣𝑇𝐿𝑎𝑏𝑐𝛽

−𝑣𝑇𝐿𝑎𝑏𝑐𝛽 𝑣𝑇𝐿𝑎𝑏𝑐𝛼
] [

𝑖𝑇𝐿𝑎𝑏𝑐𝛼

𝑖𝑇𝐿𝑎𝑏𝑐𝛽
]        (11) 

 

This instantaneous power load consisted of DC 

and AC components. DC component was utilized as 

a fundamental active and reactive power generator 

(PTLdc, QTLdc). In contrast, the AC component was 

intended to act as an active and reactive harmonic  
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Figure. 6 Estimation block of active power for each stage using single-phase PQ theory 

 

power supply (PTLac, QTLac) as displayed in Eqs. (12) 

and (13). 

 

𝑃𝑇𝐿𝑎𝑏𝑐 = 𝑃𝑇𝐿𝑎𝑏𝑐,𝑑𝑐 + 𝑃𝑇𝐿𝑎𝑏𝑐,𝑎𝑐             (12) 

 

𝑄𝑇𝐿𝑎𝑏𝑐 = 𝑄𝑇𝐿𝑎𝑏𝑐,𝑑𝑐 + 𝑄𝑇𝐿𝑎𝑏𝑐,𝑎𝑐             (13) 

 

The total power load value was equal to the power 

supplied by the grid via a transformer. To avoid 

having issues with current transformer and voltage 

value did not have harmonic; transformer only 

supplied fundamental power load for each phase, 

including active power (PTLa1, PTLb1, PTLc1) and 

reactive power (QTLa1, QTLb1, QTLc1). Therefore, 

instantaneous fundamental active power load had 

equal value with DC component power, as 

demonstrated by Eqs. (14-16), which was achievable 

with a low pass filter 

 

𝑃𝑇𝐿𝑎1 = 𝑃𝑇𝐿𝑎,𝑑𝑐             (14) 

 

𝑃𝑇𝐿𝑏1 = 𝑃𝑇𝐿𝑏,𝑑𝑐             (15) 

 

𝑃𝑇𝐿𝑐1 = 𝑃𝑇𝐿𝑐,𝑑𝑐             (16) 

 

Active load demand and instantaneous 

fundamental reactive power load for every phase 

could not be equal or balanced because each stage 

pulled the current load independently. A balanced 

three-phase active load of the transformer was 

produced from an unbalanced load, which could be 

done by distributing the load equally to all 

transformer phases and FLI. Therefore, the 

transformer’s total load was perceived as a balanced 

load; thus, each phase’s grid power (P*g/ph) would 

have an exact value.  Eqs. (17) and (18) revealed an 

instantaneous fundamental active power load 

calculation process for all three phases. The equation 

calculated the average value of power load and re-

distributed it to each transformer phase, so an equal 

value was achieved. This condition is shown in Fig. 

6. 

 

𝑃𝑇𝐿,𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑇𝐿𝑎,1 + 𝑃𝑇𝐿𝑏,1 + 𝑃𝑇𝐿𝑐,1          (17) 

 

𝑃𝑔/𝑝ℎ
∗ =

𝑃𝑇𝐿,𝑡𝑜𝑡𝑎𝑙

3
               (18) 

2.1.2. Calculation of current reference 

Eq. (17) showed the fundamental active power 

demand calculation, which each transformer stage 

must deliver to ensure balance. This equation was 

also used to find the required basic active total load 

equal to the transformer’s total active power for each 

step. Also, by changing Eqs. (17) to (19), the 

transformer’s instantaneous power may be 

determined. Supply voltage (vGabc) has an equal value 

with load voltage (vLabc) because of its parallel 

connection. The transformer’s instantaneous 

fundamental power value was acquired by 

calculating incoming power to load (P*G/ph) with the 

rectifier has consumed power (P*rec/ph) for every 

phase. P*rec/ph was the total of every phase’s active 

power taken from the source and rectified as a DC 

IEL source with constant dc-link output. 
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Figure. 7 Current reference calculation for each phase and neutral line 

