
Received:  July 2, 2021.     Revised: August 17, 2021.                                                                                                      220 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.21 

 

 
Modularized Filter-Wrapper Feature Selection Scheme for Finding Optimal 

Image Moments in Maps of Radio Galaxies 

 

Seyed Alireza Bashiri Mosavi1*          Mohsen Javaherian2 

Mohammad Sadeghi3          Halime Miraghaei2 

 
1Imam Khomeini International University- Buin Zahra Higher Education Center of Engineering and Technology, 

Iran 
2Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), 

University of Maragheh, 55136-553, Maragheh, Iran 
3Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj, Iran 

* Corresponding author’s Email: a.bashiri@bzeng.ikiu.ac.ir 

 

 
Abstract: The increases in releasing high-dimensional radio galaxy images necessitate addressing automatic 

methods for compacting the curse of dimensionality. Hence, in this paper, the modularized filter-wrapper feature 

selection scheme (MFWFS) is exploited to select the most discriminative features (MDFs) of the galaxy images. 

First, we employed the Fanaroff–Riley (FR) radio galaxy images in the data-gathering phase. Next, we applied the 

MFWFS scheme to 528 moments of radio images for selecting MDFs in dual-phases. The preliminary optimal 

features (POFs) are selected in the filter phase concerning the triple information theory criteria. In the wrapper phase, 

the obtained POFs are fed to the twin support vector machine (TWSVM) classifier to extract MDFs. Finally, the 

quad-final MDFs are introduced to the experimental comparison strategy through the cross-validation technique. Our 

results show that the best-laid MDFs in a subset of 96 features have accuracy close to 80% with a dimension 

reduction rate of 5.5. 
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1. Introduction 

Observing galaxies in radio bands provides 

valuable insights into active galactic nuclei (AGN) 

studies. It significantly helps to understand the 

properties of AGN, their environment, the 

supermassive black holes, as well dark matter halos, 

and energy feedback into the intergalactic medium 

[1]. It also can describe evolving steps of galaxy 

transition from blue star-forming to red quenched 

ones [2]. Since radio waves are not effectively 

scattered by galactic dust, investigating radio 

galaxies helps to understand the underlying process 

of the high redshift universe and gives an 

appropriate explanation about their future behavior. 

One of the significant physical parameters of radio 

galaxies is their shapes consisting of an extended 

range of sizes from compact to mega-parsec scale 

sources [3]. 

Fanaroff and Riley (FR) [4] proposed a seminal 

classification for two populations of extended radio 

galaxies: type I and type II [4]. In the FRI galaxies 

(called edge-darkened), the emission profile 

decreases from the intensity centroid of the galaxy 

to the edge. Gradual diffusing of galaxy brightness 

with approaching the edge reveals the gentle 

downward slope in the tail of the profile. In the FRII 

galaxies (called edge-brightened), the emission 

profile increases by moving away from the intensity 

centroid of the galaxy so that the brightness of the 

galaxy reaches its peak near the edge. With the 

emergence of high-resolution instruments and 

accurate techniques for detecting detailed 

information of galaxies, the new types of 

populations were added to the classification list of 
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galaxies [5]. One of the new type of categories is 

hybrid morphology radio sources (HyMoRS) [6]. 

In the age of data, receiving a vast amount of 

data with different dimensions in each branch of 

science necessitates automatic techniques for feature 

subset selection (FSS). In astronomy, so many 

classification methods were developed to predict the 

class of received data sets (for radio galaxy 

classification, refer to [7] and references therein). 

But, to reduce the curse of dimensionality leading to 

increase both the efficiency of the algorithm and the 

flexibility of the classification method, it seems that 

the FSS algorithm must be developed and used in 

the interface of received data and classification 

approaches (See Section 2). To do so, we propose an 

efficient method based on the TWSVM classifier to 

reduce the length of moments series (the curse of 

dimensionality) and categorize FRI and FRII radio 

images.  The series features are selected in the 

procedure of the modularized filter-wrapper feature 

selection (MFWFS) scheme. Then, the most 

discriminative features (MDFs) with different 

lengths are grouped in the iterative process so that 

the TWSVM finds the optimal range for moments 

with higher accuracy and more reserved memory in 

the shortest possible computational time. 

The outline of this paper is as follows: the 

problem definition is presented in Section 2. The 

employed data sets are described in Section 3. A 

comprehensive review of methods is described in 

Section 4. The obtained results are presented and 

discussed in Section 5. Also, the comparison results 

between our method and the other FSS techniques 

are depicted in Section 6. Concluding remarks are 

interpreted in Section 7. 

2. Defining a problem statement 

The FSS has been developed to use in many 

fields of science for reducing the curse of 

dimensionality. For astronomical targets, extracting 

relevant features against high-dimensional radio 

galaxy data based on FSS approaches has not been 

addressed in articles. Moreover, reviewing the FSS 

literature shows that FSS focused on a whole-

manner strategy on feature space based on filter 

methods for selecting discriminative features. For 

example, in [8], the most relevant features based on 

filter FSS (Relief) have been concerned with 

selecting optimal features. The ReliefF FSS to select 

optimal features has been explained in [9]. The min-

redundancy and max-relevance (mRMR) FSS were 

applied on the set of high-dimensional features [10]. 

In [11], the FCBF as feature pre-screening has been 

employed for finding relevant features. However, in 

the previous studies in the field of FSS [8-11], 

statistical and machine learning-based techniques 

(filter and wrapper method) are applied cohesively 

(on the whole of feature space) caused to loss of 

many useful features. In fact, selecting the most 

relevant features by conducting the partial-manner 

policy based on the coupling filter and wrapper 

approach leads to the survival of the optimal-blurred 

features. For the first time, we proposed an 

automatic supervised method based on modularized 

hybrid FSS for applying to the moments series of 

radio galaxies. This efficient method can be adjusted 

to use as a data reduction procedure step before 

classifying any type of image data. 

