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Abstract: Digital differentiation is an important phenomenon in digital signal processing to finding out sudden 

changes in signal. In this paper design of digital differentiator based on Fourier series expansion with quadratic fall 

in response has been presented. Error minimization criterion is applied to obtain minimum error in band of interest 

and to optimize the designed digital differentiator. Differentiator produces noise after differentiation and 

differentiated signal become noisy therefore guided filtering has been detailed to further smoothen the differentiated 

signal. Criterion for sampling frequency has been evaluated for particular cut-off frequency so that efficient selection 

of sampling frequency for Electrocardiogram (ECG) signal may possible. The results are demonstrated by applying 

designed differentiator on ECG signal and it has been found that the response of smoothened digital differentiator is 

equivalent to ideal differentiator. In this work sensitivity and error rate are 99.97 percent, and 0.069 percent, 

respectively. 
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1. Introduction 

Digital signal processing (DSP) is an important 

mechanism which is used in various engineering 

problems. In many of these problems, time 

derivative of given signal is required [1, 2]. This 

requirement leads to the development of digital 

differentiators. Digital differentiators (DD) have 

been widely used in signal processing, image 

processing, biomedical engineering, radar 

engineering, control systems, and other domains in 

recent years [3, 4]. This means differentiator is 

applicable in low frequency biomedical to high 

frequency radar and sonar application. Because of 

its wide varieties of applications, the design and 

implementation of digital differentiators has become 

a hot topic of research. [5-8]. Digital differentiators 

are used to compute the time-derivative of a real-

time and/or stored signal, which needs high 

accuracy and a stable structural realization. 

An ideal digital differentiator's frequency 

response is given by 

 

𝐻𝑑(𝑒𝑗𝜔) = 𝑗𝜔  𝜋 ≤ 𝜔 ≤ 𝜋                                (1) 

 

where 𝑗 = √−1 and ω ∈ [0, π] is the normalized 

frequency and Hd is digital differentiator transfer 

function. An ideal differentiator has a constant phase 

response of π/2, over the whole Nyquist frequency 

range. It is not possible to design an efficient DD in 

the entire band. Therefore, both low pass as well as 

wide band differentiators are designed. For the 

designing and implementation of digital 

differentiator various methods have been 

extensively examined in the literature. The design of 

a digital differentiator can be considered as four-step 

process. To begin, the digital differentiator's optimal 

frequency response is established. Secondly, choose 

between Finite Impulse Response (FIR) and Infinite 

Impulse Response (IIR) systems. Finally, the 

optimization method that will be utilised to compute 

the optimal system coefficients needs to be  
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Figure. 1 Magnitude response of digital differentiator 

 

considered. For the better understanding of digital 

filters, let us consider xc(t) a continuous time signal 

with its discrete version as xd(nT) where sampling 

period is T, n is number of samples, and associated 

sampling frequency as fs. If fs satisfies Nyquist 

criterion, than continuous time signal (xc(t)) can be 

constructed using samples values xd(nT) by using 

interpolation formula 

 

𝑥𝑐(𝑡) = ∑ 𝑥𝑑(𝑛𝑇)𝑛=∞
𝑛=−∞

𝑠𝑖𝑛[
𝜋

𝑇
](𝑡−𝑛𝑇)

[
𝜋

𝑇
](𝑡−𝑛𝑇)

             (2) 

 

Therefore the derivative of )(txc  is not straight, and 

its derivative is corrupted with noise. Differentiator 

amplifies the high frequency noise this is the major 

problem related to differentiator design this problem 

increases with the increase of filter bandwidth 

and/or derivative order. Sampling frequency should 

be sufficiently high so that aliasing may not occur at 

the edges of the spectrum of sampled signal. Due to 

aliasing noise will be amplify after differentiation. 

Therefore, it is not possible to design efficient full 

band digital differentiator. Moreover, noise 

generated due to the quantization and external 

sources further degrades signal and its 

differentiation, so after differentiation smoothening 

of the signal is also required. The ideal frequency 

response as in Eq. (1), is not realizable using finite 

order filter. Moreover, at higher frequencies (ω≈π) 

differentiation is only possible, when signal is noise 

and aliasing error free. On the other hand with IIR 

filter constant phase is not possible.  