 

[
𝑃𝐺𝑎𝑏𝑐

𝑄𝐺𝑎𝑏𝑐
] = [

𝑣𝐺𝑎𝑏𝑐𝛼 𝑣𝐺𝑎𝑏𝑐𝛽

−𝑣𝐺𝑎𝑏𝑐𝛽 𝑣𝐺𝑎𝑏𝑐𝛼
] [

𝑖𝐺𝑎𝑏𝑐𝛼

𝑖𝐺𝑎𝑏𝑐𝛽
]     (19) 

 

The inverse of Eq. (19) can be used to obtain the 

compensation of the balanced three-phase system for 

the current reference (i*Gabc,α, i*Gabc,β) Eq. (20). 

Reactive power (QLa) had zero value because the 

installed transformer was not supplying demand from 

reactive power load. 

 

[
𝑖𝐺𝑎𝑏𝑐𝛼
∗

𝑖𝐺𝑎𝑏𝑐𝛽
∗ ] = [

𝑣𝐺𝑎𝑏𝑐𝛼 𝑣𝐺𝑎𝑏𝑐𝛽

−𝑣𝐺𝑎𝑏𝑐𝛽 𝑣𝐺𝑎𝑏𝑐𝛼
] [

𝑃𝐺/𝑝ℎ
∗ + 𝑃𝑟𝑒𝑐/𝑝ℎ

∗

0
] 

(20) 

 

Fig. 7 shows the calculation of current references 

calculation. The α-axis current reference 

compensation represented instantaneous current 

source (transformer) from the matrix above because 

the α-axis quantity was a real system. In comparison, 

the β-axis was a current reference compensation 

located at π/2 lead of the real. So, each current 

reference could be explained in Eq. (21-23). 

 

𝑖𝐺𝑎
∗ (𝑡) =

𝑉𝑇𝐿𝑎𝛼(𝑡)

𝑣𝑇𝐿𝑎𝛼
2 +𝑣𝑇𝐿𝑎𝛽

2 [𝑃𝐺/𝑝ℎ
∗ + 𝑃𝑟𝑒𝑐/𝑝ℎ

∗ ]      (21) 

 

𝑖𝐺𝑏
∗ (𝑡) =

𝑉𝑇𝐿𝑏𝛼(𝑡)

𝑣𝑇𝐿𝑏𝛼
2 +𝑣𝑇𝐿𝑏𝛽

2 [𝑃𝐺/𝑝ℎ
∗ + 𝑃𝑟𝑒𝑐/𝑝ℎ

∗ ]      (22) 

 

𝑖𝐺𝑐
∗ (𝑡) =

𝑉𝑇𝐿𝑐𝛼(𝑡)

𝑣𝑇𝐿𝑐𝛼
2 +𝑣𝑇𝐿𝑐𝛽

2 [𝑃𝐺/𝑝ℎ
∗ + 𝑃𝑟𝑒𝑐/𝑝ℎ

∗ ]       (23) 

 

The expected current flowed through the neutral 

line (iLn) was the total sum of all current phases 

without calculating the real neutral current. The 

reverse value of iLn was a neutral current reference 

signal (i*Gn), which is explained in Eqs. (24) and (25). 

 

𝑃𝑇𝐿𝑛(𝑡) = 𝑃𝑇𝐿𝑎(𝑡) + 𝑃𝑇𝐿𝑏(𝑡) + 𝑃𝑇𝐿𝑐(𝑡)     (24) 

 

𝑖𝐺𝑛
∗ (𝑡) = −𝑖𝑇𝐿,𝑛(𝑡)             (25) 

 

Block estimation of active power was estimated 

by instantaneously calculating each phase’s active 

power average. The last block, illustrated by Fig. 7, 

was a controller of the reference current signal 

generator. This controller was divided into the current 

reference of every phase and the neutral current. The 

i*sh current was the current reference that must be 

subtracted with the value of an actual current load, 

and the result from this calculation was a reference 

signal for the IEL switch.  

