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Abstract: In recent years, several methods have been established for the automatic detection of the characteristics of 

electrocardiogram (ECG) signals based on mathematical tools, among which the Fourier Transform, the Continuous 

Wavelet Transform (CWT), the Discrete Wavelet Transform (DWT) stand out among others. This type of procedure 

is important because it can be more efficiently detected if a certain patient has heart disease, such as an arrhythmia or 

ischemia. The primary goal of this paper is the development and implementation of a classification approach based on 

hybrid features i. e., Dual-Tree Complex Wavelet Transform (DTCWT), SVD-Entropy, Autoregressive modeling, and 

Multifractal analysis based feature extraction. To accomplish the better classification, the extracted features are further 

classified by Random Forest Classifier, K-Nearest Neighbors (KNN), and Bayesian Optimized-KNN classifiers 

utilizing the MIT-BIH database. Highest accuracy achieved in random forest classifier is 98.29 %.The results obtained 

show the feasibility and practical efficiency of the methodology as a tool to aid in the diagnosis of heart disease in 

hospital environments. 
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1. Introduction 

The purpose of medical signal processing is to 

process raw biological signals and obtain information 

with a diagnostic value from this mark. These signs 

can be interpreted or classified using different 

methods. These classification processes can be used 

as Decision Support System in medicine. 

This study proposes a combination of hybrid traits. 

Coefficients of the autoregressive (AR) model of the 

4th order. The SVD entropy value for the MODPWT 

(maximal overlap discrete wavelet packet transform) 

at level 4 of the reference exponent or singularity 

spectrum. 

In addition, an estimate of the multiscale wavelet 

variant based on DTCWT was extracted for each 

signal along the entire data length. An unbiased 

estimate of the wavelet variant is used. This requires 

that when estimating variance, only levels with at 

least one wavelet coefficient are used, which are not 

affected by the boundary conditions. Important 

properties extracted from the wavelet coefficient are 

the maximum, minimum, mean, standard deviation 

and median of the corresponding wavelet coefficients 

in registers 100, 106, 109, 118 and 209, which 

represent normal ventricular premature signals, 

contraction of the left bundle branch, right bundle 

branch, or premature atrial contraction. 

In addition, these features are trained and tested 

with Random Forest and the KNN Classifier. In 

addition, the random forest hyperparameter and the 

KNN classifier are combined with Bayesian 

optimization to achieve greater accuracy. 

Experimental results are presented for five 

segmented heart rate signals obtained from the MIT-

BIH arrhythmia database. The accuracy, precision, 

recoverability, and F-score of the performance 

evaluation parameters are calculated for the proposed 

system analysis. 

The present work is concluded to the detection of 
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hybrid features (DTCWT, SVD-Entropy, 

Autoregressive modeling, and Multifractal analysis) 

followed by the classification by using random forest, 

k-nearest neighbors, and Bayesian optimized-KNN 

classifiers. 

With the advancement of computational 

processing, several techniques for digital analysis of 

electrocardiogram (ECG) signals have been 

developed. The ECG is a medical examination that 

can identify different types of heart disease, which is 

non-invasive and economical. The time and 

amplitude of the waves of ECG signals are 

parameters of fundamental importance for the 

diagnosis of these diseases. Among the diseases that 

the ECG exam can identify are several cardiac 

arrhythmias, such as tachycardia, bradycardia and 

sinus arrest, myocardial infarction, ventricular blocks, 

ventricular contractions, among others. 

The ECG signal is composed of the repetitive 

succession of 5 waves, each of which represents a 

part of the cardiac cycle. These are the P wave, the Q 

wave, the R wave, the S wave, and the T wave, each 

of which has a predetermined range of amplitude and 

duration, and whose values outside these ranges can 

identify some type of heart disease. 

Direct classification is ineffective in terms of 

performance, so the automatic identification of the 

segmented pulse signal with the extracted 

characteristics plays an important role as input for the 

classification. Wavelet transform is one of the 

methods commonly used to obtain the properties of 

ECG signals [1-9]. Using various statistical methods 

such as principal component analysis (PCA) and 

linear discriminant analysis (LDA) for these 

coefficients, low-dimensional characteristic vectors 

are generated [3, 4, 6] by obtaining the wavelet 

coefficients from different signal levels.Li and Ming 

[7] used the WPA (Wavelet Packet Decomposition) 

method to obtain characteristic properties for 

detecting five different types of beats. They 

calculated the entropy of the coefficients 

decomposed using WPA. Authors of [8] calculated 

the detail and approximate wave factor of the ECG 

signal to create a vector of characteristics. Authors of 

[9] used various feature extraction techniques to 

automatically detect arrhythmias in an ECG sample 

to achieve the best results using DWT properties, RR 

interval, and signal energy. Other methods such as 

high-order statistics (HOS), independent component 

analysis (ICA), PCA and cumulative have also been 

used to extract properties of the ECG signal [5, 6, 10-

14]. Authors of [6] extracted the linear and non-linear 

properties of the signal to automatically determine 

the ECG pulse. Authors of [15] have successfully 

used various entropy properties to diagnose 

computerized ECG signals. Authors of [16] used 

sophisticated PQRST feature extraction to 

characterize heart rate data into five grades. This 

complex PQRST function includes position, duration, 

amplitude, and waveform. Alickovic and Subasi [17] 

proposed an autoregressive (AR) model in feature 

extraction to classify five classes of arrhythmia data. 