Many scholars have proposed several low pass 

and wideband recursive differentiators by efficiently 

approximating the ideal differentiator response in 

the whole Nyquist frequency range. The first order 

differentiation using central difference can be 

written as 

 

𝑥 ′[𝑛] =
𝑥[𝑛+1]−𝑥[𝑛−1]

2
                        (3) 

Taking the z transfrom we get, 

 

𝐻[𝑧] =
𝑧−𝑧−1

2
                        (4) 

 

Replacing 𝑧 = 𝑒𝑗𝜔𝑛 tp obatin frequency domain 

transfer function as 

 

𝐻[𝑒𝑗𝜔𝑛] =
𝑒𝑗𝜔𝑛−𝑒−𝑗𝜔𝑛

2
= 𝑗𝑠𝑖𝑛𝜔𝑛              (5) 

 

The generalized expression for different values of n 

can be written as 

 

𝐻[𝜔] = 𝑗 ∑ 𝐶𝑛
𝑁
𝑛=1 𝑠𝑖𝑛𝜔𝑛

                                  

(6)  

 

In digital differentiation design, our objective is to 

minimize the difference between the transfer 

functions in Eqs. (4) and (1), by properly choosing 

order of the filter ‘n’ and coefficients Cn. It is also 

notable that the  value of ‘n’ should be kept as small 

as possible. In the recent past, fractional order 

calculus (FOC) where fractional value of ‘n’ is used 

and coefficients are evaluated. The fractional order 

affects the coefficients of a non-causal finite 

impulse response (FIR) filter [9]. The fractional-

order differentiator (FOD) is considered in many 

applications like image processing [10, 11], control 

systems [12], signal processing [13, 14], and ECG 

signal processing applications based on the principle 

of fractional-order differentiation [15, 16]. The main 

advantage of fraction order differentiation is its vast 

applicability on various problems as it can evaluate 

non-inter order derivatives. The main disadvantage 

is its incorrect differentiation for various functions. 

To overcome this limitation soft computing 

techniques are investigated for optimization of 

differentiator parameters. These soft computing 

algorithms are capable of delivering optimal 

coefficients in less time by minimising any multi-

modal error objective functions. The soft computing 

technique used are Simulated annealing (SA) [17], 

Genetic algorithm (GA) [18], Interior search 

algorithm [19] and particle swarm optimization [20] 

etc. However, it is also important to note that soft 

computing techniques are computationally complex 

and more costly.  

The performance of the differentiator should 

also be observed on the chosen signal, to observe 

how differentiator performance on various points.  

In [21-23], ECG, R-peak detection using fractional 

order differentiation is presented. The other notable 

methods are also discussed in [24-26] for ECG peak 

and QRS complex detections. 

In this paper, a low pass differentiator design is 
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proposed. The cut-off frequency of the differentiator 

is selected in such a way that error can be kept 

within acceptable range and filter fall is sharp at 

corner frequencies. In many medical applications 

noise of differentiation is not acceptable; therefore 

various classes of filter design and optimization 

process are proposed. For the smoothening of the 

ECG signal guided filtering is considered. The main 

advantages of the proposed mechanism are 

1. Differentiation is noise free. 

2. It is a finite order filter, thus can be easily 

realizable. 

3. Filter can easily be designd for various 

applications by properly choosing signal sampling 

frequency (fs). 

The rest of the paper, is organised as follows, in 

section 2, basics of digital differentiation is 

discussed. Proposed differentiator design is 

presented in section 3 of the paper. The results are 

proposed in section 4, and finally, in section 5 major 

conclusions of the paper are discussed. 

2. Basic of digital differentiation 

The frequency response of ideal digital 

differentiator is given by 

 

𝐻𝑑(𝑒𝑗𝜔) = 𝑗𝜔             0 ≤ 𝜔 ≤ 𝜋

 𝐻𝑑(𝑒𝑗𝜔) = −𝑗𝜔            𝜋−≤ 𝜔 ≤ 0       (7) 

 

Hence, the ideal impulse response can be obtained 

by taking inverse DTFT and is given by 

 

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑𝑒𝑗𝜔𝑛𝜋

−𝜋
𝑑𝜔  (8) 

 

Inserting Eq. (7) in Eq. (8) and after integration we 

get, 

 

ℎ𝑑(𝑛) =
𝑐𝑜𝑠𝜋𝑛

𝑛
    (9) 

 

ℎ𝑑(𝑛)  has two sided impulse response of infinite 

length, which is practically unrealizable. It should 

be noted that ℎ𝑑(𝑛) = −ℎ𝑑(−𝑛)  .Thus 

differentiator has asymmetric impulse response 

about point n=0, to make it realizable we shift 

impulse response towards right by an amount 𝛾 =
(𝑁−1)