3. Proposed OCNN with the selected input 

Fig. 2 shows the model of the MGRS system 

connected to the distribution network with 

unbalanced loads, while Figs. 6 and 7 represent the 

control strategy using the PQ theory. The proposed 

controller is built on the classic inverter controller. 

This control system is modified using OCNN, as 

shown in Fig. 8.  

OCNN is composed of two layers: a hidden layer  
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Figure. 9 Current reference calculation for each phase and 

neutral line 

 

and an output layer. The first layer contains n 

nonlinear transfer functions buried levels. Each layer 

of the hidden layer is limited to a certain number of 

neurons (m). The training phase spanned multiple 

epochs. At each epoch, the training error value is 

compared to the memory-stored temporary best 

network error (TBNE). Thus, by training with a large 

amount of data, the capacity of an OCNN network 

can adjust to handle problems. Fig. 9 depicts the 

OCNN generalization flow diagram. 

3.1 Input 

The size of the input layer is equal to the sum of 

the measurements and the switches. The size of the 

output layer is equal to the number of bus voltage 

magnitudes or line current magnitudes. The candidate 

input for OCNN is voltage: vdc and vTLabc (vTla, vTlb, 

vTLc), and current iTlabc (iTla, iTlb, iTLc), while the OCNN 

output signal is the reference power P*ph. 

The usage of LMNN involves a significant 

investment of time and resources, particularly during 

the training process. If the number of input variables 

is enormous, this condition will take an increasing 

amount of time. As a result, the selection of OCNN 

input candidates is carried out in this paper using 

Person correlation analysis. Two criteria are taken 

into account while employing the correlation model: 

the nature of the link and the availability of lengthy 

data. Pearson correlation coefficients vary between -

1 and 1. A number near -1 implies a negative 

dependence, whereas a value near -1 shows a positive 

connection. There is no linear dependency when the 

coefficient approaches zero. 

3.2 Architecture 

Fig. 10 illustrates the OCNN architectural model, 

in which the number of hidden layers and neurons 

within them is flexible up to a given value. The 

maximum number of hidden layers in this work is 

three, with each layer containing a maximum of 25 

neurons. Each neuron in the hidden layer has a tansig  
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Figure. 10 Neural networks for PQ theory architecture 
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Table 2. RMS data of input candidate and output OCNN 

No Time (s) vTla (volt) vTLb(volt) vTLc(volt) vdc(volt) iTla (A) iTLb (A) iTLc (A) P*ph (W) 

1 0.2000004 215.1961 204.9618 211.9264 696.2974 20.4521 34.4895 33.8784 10196.9137 

2 0.2000040 215.1961 204.9619 211.9271 696.2946 20.4522 34.4893 33.8795 10196.8412 

3 0.2000079 215.1960 204.9620 211.9277 696.2911 20.4522 34.4890 33.8806 10196.7668 

4 0.2000098 215.1960 204.9621 211.9280 696.2913 20.4522 34.4889 33.8809 10196.7138 

5 0.2000159 215.1958 204.9615 211.9297 696.2886 20.4523 34.4885 33.8827 10196.5756 

6 0.2000198 215.1957 204.9613 211.9307 696.2873 20.4524 34.4882 33.8837 10196.4830 

7 0.2000228 215.1957 204.9612 211.9315 696.2867 20.4524 34.4880 33.8844 10196.4101 

8 0.2000239 215.1956 204.9611 211.9319 696.2862 20.4524 34.4880 33.8848 10196.3869 

9 0.2000278 215.1955 204.9604 211.9332 696.2884 20.4525 34.4877 33.8858 10196.2641 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

105682 0.4999956 214.5376 204.6836 212.6838 697.2063 39.2743 48.2653 44.8199 15297.3254 

105683 0.4999985 214.5375 204.6830 212.6843 697.2132 39.2743 48.2651 44.8199 15297.1986 

105684 0.5000000 214.5375 204.6825 212.6849 697.2231 39.2742 48.2650 44.8198 15297.0710 

 

activation function, whereas the output layer uses a 

logsig activation function. The adaptation of the 

weight (W) and bias (b) in OCNN is initially based 

on the mean square error (MSE) and is then followed 

by the execution of the Levenberg-Marquardt 

backpropagation (LMBP) algorithm. 