3. Description of the radio galaxy sample 

We have used the latest and the largest catalog 

of FR radio galaxies identified based on the cross-

matching the seventh data release (DR7) of the 

Sloan Digital Sky Survey (SDSS) with the National 

Radio Astronomy Observatory (NRAO) Very Large 

Array Sky Survey (NVSS) and the Faint Images of 

the Radio Sky at Twenty centimeters (FIRST) 

survey published in [12]. The catalog is an outcome 

of series of works which first introduced by 

Reference [13]. They present an algorithm to find 

out single- and multi-component radio sources with 

their optical counterparts. The technique has been 

applied to the SDSS DR7 resulted in a catalog of 

18286 galaxies having radio emission by Reference 

[14]. Among them, galaxies with multi-component 

radio structures have been visually inspected to 

construct a catalog of 1329 morphologically 

classified radio galaxies [12]. The morphologies 

include FRI, FRII, and FR hybrid as well a few 

extended sources remain unclassified. The sample of 

FR hybrid is excluded from the analysis due to the 

small sample size. In this study, we used 5′ × 5′ fits 

images of radio galaxies from the FIRST cutout 

server. A higher resolution of the FIRST survey (θ 

∼ 5″) compared to the NVSS (θ ∼ 45″) enables us to 

extract more details of the radio images. The pixel 

size of each image is ∼ 1″.8 with a typical noise 

level of about 0.15 mJy. 

4. Method 

We attempted to employ different techniques in 

multi-levels with a powerful mathematical 

foundation to have robust results for supervised 

classification. Our proposed algorithm involves the 

procedures of converting radio images to the 

Zernike moments, reducing the moments series in 

the wrapper phase, and both selecting the most 

discriminative features and grouping the survived 
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features into two classes by using the twin SVM 

classifier with the kernel RBF. We explained all 

these procedures and their steps in detail as follows. 

4.1 Zernike moments (ZMs) 

ZMs are described in the polar coordinates that 

the basic sets of these moments are complex and 

orthogonal. Orthogonality implies that there is no 

excess information, and the moments do not overlap 

with each other. Thus, each moment is unique 

according to its order [15]. Moreover, the image 

reconstruction is computationally simple because of 

the orthogonality property of the Zernike 

polynomials [16]. This method is one of the most 

common ways of obtaining image moments. If we 

have an ordered pair that represents the polynomial 

order and the phase angle coefficient, we can define 

the Zernike function as follows: 

 

𝑉𝑝𝑞(𝑟, 𝜃) = 𝑅𝑝𝑞 (𝑟) 𝑒𝑥𝑝(𝑖𝑚𝜃)                (1) 

 

𝑅𝑝𝑞(𝑟)

= ∑ (−1)𝑠
(𝑝 − 𝑠)!

𝑠! (
𝑝+|𝑞|

2
− 𝑠)! (

(𝑝−|𝑞|)

2
− 𝑠)!

𝑟𝑝−2𝑠

(𝑝−𝑞)/2

𝑠=0

 

 

Where s is a numerator, p is the positive integer 

order number, and q is the repetition 
integer number. These two parameters have the 

constraints: |𝑞| ≤ 𝑛 , 𝑝 − |𝑞|  is even 
[16]. Since the Zernike function is defined in the 

polar coordinates, it is described 
by two components r and 𝜃. So, we must map pixels 

of the image to a circle with a 
unit radius. Then, the image intensity function 

𝐼(𝑟, 𝜃)  can be expressed as terms of the Zernike 

polynomials as [15]. 

 

𝐼(𝑟, 𝜃) = ∑ ∑ 𝑍𝑝𝑞𝑉𝑝𝑞(𝑟, 𝜃)
𝑝
𝑞=0

𝑝𝑢𝑝
𝑝=0            (2) 

 

Thus, we can obtain the ZMs as follows: 

 

𝑍𝑝𝑞 =
𝑝+1

𝜋
∫∫ 𝑉𝑝𝑞

∗ (𝑟, 𝜃)𝐼(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃
 

𝑢𝑛𝑖𝑡 𝑐𝑖𝑟𝑐𝑙𝑒
    (3) 

 

For a regular pair (p, q), the number of ZMs 

[∑ (𝑝 + 1)
𝑝=𝑝𝑢𝑝
𝑝=0 ] is 528 features. It was shown that 

the best order of the Zernike is 𝑝𝑢𝑝= 31, which has 

the least reconstruction error [16]. The reconstructed 

image is very similar with the original one [7, 16]. 

ZMs give general and detailed properties of a shape 

from an image. The low-order moments are suitable 

for obtaining general shape properties, and the 

higher-order moments provide partial shape 

properties [17]. Selecting higher-order images may 

lead to better reconstructed images but will cause 

noise in the curves obtained from ZMs [18].  

The nature of the exponential Fourier term 

[exp(imθ)] in the complex Zernike polynomials 

makes it rotation invariant when the magnitude of 

moments series |𝑍𝑝𝑞| are computed. It means that 

the |𝑍𝑝𝑞| is invariant for image rotated in different 

angles. Two approaches were proposed to make an 

image scale and translation invariant. In the first 

proposed approach, the image moments are 

normalized to the geometrical moments. It was 

verified that the reconstructed image does not loss 

the quality of original image [16]. In the second 

approach, the image is resized to surround the object 

in a square. Then, the scale invariant process is 

fulfilled by mapping square into a unit circle. For 

making the image translation invariant, the center of 

the circle must be corresponded with the centroid of 

the object [19]. Fig. 1 and Fig. 2 show the 

magnitude values of the ZMs with order 𝑝𝑢𝑝 = 31 

extracted from both three original FRI and FRII 

radio images, respectively. As it is seen in Fig. 1 and 

Fig. 2, the |𝑍𝑝𝑞|  with different characteristics of 

building blocks such as amplitudes and shape 

parameters can make each one unique to segregate 

by the classifier. 

4.2 Filter phase in MFWFS scheme 

Based on information theory, the triple criteria 

of relevancy, interdependency, and redundancy were 

concerned for selecting preliminary optimal features 

(POFs) of ZMs in the MFWFS scheme. The mutual 

information (MI) and entropy are the fundamental 

factors defined in the following form: 

 

𝑀𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)              (4) 

 

Let X be a discrete random variable and 

probability density function 𝑝(𝑥) = Pr {𝑋 = 𝑥}. 
 