Plaviak [18] proposed a new method for classifying 

heart diseases based on ECG signals. Smelt uses 

Power Spectral Density with Welch and Discrete 

Fourier Transforms to extract various properties of 

ECG signal fragments. 

Finally, various classification methods are used 

with the AdaBoost method [19], radial basis function 

[20], neuro-diffuse adaptive function [21], 

convolutional neural networks (CNN) [22-24] and 

the Extreme Learning Machine. (ELM) [25, 26]. IT 

assistance based on the ELM system was carried out 

in the classification of ECG and EEG, etc. due to the 

ability to quickly learn and generalize [24-28]. 

However, there are some difficulties, such as a local 

minimum of availability, an indeterminate learning 

rate, the choice of the number of hidden neurons, and 

overfitting [29]. To overcome the weakness of ELM, 

there are several nature-inspired population methods 

with global search functions such as differential 

evolution (DE) [30-33], Algorithm for Artificial Bee 

Colony (ABC) [34], Ant Colony Optimization 

(ACO) [35], Genetic algorithm (GA) [36], and 

particle swarm optimization (PSO) [37]. Following 

are the pros and cons of above-mentioned 

conventional techniques: 

 

• The ABC algorithm has the advantages of high 

reliability, fast convergence, and high flexibility. 

However, it has a major drawback - premature 

convergence in subsequent IPs. 

• The ACO optimization is well received, 

resulting in good solutions being found quickly, 

and the distributed processing prevents 

premature convergence. With ACO, 

convergence is guaranteed, but the convergence 

time is undefined, which is a big drawback. 

• Differential evolution is easy to apply to a 

variety of problems, apart from noisy, 

multimodal, and multidimensional spaces, 

which often make it difficult to optimize the 

problem. The overall minimum search 

efficiency is very sensitive to the configuration 

of the control parameters, and this is a weak 

point for DE for some global optimization 

problems. 

• Genetic algorithms require less information 

about the problem, but it can be difficult to 
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design objective functions and get correct 

representations and operators. 

• PSOs have the advantage of fast convergence, 

but they can also converge prematurely and, 

especially in the case of complex problems, 

stagnate at local lows. 

 
ECG diagnostics usually use features derived 

from the P wave, QRS complex, and T wave, which 

are an important part of the cardiac recording. 

Rest of the paper is organised as follows; section 

two presents pre-processing and post-processing 

based proposed methodology. Results and discussion 

are provided in section three followed by the 

conclusion and future perspective in section four. 

1.1 Materials and methods 

1.1.1. Electrocardiogram: 

An electrocardiogram is a medical test that 

records all of the electrical activity of the heart. Each 

beat is represented by a series of waves, marked by 

peaks and valleys. The ECG signal frequency is 

typically 0.05 to 100 Hz with a signal amplitude 

range of 1 to 10 mV. The ECG signal is characterized 

by 5 waves, which are called P, Q, R, S, and T waves. 

In some cases, in the wave shown in Fig. 1, one can 

see a sixth wave, called a U wave. The P wave 

corresponds to the atrial depolarization wave; The 

QRS complex, which is the junction of the Q, R and 

S waves, is related with ventricular depolarization, 

while the T wave is related with ventricular 

repolarization [38]. 

For ECG analysis, you need to analyze the 

intervals between these waves, such as: P-R interval, 

P-Q interval, S-T interval, Q-S interval. This range 

has a value as defined by the Brazilian Society of 

Cardiology (SBC), where values outside this range 

may indicate structural and functional changes in the 

heart. 

At a normal heart rate known as sinus rhythm, the 

PR interval is 0.12 to 0.2 seconds. QRS interval from  

0.04 to 0.12 seconds; The R-R interval is 0.6 to 1.2 

seconds, and the heart rate (HR) is 60 to 100 beats per 

minute (beats per minute) [39]. 

 

 
Figure. 1 Characteristic waves of the ECG signal [38] 

The effectiveness of an ECG signal analysis 

system usually depends on the accuracy and 

reliability of complex QRS detection [40, 41]. 

1.2 MIT-BIH arrhythmia database signals 

An ECG signal database called the "MIT-BIH 

Arrhythmia Database" is widely used in science for 

ECG signal analysis research. This database consists 

of 48 ECG samples divided into two phases. The first 

includes 23 lists containing the most common 

diseases such as tachycardia and bradycardia. The 

second phase, on the other hand, includes signs 

indicating rare but clinically important events such as 

conduction disturbances, morphological changes, 

and other types of arrhythmias. Each of these signals 

has a duration of 30 minutes, collected at a sampling 

rate of 360 Hz [42, 43]. In this work, we used signals 

from this database [43]. Most heart rate values are 

recorded in this database. The AAMI standard 

defines how annotations should be generated. He 

recommended dividing heartbeats into five classes, 

including normal heartbeats (N), supraventricular 

ectopic heartbeats (S), ventricular ectopic heartbeats 

(V), combined V and N heartbeats (F), and unknown 

pulse types (Q). 