According to Section 3.1’s study, several 

variables are important in regulating FLI utilizing PQ 

theory. Sets may be used to express it Z = {z1, z2, . . . , 

zp}. The nonlinear connection between the output 

value Y and the primary factors Z is denoted by Eq. 

(26), where W0 represents the correlation matrix of 

the space containing the primary factors. 

 

𝑌 = 𝑓(𝑊0𝑍)            (26) 

 

By substituting it into the Levenberg-Marquardt 

method, a mathematical model for neural networks is 

constructed. The weight update process and bias will 

be adjusted directly utilizing negative gradient 

descent in this technique. Eq. (27) illustrates this 

algorithm’s usage of the Hessian (H) matrix 

approximation. The algorithm’s gradient calculation 

expresses in Eq. (28), where e(w) denotes a network 

error vector. 

 

H(𝑤) = 𝐽(𝑤)𝑇𝐽(𝑤)          (27) 

 

g(𝑤) = 𝐽(𝑤)𝑇𝑒(𝑤)          (28) 

 

J(w) is a Jacobian matrix containing the first 

derivative of the network error, which is shown in Eq. 

(29). 

 

𝐽(𝑤) =

[
 
 
 
 
 
𝜕𝑒1(𝑤)

𝜕𝑤1

𝜕𝑒1(𝑤)

𝜕𝑤1

⋮
𝜕𝑒𝑙(𝑤)

𝜕𝑤1

𝜕𝑒1(𝑤)

𝜕𝑤2
⋯

𝜕𝑒1(𝑤)

𝜕𝑤𝑛

𝜕𝑒2(𝑤)

𝜕𝑤2

⋮
𝜕𝑒𝑙(𝑤)

𝜕𝑤2

⋯
𝜕𝑒2(𝑤)

𝜕𝑤𝑛

 ⋮

⋯
𝜕𝑒𝑙(𝑤)

𝜕𝑤𝑛 ]
 
 
 
 
 

       (29) 

 

The Levenberg-Marquardt algorithm behaves as 

Newton is expressed by the Eqs. (30) and (31). 

 

w(𝑘 + 1) = 𝑤(𝑘) + ∆𝑤(𝑘)         (30) 

 

Δw = −[J𝑇(𝑤)𝐽(𝑤)]−1J(𝑤)𝑒(𝑤)        (31) 

 

where w(k+1) is a new weight as gradient and current 

weight function w(k) calculated using the Newton 

algorithm. 

4. Results and discussion  

To evaluate the suggested single-phase PQ theory 

based on the OCNN method’s efficacy, the FLI and 

MGRS models (see Fig. 2) were simulated and 

confirmed using Matlab/Simulink. The OCNN’s 

results were compared to those of a different 

configuration of an LMNN. The configurations 25-

25-25, 23-24-25, and 25-24-23 were chosen for the 

LMNN designs. 

4.1 Input analysis 

Table 2 contains the input candidates and output 

data for OCNN. The total load voltage and current  
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Table 3. Pearson correlation result  

variable r 

vTla -0.0082 

vTlb 0.0682 

vTlc 0.1135 

vdc 0.3128 

ia 0.9872 

ib 0.9308 

ic 0.9281 

 

RMS values, the DC link voltage, and the DC link 

voltage are all possible input candidates. The output 

of OCNN serves as the reference active power. The 

Pearson correlation statistical method can determine 

which input candidates have the most significant 

influence and are most closely related to the output 

[30]. If the Pearson correlation coefficient (r) is more 

than 0.5, the pair is highly correlated.  The total data 

used is 105684 data simulations beginning at 0.2 s 

and ending at 0.5 s. 

As shown in Table 3, the Pearson correlation 

coefficient between series RMS current and reference 

active power is statistically significant, exceeding 0.9. 