𝐻(𝑋) = −∑ 𝑝(𝑥) log 𝑝(𝑥)𝑥∈𝑋             (5) 

 

According to Eqs. (4) and (5), the triple analysis 

indexes of symmetric uncertainty (SU), 

interdependence (I), and redundancy (R) were 

exploited in the filter phase calculations for 

selecting POFs. The SU index evaluates the amount 

of information shared by the two variables: 

 

𝑆𝑈𝑖,𝑐(𝐹𝑖, 𝐶) = 2
𝑀𝐼(𝐹𝑖;𝐶)

𝐻(𝐹𝑖)+𝐻(𝐶)
                  (6) 
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Where 𝐹𝑖 is the ith feature and C is representative 

of the class. Indexes I and R can be formulated in a 

single form called IR: 

 

𝐼𝑅(𝑖, 𝑗) = 2
𝑀𝐼(𝐹𝑖; 𝐶|𝐹𝑗) − 𝑀𝐼(𝐹𝑖; 𝐶)

𝐻(𝐹𝑖) + 𝐻(𝐶)
;  

−1 ≤ 𝐼𝑅(𝑖, 𝑗) ≤ 1                      (7) 

 

Where 𝐹𝑗 is the jth fold. Actually, i and j are 

numerators set in a loop. The detailed description of 

the filter phase in the MFWFS scheme is articulated 

in the following five steps: 

Step1) The value of SU is computed for each feature 

(Eq. (6)). 

Step2) The feature with the highest SU is selected as 

the first POFs (f-POFs) and then removed from the 

features set. 

Step3) The IR value (Eq. (7)) of the rest of the 

features is calculated the first iteration regarding the 

f-POFs called 𝐼𝑅 
1

𝑓−𝑃𝑂𝐹𝑠
𝑟𝑒𝑠𝑡 . The 𝐼𝑅 

1
𝑓−𝑃𝑂𝐹𝑠
𝑟𝑒𝑠𝑡  is 

multiplied to 𝑆𝑈𝑟𝑒𝑠𝑡. Then, we select the maximum 

value of the obtained results as the second POFs (s-

POFs). 

Step4) In the second iteration, the s-POFs are 

removed from the features set. The value of 

𝐼𝑅 
2

𝑠−𝑃𝑂𝐹𝑠
𝑟𝑒𝑠𝑡 is calculated and then multiplied to  

𝑆𝑈𝑟𝑒𝑠𝑡. 
Step5) The filter phase steps (1-4) continue k 

iterations. Among the initial features set, the 

survived POFs in the kth iteration are selected as 

inputs to participate in the wrapper phase procedure 

equipped by the TWSVM-RBF. 

 

 

 
Figure. 1 The original images of three FRI galaxies and their magnitude values of the ZMs, Zpq 

 

 
Figure. 2 The original images of three FRII galaxies and their magnitude values of the ZMs, Zpq 
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4.3 TWSVM: wrapper phase and classification 

method  

Vapnik (1995) proposed a supervised method to 

classify data sets by maximizing the margin between 

different classes [20]. In this basically binary 

classifier, the parallel decision boundaries are 

determined by training samples called support 

vectors. The support vector machine (SVM) 

computes the maximal margin hyperplane between 

two various groups of data using Lagrange 

multiplier optimization. In the updated version of 

the SVM which twin support vector machine 

(TWSVM) [21], the classifier utilizes the concept of 

SVM to find nonparallel decision boundaries 

(instead of parallel hyperplane) for each class of 

data sets. In this approach, a pair of equations for 

each hyperplane is solved to maximize the distance 

between two decision boundaries. We consider the 

general case that the data sets are nonlinearly 

separable. For training set with N numbers, we have 

𝑇 = {𝑥𝑖, 𝑦𝑖|𝑥𝑖 ∈ 𝑅
𝑛, 𝑦𝑖 ∈ {−1,+1}}𝑖=1

𝑁 , wherein 𝑥𝑖 
is input arrays and 𝑦𝑖  is corresponding class labels 

(outputs). Suppose that we have two classes of data 

in n-dimensional real space 𝑅𝑛: class 1 denoted by 

matrix 𝑥1(∈ 𝑅
𝑟×𝑛) includes r samples with label +1, 

and class 2 denoted by 𝑥2(∈ 𝑅
𝑠×𝑛) includes s 

samples with label -1. The TWSVM searches the 

solutions for two nonparallel boundaries that each 

one has the nearest distance to the data points of one 

class while farthest from the other class. The 

equations of two hyperplanes with their normal 

vectors 𝜔1 and 𝜔2 are expressed in the matrix form 

as follows: 

 

𝜔1
⊤Θ(𝑥1, 𝑥2) + b1 = 0,   𝜔2

𝑇Θ(𝑥1, 𝑥2) + b2 = 0  (8) 

 

Where b1 and b2 are the bias terms in R space. 

The function Θ(𝑥1, 𝑥2) maps data samples onto 

space with a higher dimension to make data sets 

separable. The upper index ⊤ denotes the transpose 

of the matrix. To find the optimum solution for the 

sets of  {𝜔1,  𝜔2}  and {b1, b2}  in the nonlinear 

TWSVM, the following formulation is introduced: 

 

𝑚𝑖𝑛𝑣1,𝑏1,𝛼  
1

2
||𝑣1

⊤𝐾(𝑥1
⊤, 𝑢) + e1b1||

2 + c1𝑒2
⊤𝛼   (9) 

𝑠. 𝑡.   − (𝑣1
⊤𝐾(𝑥2

⊤, 𝑢) + e2b1) ≥ 𝑒2
 − 𝛼, 𝛼 ≥ 0 

 

and  

 

𝑚𝑖𝑛𝑣2,𝑏2,𝛽  
1

2
||𝑣2

⊤𝐾(𝑥2
⊤, 𝑢) + e2b2||

2 + c2𝑒1
⊤𝛽   (10) 

𝑠. 𝑡.   − (𝑣2
⊤𝐾(𝑥1

⊤, 𝑢) + e1b2) ≥ 𝑒1
 − 𝛽, 𝛽 ≥ 0 

 

Where 

 𝑢 = [𝑥1, 𝑥2]
⊤,  𝑣1 = [

𝜔1
b1
],  and  𝑣2 = [

𝜔2
b2
].  