2
.The impulse response of the differentiator 

about n=α is 

 

ℎ𝑑(𝑛) =
𝑐𝑜𝑠𝜋(𝑛−𝛾)

(𝑛−𝛾)
− ∞ < 𝑛 < ∞, 𝑛 ≠ 𝛾            (10) 

 

Windowing functions are used, to control the 

response of the filters. In digital filters windowing 

method is used to convert infinite impulse response 

to finite impulse response. In case of windowing the 

impulse response is written as 

 

ℎ(𝑛) = ℎ𝑑(𝑛)𝑤(𝑛)      0 < 𝑛 < 𝑁 − 1            (11) 

 

Inserting Eq. (10) in Eq. (11) we get, 

 

ℎ(𝑛) =
𝑐𝑜𝑠𝜋(𝑛−𝛾)

(𝑛−𝛾)
× 𝑤(𝑛) 0 < 𝑛 < 𝑁 − 1, 𝑛 ≠ 𝛾  

(12) 

              

As h(n) is asymmetric about n=γ , thus n has to be 

an odd integer only. The magnitude response for 

odd N follows h(n)=-h(N-1-n). This is type III linear 

phase FIR differentiator. This filter is not a full band 

filter as at π response is zero. 

3. Proposed Method 

In this section the proposed differentiator design 

is presented, which can be efficiently used in finite 

band with cut-off frequency Ωc. Considering Fig. 1, 

the ideal differentiator can be approximated as 

triangular function 

 

𝐻𝑑(𝑒𝑗𝜔) = 𝑗𝜔  −Ω ≤ 𝜔 ≤ Ω                (13) 

                                                                           

where, Ω is angular sampling frequency, and relate 

with sampling interval T as T=2π/Ω. The Fourier 

series expansion can be written as 

 

𝐻𝑑(𝑒𝑗𝜔) = 𝐻𝑑(𝑗𝜔 + 𝑗Ω) = ∑ ℎ𝑛𝑒−𝑗𝑛𝜔𝑇𝑛=∞
𝑛=−∞   (14) 

 

and the impulse response can be obtained as 

 

ℎ𝑑(𝑛) =
1

Ω
∫ 𝐻𝑑

Ω/2

−Ω/2
𝑒𝑗𝜔𝑛𝑇𝑑𝜔           (15) 

 

Inserting Eq. (13), in above and solving the integral 

we get, 

 

ℎ𝑑(𝑛) =
𝑐𝑜𝑠(

𝑛Ω𝑇

2
)

𝑛𝑇
−

2𝑠𝑖𝑛(
𝑛Ω𝑇

2
)

Ω(𝑛𝑇)2     if 𝑛 ≠ 0        (16) 

 

But as discussed, differentiation in the entire band is 

not possible let the cut-off frequency beyond which 

differentiation is not possible is ΩC. The impulse 

response within the cut-off frequencies can be 

obtained as 

 

ℎ𝑑(𝑛) =
𝑐𝑜𝑠(

𝑛Ωc𝑇

2
)

𝑛𝑇
−

2𝑠𝑖𝑛(
𝑛Ωc𝑇

2
)

Ωc(𝑛𝑇)2     if 𝑛 ≠ 0        (17) 

 

Using the shifting property (Eq. (10)) we get 
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ℎ𝑑(𝑛) =
𝑐𝑜𝑠(

(𝑛−𝛾)Ωc𝜋

Ω
)

2(𝑛−𝛾)𝜋/Ω
−

2𝑠𝑖𝑛(
(𝑛−𝛾)Ωc𝜋

Ω
)

Ωc(2(𝑛−𝛾)𝜋/Ω)2if 𝑛 ≠ 𝛾 (18) 

        

In the entire band Ω=ΩC and Ω=2π, the Eq. (14) is 

same as Eq. (6). However to take advantage of sharp 

decay of second term we should consider Ω < 2π, 

which can be realized windowing function  and cut-

off frequency can be chosen using energy 

minimization criterion as explained in the next 

section. 