On the other hand, there was no statistically 

significant association between the RMS voltage, the 

dc-link voltage, and reference active power. As a 

result, the OCNN receives only the current value as 

an input. 

4.2 MSE evaluation in OCNN 

Utilizing the OCNN algorithm discussed 

previously, it is feasible to simulate data with 

predefined input and output/target data. The 

simulation begins with a single neuron and a hidden 

layer and progresses to the maximum feasible 

number of hidden layers. 

According to Table 4, the mse derived from 

simulation results for the first hidden layer is 0.0048, 

the minimum value attained when the layer has 24 

neurons. As a result, when the network adds a second 

hidden layer, it uses the same amount of neurons as 

the first hidden layer. When the second hidden layer 

contains 25 neurons, the minimum mse value for the 

second hidden layer is 0.0011. 

The third hidden layer is formed using the OCNN 

structure of the first hidden layer, which has 24 

neurons, and the OCNN structure of the second 

hidden layer contains 25 neurons. When 22 neurons 

in the third hidden layer were used, the lowest mse 

value obtained was 0.0001. As a result, 24-25-22 is 

the optimal neuronal configuration for this OCNN 

network. 

The MSE values for LMNN configurations 23-

24-25, 25-24-23, and 25-25-25 are 0.00025, 0.00054, 

and 0.00018, respectively.  

After completing the OCNN and LMNN training 

sessions, the network results are applied to the FLI 

system on the RS array connected to the distribution 

network. This is performed to measure the 

controller’s performance, particularly under transient 

conditions. 

4.3 OCNN under the transient operation of an FLI 

The output of the RS was intermittent; as a result, 

the generated power fluctuated in response to the 

presence of solar rays. The total load, or the 

combination of load and RS, was unbalanced and 

fluctuated in this case. Dynamic irradiation was used 

to represent fluctuating RS, as illustrated in Fig. 11. 

With this figure as a reference, the function for each 

irradiation can be described as Eqs. (32–34). 

 
Table 4. MSE value for each neuron and hidden layer 

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 

neuron mse neuron mse neuron mse 

1 0.0286 1 0.0041 1 0.0020 

2 0.0239 2 0.0041 2 0.0018 

3 0.0192 3 0.0037 3 0.0014 

4 0.0152 4 0.0031 4 0.0017 

5 0.0132 5 0.0028 5 0.0017 

6 0.0133 6 0.0029 6 0.0010 

7 0.0118 7 0.0018 7 0.0011 

8 0.0115 8 0.0018 8 0.0011 

9 0.0095 9 0.0021 9 0.0009 

10 0.0099 10 0.0016 10 0.0009 

11 0.0104 11 0.0023 11 0.0007 

12 0.0072 12 0.0018 12 0.0007 

13 0.0077 13 0.0018 13 0.0007 

14 0.0075 14 0.0016 14 0.0005 

15 0.0075 15 0.0015 15 0.0011 

16 0.0068 16 0.0015 16 0.0015 

17 0.0079 17 0.0015 17 0.0004 

18 0.0062 18 0.0022 18 0.0007 

19 0.0065 19 0.0012 19 0.0005 

20 0.0069 20 0.0016 20 0.0009 

21 0.0066 21 0.0015 21 0.0010 

22 0.0049 22 0.0016 22 0.0001 

23 0.0063 23 0.0013 23 0.0007 

24 0.0048 24 0.0016 24 0.0008 

25 0.0049 25 0.0011 25 0.0005 
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Figure. 11 Irradiance under a fluctuating condition 

 

 
Figure. 12 RS current injection 

 

 
Figure. 13 Linear load current 

 

  
Figure. 14 Nonlinear load current 

 

Table 5. Linear load parameter 

Phase Initial Load 

Change 

time 

(s) 
Load 

A 650W, 500VAr 0.5 1050W, 600VAr 

B 900W, 900VAr 0.45 1300W, 1200VAr 

C 700W, 400VAr 0.3 450W, 300VAr 

 

𝐼𝑟𝑟𝐴(𝑥) = {
−200𝑥 + 700, 0.2 ≤ 𝑥 ≤ 0.3
−985𝑥 + 950, 0.3 < 𝑥 ≤ 0.5

   (32) 