2. Proposed methodology 

 

 

Figure. 2 Flow diagram for proposed research work 
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2.1 Methods 

A block diagram of the proposed method for 

classifying ECG signals is shown in Fig. 2. This 

method can be divided into three parts, as shown in 

Fig. 2. First, the ECG signal from the MIT database 

is provided for preprocessing. The preprocessing 

process is carried out in two stages, namely baseline 

wandering, noise suppression and QRS detection. 

Feature extraction is applied to the previously 

processed signal and hybrid feature set, which are 

also provided as input to ANN and random forest 

classifiers to classify them as normal signal, 

ventricular premature contraction, right bundle 

branch, left bundle branch, contraction, and 

premature atria respectively. 

2.2 Preprocessing 

Interference and noise can be unwanted, which 

means they cause jitter in signal processing 

applications.Interference and noise can be unwanted, 

which means they cause jitter in signal processing 

applications. The ECG contains too many 

unsweetened sounds, so this step plays an important 

role in the application of ECG classification [44-45]. 

In addition, it is used as a routine analytical step in 

most biomedical procedures to obtain a clear and 

stable signal. ECG signals cover many types of 

disturbances such as: system interaction and baseline 

wandering. Symmetric scale filters and denoising 

operations were used to correct baseline deviations. 

In addition, linear and systemic interactions were 

reduced at this stage. These distractions in the 

recording of the heart were then eliminated using the 

technique suggested by Deepak and Vijayakumar 

[46]. The Pan-Tompkins (PT) [42] algorithm was 

then used to detect QRS. 

2.3 Feature extraction 

There will different hybrid features are proposed 

for ECG beat classification represented in Figure 3. 

Following features are extracted on after QRS 

detection and additionally DTCWT features are 

extracted on entire ECG signal set on a given time 

frame. This hybridization ensures the system model 

more generalize on different conditions. 

2.3.1. Dual-tree complex wavelet transform (DT-CWT) 

based feature extraction 

The Hilbert transformation of a signal resembles 

the Fourier plane to a complex gain filtering 

−𝑖 𝑠𝑖𝑔𝑛 (𝑣)  [47].According to distribution 

theory,this corresponds to an impulse response 

𝑣𝑝 (
1

𝜋𝑡
)where 𝑣𝑝 denotes the Cauchy principal value. 

We then build the analytical signal [47]: 

 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖ℋ{𝑥(𝑡)}

= 𝑥(𝑡) +
𝑖

𝜋
 𝑣𝑝 ∫

𝑥(𝑠)

𝑡 − 𝑠
𝑑𝑠

∞

−∞

 

            (1) 

 

Where, 𝑧(𝑡) is output signal in Fourier plane. 

𝑥(𝑡)is finite energy analog signal. 

ℋrepresents the Hilbert transform.  

It is clear that the Eq. (1) has only positive 

frequencies. The Hilbert transform of a real signal is 

real and is quadrature of phase with respect to the 

signal. 

Rather than taking the Hilbert transform of the 

wavelet (which is defined by the intermediary of 

therelated filters), we can take the Hilbert transform 

of the signal, and analyze it with the initial wavelet, 

because 〈𝑓, ℋ𝜓𝑎,𝑡〉 = 〈ℋ𝑓, 𝜓𝑎,𝑡〉  since the Hilbert 

transformation is a linear filtering. 

The scheme is therefore the following: we have a 

signal 𝑋(𝑛), we analyze it with a real wavelet by 

Mallat's algorithm to obtain the wavelet coefficients 

𝑑1(𝑗, 𝑘) . Then, we analyze ℋ𝑋(𝑛)  by the same 

wavelet and we obtain the coefficients 𝑑2(𝑗, 𝑘). We 

construct the complex coefficients: 𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑗, 𝑘) = 

 

 

 
Figure. 3 Features for training and testing in RF and KNN 

classifiers 
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𝑑1(𝑗, 𝑘) + 𝑖𝑑2(𝑗, 𝑘). In the following, the modulus of 

these coefficients is called Hilbert modulus or 

modulus by Hilbert transformation. 

The disadvantages of this technique are twofold: 

 

• The sustenance of the Hilbert transform of a 

compact support wavelet is infinite. We therefore 

lose in locality; 

• There is a computational drawback since the cost 

is two wavelet transform plus one Hilbert 

transform (i.e. two FFT). 

 
It is theoretically possible to limit the 

inconvenience linked to the non-compact sustenance 

of the Hilbert transform of the wavelet by being 

satisfied with an estimated Hilbert transform. 

However, the approximation cannot then be 

optimized for all scales because we only do the 

Hilbert transformation once at the start. 

The DT-CWT consists of analyzing a signal using 

two different DWT trees and choosing a filter that is 

finally decomposed by an analytical wavelet. Fig. 4 

shows how the algorithm works using two different 

sets of filters: ℎ1and 𝑔1 are high pass filters for the 

first and second trees, and ℎ0 and 𝑔0  are low pass 

filters for the first and second trees. 