Optimization of proposed differentiator  

For smaller values of frequencies the filter 

response is very close to ideal response. However as 

frequency increases the difference between ideal and 

actual response increases, and mean square error 

also increases. The mean square error is defined as: 

 

𝐸(𝜔) = ∫ |𝐻𝑑(𝜔) − 𝐻(𝜔)|2𝜋

−𝜋
𝑑𝜔                      (19) 

 

Error is huge in full band, therefore considering 

error within the cut-off frequency, therefore 

 

𝐸(𝜔) = ∫ |𝐻𝑑(𝜔) − 𝐻(𝜔)|2Ω𝑐

−Ω𝑐
𝑑𝜔                    (20) 

                 

Substituting expressions of transfer functions 

 

𝐸(𝜔) = ∫ |𝑗𝜔 − 𝑗 ∑ 𝐶𝑛
𝑁
𝑛=1 𝑠𝑖𝑛𝜔𝑛|

2Ω𝑐

−Ω𝑐
𝑑𝜔         (21) 

           

After solving integrals we get, 

 

𝐸(𝜔) =
2

3
Ω𝑐

3 + Ωc ∑ Cn
2N

n=1 −
1

2
∑ Cn

2 sin2Ωcn

n
N
n=1 +

               4 ∑
Cn

2

n2
N
n=1 [ΩcncosΩcn − sinΩcn]         (22) 

   

Further, from Eq. (6), we have 

 
𝑑𝐻[𝜔]

𝑑𝜔
=

𝑑

𝑑𝜔
𝑗 ∑ 𝐶𝑛

𝑁
𝑛=1 𝑠𝑖𝑛𝜔𝑛 = 𝑗 ∑ 𝑛𝐶𝑛

𝑁
𝑛=1 𝑐𝑜𝑠𝜔𝑛

  (23)

                    

 

 

And from Eq. (1) we have, 

 
𝑑𝐻𝑑(𝑗𝜔)

𝑑𝜔
= 𝑗                          (24) 

 

Equating both the Eqs. (23) and (24), we have 

 

|
𝑑𝐻𝑑(𝑗𝜔)

𝑑𝜔
|
𝜔=0

= |
𝑑𝐻(𝑗𝜔)

𝑑𝜔
|

𝜔=0
= ∑ 𝑛𝐶𝑛

𝑁
𝑛=1 = 1   (25) 

 

Now choosing, Ω𝑐 = 𝛼𝜋    0 < 𝛼 < 1 

 

𝐸(𝜔) =
 2

3
(𝛼𝜋)3 + 𝛼𝜋 ∑ Cn

2N
n=1 −

1

2
∑ Cn

2 sin2𝛼𝜋n

n
N
n=1 +

               4 ∑
Cn

2

n2
N
n=1 [𝛼𝜋ncos𝛼𝜋n − sin𝛼𝜋n]         (26) 

 

Referring Eq. (25) and n=1 we get 𝐶1 = 1. The Eq. 

(26), simplifies to 

 

𝐸(𝜔) =
 2

3
(𝛼𝜋)3 + 𝛼𝜋 −

1

2
sin2𝛼𝜋 + [𝛼𝜋cos𝛼𝜋 −

sin𝛼𝜋]                                             (27) 

 

But it should be noted that, with rise in α error 

increases. Therefore, error is kept to a desired value 

and then α is finalized. In Fig. 2, absolute error vs. α 

is plotted for various values of α, the absolute error 

for α equals 0.16 and error is 0.0102. It is should be 

noted that this is the error this covers whole 

frequency range where absolute error is minimum. 

However, as we are interested in low frequency 

regime, therefore we can select α such that in low 

frequency regime error is lesser at the expense of 

higher error in higher frequency regime. 

Considering Eq. (6), multiplied by 2 and with 

constraints Eq. (24) and (25), we obtain following 

sets of equations. 

 

𝑗 ∑ 𝐶𝑛
2
𝑛=1 sin(0) = 0

    

or    

 

    0=0

      2𝑗 cos(0) ∑ 𝑛𝐶𝑛
2
𝑛=1 = 𝑗

   

or 2𝐶1 + 4𝐶2 = 1
  2𝑗 ∑ 𝐶𝑛

2
𝑛=1 sin(𝑛𝜋) = 0

    

or    

 

    0=0

      2𝑗 ∑ 𝑛𝐶𝑛
2
𝑛=1 𝑐𝑜𝑠𝑛𝜋 = 𝑗

   

or −2𝐶1 + 4𝐶2 = 1
              (28) 

 
Solving we get, c1=1/2 and c2=1/4. Similarly for 

higher values of N coefficients can be evaluated. In 

Fig. 3, transfer functions for ideal and approximated  

 

 
Figure. 2 Absolute error vs. α 
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Figure. 3 Differentiator characteristic for n=1,2 and ideal 

 

differentiators are shown. In the low frequency 

regime ω≈0.16, for n=1, 2 and ideal approximated 

differentiators are very much similar to ideal one. 