 

𝐼𝑟𝑟𝐵(𝑥) = {
−100𝑥 + 370, 0.2 ≤ 𝑥 ≤ 0.3
                   340,   0.3 < 𝑥 ≤ 0.4
2100𝑥 − 500, 0.4 < 𝑥 ≤ 0.5

  (33) 

 

𝐼𝑟𝑟𝐶(𝑥) = {
100,       0.2 ≤ 𝑥 ≤ 0.3

500𝑥 − 50,       0.3 < 𝑥 ≤ 0.5
  (34) 

 

The maximum and minimum irradiation values 

are 670 W/m2 and 305 W/m2 for phase A, 600 W/m2 

and 340 W/m2 for phase B, and 600 W/m2 and 100 

W/m2 for phase C, respectively. Each SR injects RS 

current into the distribution network in response to 

the received irradiation. This is seen in Fig. 12. 

Figs. 13-15 illustrate the current load value for 

each phase, whether for linear load, nonlinear load, 

or total load. In stages A and B of the linear load 

phase, the load was raised. In phase A, the inductive 

load was increased incrementally from 650W, 

500Var to 1050W, 600Var at 0.5s. In phase B, the 

inductive load was increased from 900W, 900VAr at 

0.45s to 1300W, 1200VAr. At t=0.3s, the load was 

reduced to 450W, 300VAr in phase C. Table 5 

summarizes all changes.  

At 0.3 seconds, the R-L load at the rectifier output 

(nonlinear load) was changed from 10 Ω and 5mH to 

6.66 Ω and 2.5mH. 

Figs. 15 and 16 depicted the grid current before 

and after applying FLI when loads and RS current 

injection were varied and unbalanced. Interestingly, 

based on these figures, the suggested controller could 

handle the Point of Common Coupling's (PCC’s) 

current grid. Even when a very unbalanced and 

fluctuated harmonic affected the total load current, 

the current grid value stayed balanced. Thus, FLI 

could provide an unbalanced harmonic current to the 

grid without affecting PCC’s voltage.  

Changes in load or RS injection current cause 

adjustment in the value of the reference signal. 

Because the load pulled current unbalance, the value 
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of In neutral current reference was not zero,  

 

 
Figure. 15 Grid current before applying FLI 

 

 
Figure. 16 Grid current after applying FLI 

 

 
Figure. 17 FLI current 

 

following calculations described in Eqs. (19-23). As 

illustrated in Figure 16, the PWM hysteresis block 

instructs the FLI to inject or withdraw current in 

response to the reference current. The injection 

current is depicted in Fig. 17.  

4.4 PCU and THDi 

The grid current compensation value determined 

by the OCNN controller is calculated by the current 

unbalanced and the THDi. The results are compared 

to those obtained when the LMNN was used 

previously.  

 

 
Figure. 18 PCU before applying FLI 

 

 
Figure. 19 PCU of the OCNN compared to LMNN 

 

The current unbalance degree calculation was 

based on the ANSI/IEEE Std 241-1990 [12]. 

Unbalanced was calculated by comparing the 

maximum deviation value of the average of three-

phase current. This value was stated as percent 

current unbalance (PCU), demonstrated in Eq. (26). 

 

𝑃𝐶𝑈 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑓𝑟𝑜𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
    (26) 

 

Figs. 18 and 19 illustrated the computation 

process of PCU, which occurred during irradiation 

and load changes. Peak PCU’s total load value 

reached 34.68%. After the proposed controlling 

system was implemented, grid PCU became 6.22% or 

decreased by 82.06%.  

When the load and injection current RS vary, not 

only is the PCU unsteady, but the grid current’s THDi 

also varies, as illustrated in Figures 20 to 25. Before 

administering FLI, the average THDi was 20.45% 

(Phase A), 14.02% (Phase B), and 14.48% (Phase C) 

(Phase C). When the OCNN controller was used, this 

average value was reduced to 6.73% (Phase A), 

7.33% (Phase B), and 6.63% (Phase C). 