 

The sets {c1, c2}  and {α, β}  are regularization 

parameters and slack variables, respectively. The 

all-ones vectors e1  and e2 are the same sizes as data 

numbers in the positive and negative classes, 

respectively. Instead of using the function Θ, the 

nonlinear TWSVM uses the Kernel function, K to 

separate data points in higher-dimensional space. 

We employed the Gaussian radial basis (RBF) 

function kernel K (x, x′) as the following form: 

 

𝐾(𝑥, 𝑥′) = exp (−
‖𝑥−𝑥′‖

2

2𝜎2
)               (11) 

 

Where ‖𝑥 − 𝑥′‖
2

is squared Euclidean distance 

between the two data objects. The parameter σ is the 

standard deviation of data points. Using the standard 

Lagrange multiplier method is the common way to 

solve this kind of optimization problem (The 

detailed explanation about the solution can be found 

in [22]). 

4.4 MFWFS scheme  

Here, the proposed methodology for selecting 

the MDFs of the ZMs was concerned in the form of 

the MFWFS scheme. As it can be seen in Fig. 3, the 

MFWFS consists of the triple parts: (i) dividing 

moments series into segments (i.e., 22 subsets), (ii) 

applying filter phase to each segment via 4-fold 

cross-validation technique for extracting POFs of 

the ZMs, and (iii) using the TWSVM-RBF classifier 

for evaluating the performance of the selected POFs 

for each fold to obtain the final optimal features of 

ZMs. The last step of the algorithm is the wrapper 

phase which gives the arrays of MDFs. Generally, 

this procedure can be expressed in the following 

steps: 

Step1) The radio galaxy data sets (array with 

726×528 elements) were modularized in both 

dimensions into 22 subsets (called 𝐺 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖). 
The size of each 𝐺 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖 is obtained by: 

 

𝐺 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[33×24]
𝑖 = 𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐷)  (12) 

𝐷 = [𝑍𝑀𝑠]𝑠𝑎𝑚𝑝𝑙𝑒𝑠(726)×𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(528), 

 𝑖 = 1, 2, … , 22 

 

Step2) The filter phase was applied to ith 𝐺 −
𝑠𝑒𝑔𝑚𝑒𝑛𝑡[33×24]

 . For precise mining on the ZMs 

feature space, each 𝐺 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[33×24]
𝑖  was folded 
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Figure. 3 MFWFS scheme for selecting MDFs of ZMs 

 

 

based on the cross-validation technique (4-fold 

cross-validation). To determine the maximum 

number of the selected POFs in each segment, we 

define the MaxSelFea set to be 20. In fact, after 

conducting the filter phase, for 4 folds in each 

segment, we have sets of 1 to 20 POFs, namely 

POFs subset {1}, subset {1, 2}, …, subset {1:20}:  

 

[𝑃𝑂𝐹𝑠{1#}, 𝑃𝑂𝐹𝑠{2#},… , 𝑃𝑂𝐹𝑠{20#}]𝑗
𝑖 = 

𝑓𝑖𝑙𝑡𝑒𝑟 𝑝ℎ𝑎𝑠𝑒 ( 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 
𝑓𝑜𝑙𝑑𝑗

[33×24]
𝑖 )       (13) 

𝑖 = 1, 2, … , 22 and 𝑗 = 1,… , 4. 

 

Step3) After constructing array of POFs, the 

TWSVM-RBF is used for evaluating the 

performance of the selected POFs. First, the subsets 

{1#}, {2#}, …, {20#} is fed to the TWSVM-RBF 

for training procedure as follows: 

 

𝑇𝑊𝑆𝑉𝑀 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑗
𝑖 

= {𝑇𝑊𝑆𝑉𝑀𝑅𝐵𝐹[𝑡𝑟𝑎𝑖𝑛 𝑠𝑒𝑡(𝑃𝑂𝐹𝑠{1#})]𝑗
𝑖 , …, 

𝑇𝑊𝑆𝑉𝑀𝑅𝐵𝐹[𝑡𝑟𝑎𝑖𝑛 𝑠𝑒𝑡(𝑃𝑂𝐹𝑠{20#})]𝑗
𝑖 }      (14) 

 

then, the testing procedure can be expressed as: 

 

[𝐴𝑐𝑐(𝑃𝑂𝐹𝑠{1#},… , 𝐴𝑐𝑐(𝑃𝑂𝐹𝑠{20#})]𝑗
𝑖 = 

𝑇𝑊𝑆𝑉𝑀 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒[𝑡𝑒𝑠𝑡 𝑠𝑒𝑡(𝑃𝑂𝐹𝑠{1#})]𝑗
𝑖 , …, 

𝑇𝑊𝑆𝑉𝑀 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒[𝑡𝑒𝑠𝑡 𝑠𝑒𝑡(𝑃𝑂𝐹𝑠{20#})]𝑗
𝑖 } 

(15) 

 

Step4) The MDFs are obtained for each segment: 

 

𝑀𝐷𝐹𝑠 
𝑖 𝐴𝑐𝑐 & 𝑠𝑢𝑏𝑠𝑒𝑡{𝑏#}

= 𝑚𝑎𝑥 
 

𝑏#:[ 𝑀𝑒𝑎𝑛 
𝐴𝑐𝑐

1#
𝑖 || 𝑀𝑒𝑎𝑛 

𝐴𝑐𝑐
2#
𝑖 || …|| 𝑀𝑒𝑎𝑛 

𝐴𝑐𝑐
20#
𝑖 ]

𝐴𝑐𝑐 (𝑃) 

 

𝑃 =

(

 
𝑀𝑒𝑎𝑛 

𝐴𝑐𝑐
1#
𝑖 =

1

4
∑ [𝐴𝑐𝑐(𝑃𝑂𝐹𝑠{1#})]𝑗

𝑖4
𝑗=1

⋮

𝑀𝑒𝑎𝑛 
𝐴𝑐𝑐

20#
𝑖 =

1

4
∑ [𝐴𝑐𝑐(𝑃𝑂𝐹𝑠{20#})]𝑗

𝑖4
𝑗=1 )

  

(16) 

 

Step5) The rank of 𝑀𝐷𝐹𝑠 
𝑖 𝐴𝑐𝑐 & 𝑠𝑢𝑏𝑠𝑒𝑡{𝑏#} is 

computed per segment to select the final MDFs (Fig. 