The first tree gives the coefficient of the real part 

𝑑𝑟(𝑗, 𝑘), and the second tree gives the coefficient of 

the imaginary part 𝑑𝑖(𝑗, 𝑘). Then we build a complex 

coefficient 𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑗, 𝑘) = 𝑑𝑟(𝑗, 𝑘) + 𝑖𝑑𝑖(𝑗, 𝑘) . 

This modulus of the coefficient is called the dual-tree 

modulus [47, 48].  

Finally, the use of this structure requires a pre-

filtering operation, i.e. the filters used in the first step 

are not the same as those used in the following steps. 

The first scale will therefore never be taken into 

account in our analysis problem. 

The advantages of this method over simple 

Hilbert signal transform (Eq. (1)): 

 

• Lower calculation costs (only two DWT), 

• Estimates of the Hilbert transform, optimized 

for each scale. 

• The possibility of adequate reconstruction 

remains. 

 
The major drawback is the inability to use the 

well-known DWT wavelets (Daubechies wavelets, 

spline), and therefore also to select the number of 

zero moments (all 𝑞𝑠ℎ𝑖𝑓𝑡 filters give wavelets to at 

two zero moments). 

2.3.2. Autoregressive (AR) modeling 

A time series from a stochastic process can be 

 
Figure. 4 Tree representing the functioning of Dual Tree 

[16] 

 

analyzed through an autoregressive parametric model. 

Such a model states that the sample 𝑥𝑡 of a time series 

at a given moment can be expressed as a weighted 

linear summation of 𝑝 previous values of the time 

series 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑝 , plus a component 

uncertainty or error (Eq. 2). The 𝑝-value is known as 

the order of the model and is normally selected much 

smaller than the amount of data in the time series [49]. 

 

𝑥𝑡 = ∑ 𝑎𝑖𝑥𝑡−𝑖 + 휀𝑡
𝑝
𝑖=1                      (2) 

 

Where 𝑥𝑡 is the time series, 𝛼1, 𝛼2, … , 𝛼𝑝 are the 

parameters of the autoregressive model of order 𝑝 

and the factor 휀𝑡 is known as the prediction error of 

the process, which is white noise. This type of 

parametric modeling has been widely described for 

the analysis of EEG signals, and its use extends to 

different topics, such as the classification and 

segmentation of EEG signals, the identification and 

cancellation of artifacts, the description of the 

different brain rhythms. , the simulation and 

generation of EEG signals, among others [50]. 

One of the most important assumptions that this 

parametric modeling technique has, and at the same 

time a limitation, is the stationary condition of the 

stochastic process, which from the statistical point of 

view corresponds to when its first and second 

moment, mean and variance respectively, do not vary 

with respect to time [49, 51]. In EEG signals, 

stationarity is highly dependent on signal length, and 

it has been found that EEG signals can be assumed 

locally stationary when analyzed in short time 

intervals [52].  

To establish the proper order of the model, the use 

of functions called "information criteria" is common. 

The most appropriate order for the model is the one 

that minimizes the information criterion when it is 

evaluated over a range of given orders. One of these 

information criteria is the Hannan-Quinn criterion 

[53], denoted by 𝐻𝑄(𝑝) (Equation 3). This criterion 
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is defined as a consistent estimator, which converges 

to its true value when the number of data tends to 

infinity. 

 

𝐻𝑄(𝑝) = log(𝑉) +
2𝑝 log(log(𝑁))

𝑁
 

(3) 

 

Where 𝑉 is the variance of the input white noise, 

𝑁 is the number of samples of the signal and 𝑝 is the 

order of the evaluated model. The previous function 

is composed of two terms, the first one seeks to 

minimize the variance of the process, and the second 

characterizes the number of parameters to be 

estimated in the model. The interpretation of the 

𝐻𝑄criterion is that the proper order corresponds to 

the lowest value of 𝐻𝑄 when it is evaluated in a range 

of orders. 

In addition, the adjustment index or percentage of 

the change in output has been estimated. This index 

provides a measure of the fit of the model to the real 

data (Eq. (4)). 

 

𝐹𝐼𝑇 = (1 −
‖𝑥𝑡 − 𝑥𝑡‖

‖𝑥𝑡 − 𝑚𝑒𝑎𝑛(𝑥𝑡)‖
) × 100 ,       [%] 

(4) 

 

Where 𝑥𝑡  is the time series and 𝑥𝑡  is the time 

series simulated from the coefficients of the AR 

model. FIT values close to 100% indicate a good fit 

of the model, while values close to 0% denote an 

inappropriate model [54]. 

The stability of the AR model is evaluated 

through the reflection coefficients calculated by the 

Burg methodand verifies that the magnitude of these 

coefficients is less than or equal to unity [55, 56]. 

Finally, the power spectral density (PSD) has been 

estimated, using the Welch periogram [57], both for 

the original EEG signals and for the simulated signals, 

above in order to verify that the characteristics in the 

domain of the frequency of the simulated signals 

correspond to those of the original signals. For each 

spectrum, the value of the average energy has been 

obtained in each of the representative frequency 

bands of the EEG, described previously, in addition, 

two parameters have been calculated that provide 

information about the displacement of the power 

spectrum of the signals. These parameters are the 

mean frequency (𝐹𝑚 ): corresponding to the mean 

value of the frequency in the PSD, and the central 

frequency (𝐹𝑐): defined as the median of the PSD. 