The PCU calculation and THDi graph for various 

ANN controllers are shown in Figs. 19, 21, 23, and 
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25, including the preferred technique. All control 

strategies employed enhance the quality of existing  

Table 6. PCU and THDi of grid current 

 
PCU (%) THDi Phase A (%) THDi Phase B (%) THDi Phase C (%) 

Peak Trough Mean Peak Trough Mean Peak Trough Mean Peak Trough Mean 

No FLI 34.68 10.89 20.71 32.25 15.24 20.45 19.15 11.97 14.02 21.24 12.95 14.48 

OCNN 6.22 1.73 2.62 10.87 5.28 6.73 13.81 5.75 7.33 10.83 5.58 6.63 

23-24-25 6.65 1.56 2.89 11.15 5.35 7.00 14.18 6.41 7.62 11.18 5.50 6.82 

25-24-23 7.53 7.53 2.98 11.49 11.50 7.14 14.54 14.54 7.72 11.45 11.45 6.85 

25-25-25 6.62 1.95 2.85 11.64 5.39 6.96 12.93 6.12 7.61 11.04 5.27 6.79 

 
Figure. 20 THDi of phase A before applying FLI 

 

 
Figure. 21 THDi of phase B before applying FLI 

 

 
Figure. 22 THDi of phase C before applying FLI 

 

unbalance and current harmonic. The OCNN 

controller obtains the lowest peak values under high 

transient conditions, such as 0.3s–0.4s, namely  

 

 
Figure. 23 THDi of phase A of the OCNN compared to 

LMNN 

 
Figure. 24 THDi of phase B of the OCNN compared to 

LMNN 
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Figure. 25 THDi of phase C of the OCNN compared to 

LMNN 

 

2.62% for PCU and 6.73%, 7.33%, and 6.63% for 

THDi, respectively, at phases A, B, and C. In phases 

A, B, and C, the system improved by 82.06 % for 

PCU and 66.29 %, 27.89 %, and 49.01 % for THDi, 

respectively, as compared to the system without FLI. 

Table 6 compares the PCU and THDi values of 

the OCNN to the LMNN controllers. This table 

shows that the OCNN controller has the lowest values. 

However, even though each hidden layer has a bigger 

number of neurons, the results of LMNN simulations 

with varied configurations show a worse value. 

5. Conclusion 

This study revealed an innovative method to 

overcome current unbalance and harmonic issues, 

using OCNN on a single-phase PQ theory control 

system. FLI was equipped with a boost rectifier so 

they would have an unlimited DC source. This 

research has found that the OCNN control system 

worked well in a condition where loads and RS 

fluctuated. This study demonstrated that percent 

current unbalance (PCU) and current harmonics 

(THDi) in transient conditions have decreased. The 

proposed OCNN controller obtains the lowest peak 

value in the high transient condition.  Compared to 

the system without FLI, the system improved by 

82.06% for PCU and 66.29%, 27.89%, 49.01% for 

THDi, in phases A, B, and C. 

Notations 

DC/AC 

circuitry that changes direct 

current (DC) to alternating 

current (AC)  

abc/αβ 
transformation of abc 

coordinate to αβ coordinate  

abc/dq 
transformation of abc 

coordinate to dq coordinate  

iTLa, iTLb, iTLc current total load of each phase 

vTLa, vTLb, vTLc  
phase to the neutral voltage at 

abc coordinate 

vTLa,α, vTLb,α, vTLc,α 
phase to the neutral voltage at α 

coordinate  

vTLa,β, vTLb,β, vTLc,β 
phase to the neutral voltage at β 

coordinate 

vdc, v*dc  
dc-link voltage and its voltage 

reference 

PTLa, PTLb,  PTLc, 

PTLn  

fundamental active power at 

abc coordinate 

i*Ga, i*Gb, i*Gc, i*Gn  current reference of each phase 

P*phase  
active power reference of each 

phase 

PCU percent current unbalanced 

THDi 
total harmonic distortion of 

current 
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