For proper differentiation it is required that it should 

be symmetric about peak value (in above about 

ω≈0.16), otherwise differentiators will be noisy. It is 

clear from the above figure that as ‘n’ increases cut-

off frequency decreases and approximated 

differentiators gets closer to ideal differentiator. 

In this paper digital differentiation is designed 

for ECG signal differentiation. Let us assume that 

ECG signal is a low pas signal with cut-off 

frequency fc, then to avoid aliasing sampling 

frequency (fs) must be twice of fc. The digital 

differentiator frequency would be 

 

𝜔𝑐 = 2𝜋
𝑓𝑐

𝑓𝑠
                  (29) 

 

If Ω𝑐 = 𝛼𝜋    then we can write 

 

𝛼𝜋 = 2𝜋
𝑓𝑐

𝑓𝑠
      or  𝑓𝑠 = 2

𝑓𝑐

𝛼
                 (30) 

 

Therefore, for ECG signal sampling frequency can 

be selected efficiently. due to the respiration and 

muscles contraption/expansion, minor variations are 

observed in recorded ECG and when ECG signal is 

differentiated these minor variations appear as noise. 

To remove such noise smoothed filters can be used. 

There are various mechanisms which can smoothen 

the ECG noise. In this work we have considered the 

guided filter. 

Guided image smoothening 

For an image ( 𝐼𝑛 ) the output (𝐼𝑛
′ ) of guided 

filtering is a linear transformation of guided image 

‘Gn' which is written as [27].  

 

𝐼𝑛
′ = 𝑎𝑖𝐺𝑛 + 𝑏𝑖    ∀𝑛 ∈ 𝑤𝑖                        (31) 

ai and bi are the co-efficient in window wi. The 

guided image filtering problem can be expressed as 

the reduction of the difference between the input and 

output data, where ε is the smoothness parameter 

that determines the degree of smoothness. The 

minimization problem is formulated as 

 

𝐸(𝑎𝑖, 𝑏𝑖) = ∑ [(𝑎𝑖𝐺𝑛 + 𝑏𝑖 − In)2 + 𝜀𝑎𝑖
2]𝑛∈𝑤𝑖

     (32) 

 

After carrying out multiple calculations, the co-

efficient are evaluated as  

 

𝑎𝑖 =

1

|𝑤|
∑ 𝐺𝑛𝐼𝑛−𝐺𝑖

𝑚𝐼𝑖
𝑚

𝑛∈𝑤𝑖

𝜎𝑖
2+𝜀

   and 𝑏𝑖 = 𝐼𝑖
𝑚 − 𝑎𝑖𝐺𝑖

𝑚  (33) 

 

where, mean values of the related parameter are 

represented by the bar. w  denotes the total number 

of pixels in window wi.  

 

𝐼𝑛
′ = (

1

|𝑤|
∑ 𝑎𝑖𝑖∈𝑤𝑛

) 𝐺𝑛 + (
1

|𝑤|
∑ 𝑏𝑖𝑖∈𝑤𝑛

)             (34) 

 

The guided filtering weight function (𝑊𝑛𝑚
𝐺𝐹(𝐺)) can 

also be expressed as [27] 

 

𝑊𝑛𝑚
𝐺𝐹(𝐺) =

1

|𝑤|2
∑ (1 +

(𝐺𝑛−𝐺𝑖
𝑚)(𝐺𝑚−𝐺𝑖

𝑚)

𝜎𝑖
2+𝜀

)𝑖:(𝑛,𝑚)∈𝑤𝑖
  

               (35) 

 

The noise smoothened ECG is given by 

𝐼𝑛
′ = ∑ 𝑊𝑛𝑚

𝐺𝐹(𝐺)𝐼𝑚𝑚∈𝑤𝑛
                         (36) 

4. Results 

The Table 1. shows comparative results in terms 

of error for ideal and proposed differentiators. 

Alaoui et. al. [29], used GA and SA for the 

coefficient optimization and calculate absolute 

errors of 2.0848 and 1.5966 respectively. Gupta et.al, 

considered PSO with error of 36.687 which is huge. 

Further, Kumar et.al considered ISA and limited to 

error to a very low value of 1.6091. In this work, 

with the proposed method error is reduced to 0.0102, 

which is better among the comparative recent 

methods. 