 

 

2.3.3. Multifractal analysis 

Hölder Exponent and Spectrum of 

Singularities: Let 𝑥0 ∈ ℝ and 𝛼 ≥ 0 . A bounded 

function𝑓: ℝ ⟶ ℝ  is 𝐶𝛼(𝑥0)  if there is a constant 

𝐶 > 0  and a polynomial 𝑃  that satisfies degree 

(𝑃) < 𝛼  such that, in a neighborhood of 𝑥0 , the 

relation |𝑓(𝑥) − 𝑃(𝑥 − 𝑥0)| ≤ 𝐶|𝑥 − 𝑥0|𝛼 . The 

Hölder exponent of 𝑓  at 𝑥0  is ℎ𝑓(𝑥0) = sup{𝛼: 𝑓 ∈

𝐶𝛼(𝑥0)} [58]. It measures the local regularity of 𝑓 at 

the point 𝑥0. 

Usually, the variations of the Hölder exponent 

along a signal are described by the spectrum of 

singularities (or multifractal spectrum - MFS) 𝐷(ℎ). 

This is defined as the Haussdorf dimension of the set 

of points at which the Hölder exponent proceeds the 

value ℎ. In other words, the value of 𝐷(ℎ) indicates 

the proportion of points in the signal that have local 

regularity ℎ. 

Multifractal Formalism (MFF): Determining 

the spectrum of singularities of a signal is essential to 

analyze its properties. On the other hand, it is not 

possible to do it from its definition. This is due to the 

fact that, in general, in multifractal signals, the local 

regularity varies abruptly between one instant and the 

next, and the limitations of finite resolution and 

sampling period do not make their discrimination 

possible [58]. To solve this problem, we use the 

introduction of MFF, which offers an alternative way 

to obtain a spectrum of singularities using an easily 

computable element: structure-function (SF). As 

mentioned in [58], a wavelet leader (WL) based MFF 

was proposed. This approach overcomes many of the 

disadvantages of the previous method. Its main 

attraction is that it is based on DWT, which allows 

fast implementation of the filterbank algorithm and 

its numerical stability. 

Wavelet Leaders:A review of the definition of 

WLs and the MFF based on them is presented below 

[58]: 

Let 𝜓0be a mother wave with compact support 

and a number 𝑁 ≥ 1  of null moments. Let 

{𝜓𝑗,𝑘(𝑡) = 2−𝑗𝜓0(2−𝑗𝑡 − 𝑘), 𝑗 ∈ ℕ, 𝑘 ∈ ℕ}  be the 

orthonormal basis of 𝐿2(ℝ) formed by the versions 

of 𝜓0  dilated to the scales 2𝑗  and translated to the 

positions 2𝑗𝑘 . The coefficients of the discrete 

waveform transform of a signal 𝑓 are 𝑑𝑓(𝑗, 𝑘) =

∫ 𝑓(𝑡)2−𝑗𝜓0(2−𝑗𝑡 − 𝑘)𝑑𝑡
.

ℝ
. 

A special notation is defined for dyadic intervals. 

Let 𝜆 = 𝜆𝑗,𝑘 = [𝑘2𝑗 , (𝑘 + 1)2𝑗] such that 𝑑𝜆 =

𝑑𝑓(𝑗, 𝑘). Lastly, let 3𝜆be the union of 𝜆 and its two 

adjacent dyadic intervals: 3𝜆𝑗,𝑘 =

𝜆𝑗,𝑘−1 ⋃ 𝜆𝑗,𝑘 ⋃ 𝜆𝑗,𝑘+1. 

WLs are defined as [59]: 
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𝐿𝑓(𝑗, 𝑘) ≡ 𝐿𝜆 = sup
𝜆′⊂3𝜆

|𝑑𝜆′| 

              (5) 

 

That is, the calculation of the WL for a particular 

time and scale involves searching for the value of the 

supreme in a temporal neighborhood of the point in 

question, for all the finer scales. 

Multifractal Formalism based on Wavelet 

Leaders: From the WL, the structure functions (SF) 

are calculated: 

 

𝑆𝐿(𝑞, 𝑗) =
1

𝑛𝑗
∑|𝐿𝑓(𝑗, 𝑘)|

𝑞

𝑛𝑗

𝑘=1

 

    (6) 

 

Using the SF, the scaling exponent (SE) is 

calculated: 

 

휁𝐿(𝑞) = lim
𝑗⟶0

 inf (
log2 𝑆𝐿(𝑞, 𝑗)

𝑗
) 

  (7) 

 

Finally, the MFS is obtained by: 

 

𝐷(ℎ) = inf
𝑞≠0

(1 + 𝑞ℎ − 휁𝐿(𝑞)) 

    (8) 

2.3.4. SVD- entropy based feature extraction approach  

Here, SVD-based entropy was originally proposed 

to extract features of the ECG signal. The formula for 

calculating the singular value decomposition of each 

feature vector is presented below. 