4). In Table 1, the reader can find the maximum 

accuracy of each segment obtained among subsets 

{{1#}, …, {20#}}. According to Step 5, there are 

two types of ranking scenarios to select the optimum 
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(a) 

 
(b) 

Figure. 4 Mean of accuracies vs. different numbers of selected subset (1:20 features) on G-segments: (a) G-segment1–11 

(upper panel) and (b)G-segment12–22 (lower panel) 

 

 

set of MDFs rooted in the accuracy level (AL) and 

the ratio of the accuracy to the number of features 

(RAN). 

• Ranking method (1): the summation of the four 

highest AL regarding the lower number of features 

and the three highest RAN regarding AL is higher 

than 80% (Table 2). 

• Ranking method (2): the RAN is higher than 5 

(Table 3). 

• Ranking method (3): the AL is higher than 80% 

(Table 4). 

• Ranking method (4): the AL is higher than 75% 

(Table 5). 

Using four ranking methods, the quad-final 

MDFs for the number of 528 moments are obtained 

to be 96, 154, 201, and 274, respectively, to classify 

radio galaxy images in the proposed framework. 

5. Results and discussion 

Receiving a vast amount of radio galaxy images 

from different telescopes motivated us to provide an 

optimal approach to categorize data sets. We used 

the number of 726 cutouts FIRST images with a 

resolution of 5′′. Among the samples of FRI and 

FRII radio galaxies, the number of 330 FRI images 

 



Received:  July 2, 2021.     Revised: August 17, 2021.                                                                                                      227 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.21 

 

Table 1. MDFs−#: The Acc max [Meani {1#}, …, Meani {20#}] of each segmenti for subsets [{1#}, …, {20#}] 
Segments # MDF-#: Max. Acc. (%) – subset {#} Segments # MDFs-#: Max. Acc. (%) - subset {#} 

Segment 1 MDFs-1: 84.72 - subset {16#} Segment 12 MDFs-12: 87.84 - subset {14#} 

Segment 2 MDFs-2: 76.04 - subset {8#} Segment 13 MDFs-13: 88.19 - subset {14#} 

Segment 3 MDFs-3: 81.59 -subset {19#} Segment 14 MDFs-14: 84.72 - subset {20#} 

Segment 4 MDFs-4: 87.84 - subset {20#} Segment 15 MDFs-15: 84.72 - subset {16#} 

Segment 5 MDFs-5: 81.59 - subset {14#} Segment 16 MDFs-16: 78.71 - subset {7#} 

Segment 6 MDFs-6: 73.26 - subset {17#} Segment 17 MDFs-17: 76.04 - subset {11#} 

Segment 7 MDFs-7: 78.81 - subset {16#} Segment 18 MDFs-18: 85.41 - subset {10#} 

Segment 8 MDFs-8: 66.66 - subset {9#} Segment 19 MDFs-19: 75.69 - subset {15#} 

Segment 9 MDFs-9: 72.56 - subset {17#} Segment 20 MDFs-20: 79.16 - subset {16#} 

Segment 10 MDFs-10: 85.06 - subset {10#} Segment 21 MDFs-21: 88.19 - subset {19#} 

Segment 11 MDFs-11: 87.84 - subset {19#} Segment 22 MDFs-22: 84.37 - subset {10#} 

 

 
Table 2. Obtained ZMs based on ranking method (1) 

Segments # ZMs  Total ZMs 

Segment 13 289:302  

 

 

96 

Segment 21 481:499 

Segment 11 241:259 

Segment 12 265:278 

Segment 18 409:418 

Segment 10 217:226 

Segment 22 505:514 

 
Table 3. Obtained ZMs based on ranking method (2) 

Segments # ZMs  Total ZMs 

Segment 16 361:367  

 

 

 

 

 

 

154 

Segment 2 25:32 

Segment 10 217:226 

Segment 18 409:418 

Segment 22 505:514 

Segment 8 169:177 

Segment 12 265:278 

Segment 13 289:302 

Segment 17 385:395 

Segment 1 1:16 

Segment 5 97:110 

Segment 15 337:352 

Segment 19 433:447 

 
Table 4. Obtained ZMs based on ranking method (3) 

Segments # ZMs  Total ZMs 

 Segment 4 73:92  

 

 

 

 

 

201 

Segment 10 217:226 

Segment 11 241:259 

Segment 12 265:278 

Segment 13 289:302 

Segment 18 409:418 

Segment 21 481:499 

Segment 1 1:16 

Segment 14 313:332 

Segment 15 337:352 

Segment 22 505:514 

Segment 3 49:67 

Segment 5 97:110 

 

as positive class and the remaining 396 FRII images 

as a negative class construct our balance data sets. 

We adopted the complex orthogonal Zernike 

polynomials to convert the images into a series with 

528 moments. The magnitude values of the ZMs as 

one-dimensional data carry the property of the 

image as two-dimensional data. We employed the 

feature selection scheme rooted in the information 

theory concepts and machine learning techniques to 

overcome the curse of dimensionality. The MFWFS 

scheme involved the filter and wrapper phases is 

applied to the 528-moment series as a hybrid 

algorithm for optimizing the range of moments. We 

elaborated on the obtained results in the following 

paragraph according to subsections 4.2 to 4.4. 

In the proposed framework, the performance of 

obtained quad-final MDFs in 528 features (i.e., 96, 

154, 201, 274) (See Section 4.4) are evaluated to 

predict the class of radio galaxy image. To do this, 

we conducted a 22-fold cross-validation technique 

based on the TWSVM-RBF classifier in an iteration 

manner. In fact, 22-fold training and testing sets 

were constructed on 726 samples regarding quad-

final MDFs of the ZMs, and then the mean of 

performance for the 22-fold classifier was calculated. 