 
Table 1. Comparison of error with recent methods 

Reference Method Error 

Alaoui et.al.[30] GA 2.0848 

Alaoui et.al. [30] SA 1.5966 

Gupta et al. [31] PSO 36.687 

Kumar et.al [19] ISA 1.6091 

Jain et.al. Proposed 0.0102 
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The differentiation using proposed method is 

evaluated using the MIT-BIH arrhythmia database 

[28], where the ECG record is 30 minutes long and 

sampled at 360 Hz. The sample ECG data is 

downloaded from 

https://physionet.org/physiobank/database/. In the 

experiment a 1000 points ECG is taken with peak 

value of 187 and minimum value of 16 (Fig. 4). The 

sample points are shown on ‘X’ axis, and on ‘Y’ 

axis amplitude in (mV) is shown. The ECG is signal 

is corrupted with additive noise with maximum 

amplitude variation of ±10. The noisy ECG is also 

shown, it is clear that noise is more dominant around 

baseline.  

As we saw previously, differentiation introduces 

noise; therefore in the next step smoothening is 

applied on noisy differentiated ECG signal. The 

noise in ECG is added due to quantization, noise of 

channel, noises due to the muscle movements etc 

[29]. The input and noisy ECGs are same as in Fig. 

4. It is further clear from the Fig. 5 that 

differentiation leads to the accumulation of noise. It 

is also noticeable that smoothening reduces noise 

significantly.  

In Fig. 6, ideal and digital differentiation is 

shown along with differentiated smoothened signal 

(proposed work). It is very much clear from the 

figure that, due to the limitations of digital 

differentiators after differentiation smoothening of 

signal is necessary. Fig. 7, is the zoomed version of 

Fig. 6, and it clearly, shows that digital 

differentiation with smoothening function is 

equivalent to the ideal differentiator. The main 

advantage of guided filtering is that it also smoothen 

the signals at the corner or kink where most of the 

traditional smoothening method fails. 

 

 
 

Figure. 4 ECG input, noise and noise added signal 

 

 
Figure. 5 Noisy ECG differentiation and smoothening 

 

 

Figure. 6 Digital differentiator comparisons 

 

 

Figure. 7 Digital differentiator comparisons 
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Figure. 8 Confusion matrix 

 

Table 2. Comparison of notable methods (Sensitivity and 

Error rate) 

Methods Sensitivity 

S (%) 

Error rate 

 ER (%) 

Ferdi et.al [21] - 0.37 

Benmalek et.al [22] 99.86 0.28 

Kaur et.al [23] 99.93 0.117 

Sabberwal et.al [24] 99.9 0.16 

Sabberwal et.al [25] 99.9 0.135 

Kaur et.al [26] 99.95 0.095 

Proposed algorithm 99.97 0.069 

 

The performance evaluation of the differentiator 

on signal is done based on peak detection.  The 

correct detection of actual peaks is denoted by (TP), 

non-detection of actual peaks is denoted by (TN), 

detection of incorrect peaks is denoted by (FP) and 

non detection of incorrect peaks is denoted by (FN). 

The Sensitivity is defined as  

 

TP
S

TP FN
=

+
 and 

FP FN
ER

TP TN FP FN

+
=

+ + +
 

(37) 

 

In Table 2, sensitivity and error rates are shown for 

recent methods. It can be observed that sensitivity is 

more than 99% for all the compared methods, in 

case of Kaur et.al [26] the sensitivity is 99.95%. 

However, error rate varies significantly. For Ferdi 

et.al and Benmalek et.al works error is 

comparatively larger. In case of fractional order (p) 

filter for lower value of ‘p’ artefacts peaks are 

present, while for higher order of ‘p’ some 

information is lost [26]. In our proposed method 

artefacts peaks are eliminated using guided image 

filtering, which is not possible in average 

smoothening as in [26]. 

Therefore it can be concluded that the proposed 

digital filter design is superior to recently proposed 

digital filter design.  

 

5. Conclusions 

In this paper description about digital filtering 

process is presented. This paper lay down the 

fundamental processes in digital differentiation. A 

method is proposed using the Fourier series 

expansion for digital differentiation, and advantage 

of proposed method is detailed. Simplified method 

based on anti-symmetry of III order differentiation 

which is based on least square error is also detailed 

and important concepts are discussed. Finally 

smoothing of digital differentiation is discussed 

using guided filtering which is found to be a 

necessary operation in case of digital differentiation. 

In this work sensitivity and error rate are 99.97 

percent, and 0.069 percent, respectively. The current 

technique outperformed other commonly used 

approaches in the literature. In future work, we aim 

to increase the cut-off frequency of the differentiator, 

still maintaining lower error. 
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