 

𝑉𝑗 =
𝑆𝑗

2

∑ 𝑆𝑤
2

𝑤
 

 (9) 

 

Where 𝑆𝑗  represents the singular value of the 

feature vector, 𝑆𝑤
2  represents the eigenvalues of the 

feature vector, 𝑤 represents the window size. 

The entropy of SVD is as follows [60]: 

 

𝐸 = −
1

log(𝑤)
∑ 𝑉𝑗 log(𝑉𝑗)

𝑤

𝑗=1

 

    (10) 

 

Features are divided into three categories [60]. 

Let 𝑚 be the mean of all entropy in SVD and the 

standard deviation equal to 𝑛. 

 

1. 𝐸 < 𝑚 + 𝑛, features with high contribution. 

2. 𝑚 + 𝑛 >  𝐸 > 𝑚 − 𝑛 , features with 

regularinfluence. 

3. 𝐸 < 𝑚 − 𝑛 , features with a 

destructiveinfluence. 

 
The acquired features in the first phase were 

considered significant for the extracted features from 

the ECG. Features of the second phase are considered 

neutral, while those of the third phase reduces the 

overall structure of the SVD. 

Algorithm: SVD-Entropy Based Feature Extraction 

 

Input: ECG Signal 

Output: Extracted Features. 

Process: 

Step-1: Entropy Calculation 

For i = 1 to Number of features 

    SVD calculation for each feature vector 

Let 𝐾 = Number of non-zero SVD entries 

along window size w 

For j=1,…,K 

Calculate SVD-Entropy using equation (10) 

End For  

End For 

Step-2: Extraction of Features from ECG Signal 

If entropy of each feature vector is less than 

threshold value then select those features 

for classification process. 

Else 

Eliminate the features from classification 

process 

End If 

2.4 Classification 

Further after feature extraction by above 

mentioned methods it is concatenated as a set of 

hybrid feature for classifier input. All the hybrid 

feature is divided as a set for testing and training 

samples for classifiers according to 10 k fold 

verification method. 

The goal is to automatically classify the ECG 

beats. The choice of the classifier is very important, 

it constitutes the decision element in a pattern 

recognition system. 

2.4.1. Classification by using random forest classifier 

It is a classifier containing a set of base classifiers 

such as a decision tree shown: 

 
{ℎ(𝑥, Θ𝑘), 𝑘 = 1, … 𝐿}               (11) 
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Random forests are composed of a set of binary 

decision trees in which randomness has been 

introduced.  

Random forests were introduced by Breiman 

(2001) by the following very general definition [61]: 

Let (ℎ̂(Θ1), … , ℎ̂(Θq)) a collection of tree predictors, 

with Θ1, … , Θq random variables independent of ℒ𝑛. 

The predictor of random forests ℎ̂𝑅𝐹  is obtained is 

aggregating this collection of random trees as 

follows: 

 

• ℎ̂𝑅𝐹(𝑥) =
1

𝑞
∑ ℎ̂(𝑥, Θ𝑙)𝑞

𝑙=1  Average of 

individual tree predictions in regression. 

 

• ℎ̂𝑅𝐹(𝑥) = arg max
1≤𝑘≤𝐾

∑ 1ℎ̂(𝑥,Θ𝑙)=𝑘
𝑞
𝑙=1  

Majority vote among individual predictions 

trees in classification. 

 
The term random forest comes from the fact that 

individual predictors are, here, explicitly predictors 

per tree, and that each tree depends on an additional 

random variable (that is, in addition to ℒ𝑛). 

2.4.2. Classification by k-nearest neighbors (KNN) 

The K-nearest neighbors algorithm is simple, but 

who can give interesting results if the data range is 

large enough. It's about a classification method 

widely used in many fields and is also found among 

the top 10 data mining algorithms [62]. Typically, 

houses that are close to each other have similar 

characteristics. We can group them and give them a 

classification. The algorithm uses this same logic to 

try to group the elements that are close to each other. 

KNN is an example of instance-based learning. It 

works in situations where each instance can be 

defined by an n-dimensional vector, where n is the 

number of attributes used to describe each instance 

and the ranges are discrete values. The training data 

is written and when new samples are found, it is 

compared with the training data to find the nearest 

neighbors. 

The nearest neighbors are those who are closest 

following the Euclidean distance. The distance 

between two elements 𝐴 = 〈𝑎1, … , 𝑎𝑛〉  and 𝐵 =
〈𝑏1, … , 𝑏𝑛〉 is calculated as follows [63]: 

 

𝑑 = √∑ (𝑎𝑖 − 𝑏𝑖)2𝑛
𝑖=1                         (12) 

 

Sorted by the 𝑘  neighbors closest to the new 

instance, the classification assigned to it will be the 

class with the highest occurrence among them. 