The C and σ parameters in TWSVM-RBF are 

considered to find the optimal pair in the learning 

procedure. Table 6 shows the evaluated metrics for 

the performance of the proposed framework. During 

the procedure for selecting the quad-final MDFs 

from the 528-moments series, the optimal ranges of 

features are obtained to be 96, 154, 201, and 274 

moments. First, the classification accuracy of ZMs 

was computed by applying the proposed learning 

scenario. According to the fine-tuning procedure 

grouped by fold, the maximum accuracies are given 

in Table 7. Also, PPV, TPR, TNR, and F-measure 

were obtained in each fold concerning obtained 

accuracy. 
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Table 5. Obtained ZMs based on ranking method (4) 

Segments # ZMs  Total ZMs 

Total ZMs 

based on 

method (3) 

 

201 ZMs 

 

 

 

 

274 
Segment 2 25:32 

Segment 7 145:160 

Segment 16 361:367 

Segment 17 385:395 

Segment 19 433:447 

Segment 20 457:472 

 

 
Table 6. The performance metrics 

Metrics                                               Descriptions    

Accuracy 

Sensitivity (Recall) 

Specificity 

Acc=(TP+TN)/(TP+TN+FP+FN)    

TPR=TP/(TP+FN)                             

TNR=TN/(TN+FP)                             

Precision 

F-measure 

PPV= TP/(TP+FP) 

F1=(2×PPV×Recall)/(PPV+Recal

l)                          

Symbols; P: stable sample, N: unstable sample, 

T: predicted correctly, F: predicted incorrectly 

 

 

According to metrics, the obtained performance 

of the 22-fold classifier for the predicting class of 

data is about 82%. The performance of the proposed 

learning framework based on TWSVM-RBF applied 

to the quad-final ZMs with 274, 201, 154, and 96 

features are shown in Tables 8 to 11, respectively. 

The classification accuracies of 274, 201, and 154 

MDFs are close to 83% that is higher than the 

classification accuracy of 528 moments (81.39%). 

Also, for 96 features selected from 528 moments 

(dimension reduction rate: 5.5), the classification 

accuracy is close to 80%. In Table 11, we see that 

the learning procedure on fold 1, fold 6, fold 15, 

fold 16, and fold 22 with 528 ZMs and 96 ZMs, 

indicates the dominant of 96 ZMs over 528 ZMs 

based on the accuracy metric. Also, the 

classification performance for 96 series moments 

has equal prediction capacity to 528 ZMs in fold 5, 

fold 11, fold 12, and fold 17. Generally, the results 

show the higher efficacy of the proposed method for 

the different number of selected MDFs in grouping 

radio galaxy images. 

6. Comparison of experimental methods: 

MFWFS scheme vs. two efficient FSS 

algorithms 

In this section, we aim to compare the performance 

of the MFWFS with two efficient FSS algorithms 

for predicting the type of radio galaxy images (type 

I and type II) is considered in this section. Hence, 

we focused on the ReliefF algorithm [9] and 

minimum redundancy maximum relevance (mRMR) 

[10] which are considered by scholars in the field of 

  

 

 

 

Table 7. The performance of the TWSVM-RBF applied to 528 ZMs per fold in the fine-tuning procedure 

T
W

S
V

M
 C

la
ss

if
ie

r 
 

No. feature set                                              22-fold cross validation 

 Max of Acc. index for each fold based on fine-tuning of TWSVM parameters: 

Accuracy [TPR, TNR, PPV,  F-measure] 

 

 

 

 

 

 

 

 

528  

fold 1 fold 2          fold 3        fold 4   fold 5 

87.87 [86.67, 

88.89, 86.67, 

86.67] 

75.75 [60.00, 

88.89, 81.82, 

69.23] 

90.90 [86.67, 

94.44, 92.86, 

89.66] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

75.75[66.67, 

83.33, 76.92, 

71.43] 

fold 6 fold 7 fold 8 fold 9 fold 10 

81.81 [66.67, 

94.44, 90.91, 

76.92] 

78.78 [73.33, 

83.33, 78.57,  

75.86] 

81.81 [80.00, 

83.33, 80.00,  

80.00] 

75.75 [73.33, 

77.78, 73.33, 

73.33] 

81.81 [60.00, 

100, 100, 

75.00] 

fold 11 fold 12 fold 13 fold 14     fold 15 

72.72 [73.33, 

72.22,68.75, 

70.97] 

81.81 [86.67, 

77.78, 76.47, 

81.25] 

78.78 [93.33, 

66.67, 70.00, 

80.00] 

81.81 [73.33, 

88.89, 84.62, 

78.57] 

78.78 [80.00, 

77.78, 75.00, 

77.42] 

fold 16 fold 17 fold 18 fold 19     fold 20 

75.75 [66.67, 

   83.33,76.92, 

71.43] 

81.81 [73.33, 

88.89, 84.62, 

78.57] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

96.96 [100, 

94.44, 93.75, 

96.77] 

fold 21                                                fold 22 

 84.84 [80.00, 88.89, 85.71, 82.76]           84.84 [93.33, 77.78, 77.78, 84.85] 

 Mean of Acc. index of folds: Accuracy mean 

 81.39 
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Table 8. The performance of the TWSVM-RBF applied to 274 ZMs per fold in the fine-tuning procedure 
T

W
S

V
M

 C
la

ss
if

ie
r 

 
No. feature set                                              22-fold cross validation 

 Max of Acc. index for each fold based on fine-tuning of TWSVM parameters: 

Accuracy [TPR, TNR, PPV,  F-measure] 

 

 

 

 

 

 

 

 

528 ∝ 274 

(1.93) 

fold 1 fold 2          fold 3        fold 4   fold 5 

87.87 [93.33, 

77.78, 77.78, 

84.85] 

78.78 [86.67, 

72.22, 72.22, 

78.79] 

90.90 [86.67, 

94.44, 92.86, 

89.66] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

78.78[66.67, 

88.89, 83.33, 

74.07] 

fold 6 fold 7 fold 8 fold 9 fold 10 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

81.81 [80.00, 

83.33, 80.00,  

80.00] 