 

 
Figure. 5 Operation of a simple KNN with k = 3 and k = 

9 [62] 

 

Here is the pseudo-code representing the 

algorithm: 

 

Pseudo-Code for KNN 

Requires 3 parameters: a set of examples X, a given 

𝑥 𝑎𝑛𝑑 𝑘 𝜖{1, … 𝑘} 

For each example  𝑥𝑖 𝜖 𝑋  
Calculate the distance between 𝑥𝑖𝑎𝑛𝑑 𝑥: 𝛿(𝑥𝑖, 𝑥) 

End for 

For  𝑗𝜖{1, … 𝑘} do 

𝐾𝑁𝑁(𝑗) ← arg min 𝛿 (𝑥𝑖 , 𝑥)𝑖 ∈ 1, … 𝑛 

𝛿(𝑥𝑖, 𝑥) ← +∞ 

End for 

Determine the class of 𝑥  from the class of 

examples whose number is stored in the KNN. 

2.4.3. Classification by using bayesian optimized KNN 

First of all, three parameters are to be taken into 

consideration: the sample data, the number of nearest 

neighbors to select (𝑘), and the point we want to 

evaluate (𝑥). Subsequently, for each element of the 

sample, we evaluate the distance between reference 

point 𝑋 and point 𝑥; of the set of learning and we 

check if the distance between them is less than one of 

the distances contained in the list of nearest 

neighbours. If so, the point is added to the list. If the 

number of items in the list is more significant than 𝑘, 

the last value is simply removed from the list. The 

algorithm itself is not very complicated and can give 

a good result with brute force if sampling is not too 

big. However, since we are talking about data mining, 

the number of individuals to be evaluated is often 

very big, that's why an optimization algorithm is 

needed. 

The main idea of Bayesian Optimization (BO) is 

to construct a surrogate probabilistic model 

sequentially to try to infer the objective function. 

Iteratively, new observations are made, and the 

model is updated, reducing its uncertainty allows 

working with a known and cheaper model, which is 

used to construct a utility function that determines the 

?  

Class H  
Class S  

k=3  

k=9 
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next point to evaluate. The different steps of the BO 

methodology are described below. 

First, the apriori model must be chosen over the 

possible space of functions. For this, different 

parametric approaches can be used, such as Beta-

Bernoulli Bandit or Linear Models (Generalized), or 

non-parametric models such as t-Student Processes 

or Gaussian processes [64]. 

Then repeatedly until a particular stopping 

criterion [65]: 

The prior and the likelihood of the observations 

so far arejoined to get a posterior distribution. This is 

done using Bayes' theorem, hence the origin of the 

name. 

Recall Bayes' theorem. Let 𝐴  and 𝐵  be two 

events such that the conditional probability 𝑃(𝐵|𝐴) 

is known, then the probability 𝑃(𝐴|𝐵) is given by: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
                 (13) 

 

Where 𝑃(𝐴) is the a priori probability, 𝑃(𝐵|𝐴) is 

the probability of event 𝐵  conditional on the 

occurrence of event 𝐴, and 𝑃(𝐴|𝐵) is the posterior 

probability. 

Then, a particular utility function is maximized 

on the a posteriori model to determine the next point 

to evaluate and the new observation is collected to 

repeat until the stop criterion. 

Since the KNN approach uses a discretization 

technique for the continuous parameter, therefore it 

results in less accurate results with the data loss. This 

proposed work discusses the algorithm that can tune 

KNN parameter 𝑘. 

3. Results and discussions 

3.1 Evaluation parameters 

Table 1. Evaluation parameters 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Recall 

(Sensitivity) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F-Score 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Error Rate 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 
Figure. 6 Range of training features extracted by 

proposed hybrid approach 

 

 

Figure. 7 Range of testing features extracted by proposed 

hybrid approach 

 

3.2 Simulation results 

The hybrid feature distribution across datasets in 

the boxplot from Fig. 6 and Fig. 7 show the 

performance of the system with -training and testing. 

There are two primary observations from this plot: 

 

• The hybrid feature in the proposed system is 

less skewed than other features. Skewness 

indicates that the data may not be normally 

distributed. Hence, the extracted hybrid 

feature has a stable distribution of data for 

the classifier as a training sample.  

• The L, N, P and R classes are less skewed in 

the hybrid-feature-based plot as compared to 

class A from testing features. The median 

range is in the same range for hybrid features 

ranging from 0.056 to 0.07. The variation in 

all the class, the median weights of the notch 

plots are nearly similar. 
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Figure. 8 Confusion matrix plot for proposed approach by 

using random forest classifier 

 

Figure. 9 Confusion matrix plot for proposed approach by 

using k-nearest neighbors classifier 

 

Fig. 8 shows a confusion matrix plot for random 

forest classifier with five different classes. Classes 1, 

2, 3, 4 and 5 represent the A, L, N, P and R waves 

respectively. The specificity achieved by this method 

is 95.7%. 

Fig. 9 shows a confusion matrix plot for KNN 

classifier with five different classes. Classes 1, 2, 3, 4 

and 5 represent the A, L, N, P and R waves 

respectively. The specificity achieved by this method 

is 85.7%. 

Fig. 10 shows a confusion matrix plot for 

Bayesian Optimized-KNN classifier with five  

Figure. 10 Confusion matrix plot for proposed approach by 

using Bayesian optimized-KNN 
 

Figure. 11 Objective function model 

 

different classes. Classes 1, 2, 3, 4 and 5 represent 

the A, L, N, P and R waves respectively. The 

specificity achieved by this method is 91.4%. 