81.81 [80.00, 

83.33, 80.00,  

80.00] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

fold 11 fold 12 fold 13 fold 14     fold 15 

66.66 [60.00, 

72.22, 64.29, 

62.07] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

84.84 [93.33, 

77.78, 77.78, 

84.85] 

81.81 [73.33, 

88.89, 84.62, 

78.57] 

81.81 [73.33, 

88.89, 84.62, 

78.57] 

fold 16 fold 17 fold 18 fold 19     fold 20 

75.75 [60.00, 

   88.89, 81.82, 

62.93] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

84.84 [80.00, 

88.89, 85.71, 

82.76] 

81.81 [86.67, 

77.78, 76.47, 

81.25] 

96.96 [100, 

94.44, 93.75, 

96.77] 

fold 21                                                fold 22 

 87.87 [80.00, 94.44, 92.31, 85.71]      87.87 [86.67, 88.89, 86.67, 86.67] 

 Mean of Acc. index of folds: Accuracy mean 

 82.77 

 

 
 

Table 9. The performance of the TWSVM-RBF applied to 201 ZMs per fold in the fine-tuning procedure 

T
W

S
V

M
 C

la
ss

if
ie

r 
 

No. feature set                                              22-fold cross validation 

 Max of Acc. index for each fold based on fine-tuning of TWSVM parameters: 

Accuracy [TPR, TNR, PPV,  F-measure] 

 

 

 

 

 

 

 

 

528 ∝ 201 

(2.63) 

fold 1 fold 2          fold 3        fold 4   fold 5 

87.87 [100, 

77.78, 78.95, 

88.24] 

75.75 [80.00, 

72.22, 70.59, 

75.00] 

90.90 [86.67, 

94.44, 92.86, 

89.66] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

81.81[80.00, 

83.33, 80.00, 

80.00] 

fold 6 fold 7 fold 8 fold 9 fold 10 

87.87 [93.33, 

83.33, 82.35, 

87.50] 

84.84 [86.67, 

83.33, 81.25,  

83.87] 

81.81 [86.67, 

77.78, 76.47,  

81.25] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

fold 11 fold 12 fold 13 fold 14     fold 15 

69.69 [66.67, 

72.22, 66.67, 

66.67] 

81.81 [86.67, 

77.78, 76.47, 

81.25] 

84.84 [93.33, 

77.78, 77.78, 

84.85] 

81.81 [73.33, 

88.89, 84.62, 

78.57] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

fold 16 fold 17 fold 18 fold 19     fold 20 

75.75 [60.00, 

   88.89, 81.82, 

69.23] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

84.84 [80.00, 

88.89, 85.71, 

82.76] 

81.81 [80.00, 

83.33, 80.00, 

80.00] 

96.96 [100, 

94.44, 93.75, 

96.77] 

fold 21                                                fold 22 

 87.87 [80.00, 94.44, 92.31, 85.71]      81.81 [73.33, 88.89, 84.62, 78.57] 

 Mean of Acc. index of folds: Accuracy mean 

 82.91 
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Table 10. The performance of the TWSVM-RBF applied to 154 ZMs per fold in the fine-tuning procedure 

T
W

S
V

M
 C

la
ss

if
ie

r 
 

No. feature set                                              22-fold cross validation 

 Max of Acc. index for each fold based on fine-tuning of TWSVM parameters: 

Accuracy [TPR, TNR, PPV,  F-measure] 

 

 

 

 

 

 

 

 

528 ∝ 154 

(3.43) 

fold 1 fold 2          fold 3        fold 4   fold 5 

87.87 [86.67, 

88.89, 86.67, 

86.67] 

75.75 [86.67, 

66.67, 68.42, 

76.47] 

90.90 [86.67, 

94.44, 92.86, 

89.66] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

75.75 [60.00, 

88.89, 81.82, 

69.23] 

fold 6 fold 7 fold 8 fold 9 fold 10 

84.84 [93.33, 

77.78, 77.78, 

84.85] 

84.84 [86.67, 

83.33, 81.25,  

83.87] 

75.75 [86.67, 

66.67, 68.42,  

76.47] 

78.78 [73.33, 

83.33, 78.57, 

75.86] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

fold 11 fold 12 fold 13 fold 14      fold 15 

72.22 [73.33, 

72.22, 68.75, 

70.97] 

81.81 [86.67, 

77.78, 76.47, 

81.25] 

84.84 [93.33, 

77.78, 77.78, 

84.85] 

84.84 [73.33, 

94.44, 91.67, 

81.48] 

81.81 [80.00, 

83.33, 80.00, 

80.00] 

fold 16 fold 17 fold 18 fold 19     fold 20 

72.72 [60.00, 

   83.33, 75.00, 

66.67] 

81.81 [80.00, 

83.33, 80.00, 

80.00] 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

81.81 [80.00, 

83.33, 80.00, 

80.00] 

96.96 [100, 

94.44, 93.75, 

96.77] 

fold 21                                                fold 22 

 81.81 [80.00, 83.33, 80.00, 80.00]      87.87 [86.67, 88.89, 86.67, 86.67] 

 Mean of Acc. index of folds: Accuracy mean 

 82.36 

 

 

 

Table 11. The performance of the TWSVM-RBF applied to 96 ZMs per fold in the fine-tuning procedure 

T
W

S
V

M
 C

la
ss

if
ie

r 
 

No. feature set                                              22-fold cross validation 

 Max of Acc. index for each fold based on fine-tuning of TWSVM parameters: 

Accuracy [TPR, TNR, PPV,  F-measure] 

 

 

 

 

 

 

 

 

528 ∝ 96 

(5.5) 

fold 1 fold 2          fold 3        fold 4   fold 5 

93.93 [86.67, 

100, 100, 

92.86] 

66.66 [80.00, 

55.56, 60.00, 

68.57] 

87.87 [80.00, 

94.44, 92.31, 

85.71] 

75.75 [80.00, 

72.22, 70.59, 

75.00] 

75.75 [66.67, 

83.33, 76.92, 

71.43] 

fold 6 fold 7 fold 8 fold 9 fold 10 

84.84 [86.67, 

83.33, 81.25, 

83.87] 

72.72 [66.67, 

77.78, 71.43,  

68.97] 

75.75 [60.00, 

88.89, 81.82,  

69.23] 

72.72 [60.00, 

83.33, 75.00, 

66.67] 

78.78 [93.33, 

66.67, 70.00, 

80.00] 

fold 11 fold 12 fold 13 fold 14     fold 15 

72.72 [73.33, 

72.22, 68.75, 

70.97] 

81.81 [93.33, 

72.22, 73.68, 

82.35] 

75.75 [73.33, 

77.78, 73.33, 

73.33] 

75.75 [73.33, 

77.78, 73.33, 

73.33] 

84.84 [66.67, 

100, 100, 

80.00] 

fold 16 fold 17 fold 18 fold 19     fold 20 

78.78 [73.33, 

   83.33, 78.57, 

75.86] 

81.81 [80.00, 

83.33, 80.00, 

80.00] 

72.72 [80.00, 

66.67, 66.67, 

72.73] 

75.75 [86.67, 

66.67, 68.42, 

76.47] 

84.84 [80.00, 

88.89, 85.71, 

82.76] 

fold 21                                                fold 22 

 81.81 [80.00, 83.33, 80.00, 80.00]      87.87 [86.67, 88.89, 86.67, 86.67] 

 Mean of Acc. index of folds: Accuracy mean 

 79.05 
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Table 12. Comparing MFWFS scheme performance with mRMR and ReliefF algorithms 

 

Methods 

 

                                         

     Prediction accuracy based on best-laid MDFs (quad-final feature set: No. 96, 

154, 201, and 274) obtained by FSS schemes  

 

 

 

best-laid (# 96) best-laid (# 154) best-laid (# 201) best-laid (# 274) 

 

MFWFS 

Mean Acc. of 22-fold (rank) 

   79.05 % (2)               82.36 % (1)                  82.91 % (1)               82.77 % (1) 

 

mRMR   

Mean Acc. of 22-fold (rank) 

   80.98 % (1)               81.25 % (3)                  81.81 % (2)               82.22 % (2) 

 

ReliefF 

Mean Acc. of 22-fold (rank) 

   78.09 % (3)               81.39 % (2)                  79.88 % (3)               79.05 % (3) 

 
 
FSS. In the first step, two efficient FSS (2eFSS) was 

applied to the ZMs for selecting the quad-final 

MDFs including the best-laid feature sets (96, 154, 

201, and 274 optimal moment packages). Next, the 

obtained MDFs by the 2eFSS were fed to the 

TWSVM-RBF classifier for performance evaluation 

on categorizing FRI and FRII radio images.  As can 

be seen in Table 12, the MFWFS outperformed the 

mRMR and ReliefF approaches based on the 

accuracy metric regarding the 22-fold cross-

validation technique (ignoring only 1.93% less Acc. 

than the mRMR in 96-MDFs). In fact, selecting 

optimal features in the form of the quad-final MDFs 

by the MFWFS leads to higher performance than the 

quad-final features survived by the 2eFSS in the 

classification process of radio galaxies. A closer 

look at the results in Table 12 shows that the 

categorizing FRI and FRII radio images based on 

the best-laid MDFs (# 96) obtained by the MFWFS 

has a similar performance with the best-laid MDFs 

(# 274) selected by the ReliefF. Furthermore, 

classification results based on the best-laid MDFs (# 

154) obtained by the MFWFS show a higher 

performance than the best-laid MDFs (# 201) and 

the best-laid MDFs (# 274) survived by the mRMR 

and ReliefF in classification. Also, employing the 

best-laid MDFs (# 201) selected by the MFWFS 

leads to the highest accuracy than the other obtained 

MDFs packages by the MFWFS, mRMR, and 

ReliefF. 

7. Summary and conclusions 

Here, we proposed an automatic method for 

classifying radio galaxy data using the supervised 

framework. We applied the polynomial Zernike 

function to both FRI and FRII images. Each image 

is converted to a series with 528 moments involving 

unique invariant characteristics. Regardless of 

making an effort for generating well-structured 

datasets for radio galaxy datasets, the ZMs of 

images can provide the most significant concern for 

knowledge discovery from radio galaxies. The great 

challenge was to deal with long series leading to the 

curse of dimensionality. To address this concern, we 

proposed the MFWFS scheme for selecting the 

MDFs. Based on the MFWFS strategy, we 

conducted data modularization on two dimensions 

(sample and features) into the given subset for 

precise mining on the ZMs space in the dual-phase. 

In the filter phase, the criteria of relevancy, 

interdependency, and redundancy were considered 

in the selected POFs. The MDFs are chosen from 

the inserted POFs into the wrapper phase using the 

TWSVM classifier. The experimental comparison 

was presented for performance evaluation of the 

proposed strategy according to the cross-validation 

technique. Based on obtained results, the different 

number of selected MDFs show that the subsets with 

274, 201, and 154 features are subsets with optimal 

ranges. These subsets have classification accuracies 

close to 83% greater than the accuracy obtained for 

the 528-moment series with 81.39%. The value of 

accuracy approaches 80% in a subset of 96 features 

with a dimension reduction rate of 5.5. This 

multilevel method is optimized to reduce the 

computational time of running a program with more 

reserved memory. To ensure the efficacy of the 

MFWFS scheme, experimental comparison in the 

presence of 2eFSS was considered as the final report 

in this paper. The results showed that the MFWFS 

outperformed mRMR and ReliefF algorithms based 

on accuracy metric regarding cross-validation 

technique. The optimum fully automated process of 

this method and its compatibility with image 

datasets make it applicable and more convenient in 

all fields that deal with each type of visual data.  

For future work, we intend to modify the 

proposed the proposed method for datasets classified 

into more than two categories. Also, we aim to make 

mock data simulating radio galaxy images and 

extract their Zernike moments. Comparing the ZMs 

of both simulated data and the original one would 
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give a better description of the morphology of 

galaxies. Moreover, this method can be applied to 

astronomical images such as solar data recorded in 

various wavelengths to discriminate features that 

appeared in different layers of the Sun. 
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