Fig. 11 shows the objective functional model of 

KNN, where various distance model is sampled for 

quantile error function evaluations in Fig. 12. It can 

be seen from the above graph convergence is 

achieved at 15 iteration itself.  

Tables 2 present the classification results with respect 

to magnification for MIT-BIH dataset, trained with 

different sets of feature vectors. The hybrid feature-

based system model produced 98.29 % for five class 

classification in Random forest classifier, while 

SVD-entropy Multifractal and AR coefficient-based  
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Figure. 12 Min. objective vs. number of function 

evaluations 

 

Table 2. Comparative results with different features RF 

classifiers 

Paramet

er 

Features Extracted  

AR 

coefficie

nt 

 

Multifrac

tal 

features 

 

SVD 

Entro

py 

 

Hybri

d 

Featur

es 

Accurac

y 
0.8889 0.8611 

0.9083 

98.29% 

Error 0.9167 0.8889 0.9083 01.71% 

Sensitivit

y 
0.9722 0.963 

0.9083 

98.93% 

Specifici

ty 
0.9168 0.8865 

0.9083 

95.71% 

Precision 0.8903 0.8607 0.9083 98.93% 

False 

Positive 

Rate 

0.8889 0.8611 

0.9083 

4.29% 

F-Score 0.9167 0.8889 0.9083 98.93% 

Matthew

s 

Correlati

on 

Coefficie

nt 

0.9722 0.963 

0.9083 

94.64% 

Kappa 0.9168 0.8865 0.9083 94.64% 

 

features produces 90.83%,86.11% and 88.89 % 

accuracy respectively. For the hybrid feature set 

system model, the average F-score, MCC, and kappa 

statistics were higher (98.93%, 94.64 %, and 

94.64%).Higher F-Score indicates better 

classification in classifiers. 

The proposed framework was also evaluated with 

different classifiers along with hybrid features for 

heartbeat classification. For training and testing, the 

respective beat information was considered to 

analyze the performance of the proposed model 

concerning each class of heartbeats. Table 4 

Table 3. Comparative results with different features KNN 

classifiers 

Paramet

er 

Features Extracted  

AR 

coefficie

nt 

 

Multifrac

tal 

features 

 

SVD 

Entro

py 

 

Hybri

d 

Featur

es 

Accurac

y 70% 75% 87.5% 

94.29% 

Error 30% 25% 12.5% 5.71% 

Sensitivit

y 45% 75% 100% 

96.43% 

Specifici

ty 95% 75% 75% 

85.71% 

Precision 90% 75% 80% 96.43% 

False 

Positive 

Rate 50% 25% 25% 

14.29% 

F-Score 60% 75% 88.9% 96.43% 

Matthew

s 

Correlati

on 

Coefficie

nt 46% 
50% 

77.5% 

82.14% 

Kappa 40% 50% 75% 82.14% 

 

 

Table 4. Comparative results of different classifiers 

Parameter 
Proposed Method 

KNN Bayesian 

Optimized-

KNN 

Random 

Forest 

Classifier 

Accuracy 94.29% 96.57% 98.29% 

Error 5.71% 3.43% 01.71% 

Sensitivity 96.43% 97.86% 98.93% 

Specificity 85.71% 91.43% 95.71% 

Precision 96.43% 97.86% 98.93% 

False Positive 

Rate 

14.29% 8.57% 4.29% 

F-Score 96.43% 97.86% 98.93% 

Matthews 

Correlation 

Coefficient 

82.14% 89.29% 94.64% 

Kappa 82.14% 89.29% 94.64% 

 

illustrates the accuracy calculated i.e., 94.29%, 

96.57%, and 98.29% for the MIT dataset with five 

classes in KNN, Bayesian Optimized KNN, and RF 

classifier respectively.For the RF classifier proposed 

features provides higher accuracy than at KNN.  F-

Score of 96.43%, 97.86%, and 98.93% are observed 

on different classifiers. Overall, by analyzing the 

statistical measures, we can conclude that the 

proposed heartbeat framework provides considerably 

accurate outcomes, even when each is considered. 

Authors of [66] has presented a technique on  
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Table 5. Comparison with previous research works 

Researc

h works 

Features  Classifi

er 

Accur

acy 

Yang 

and Wei, 

2020 

[66] 

Combined parameter 

and visual pattern 

features of ECG 

morphology KNN 

KNN 97.70

% 

Mondéja

r-Guerra 

et al., 

2019 

[67] 

Wavelets+LBP+HOS

+several amplitude 

values RF 

Rando

m forest  

94.5% 

à 

Mougou

fan, et 

al., 2020 

[68] 

Permutation entropy 

(PE) and the 

conditional entropy of 

ordinal patterns 

(CEOP) 

LR 93.67

% 

Propose

d Hybrid 

approac

h using 

KNN 

DTCWT, SVD-

Entropy, 

Autoregressive 

modeling, and 

Multifractal analysis 

based features 

K-

Nearest 

Neighb

ors 

94.29

% 

Propose

d Hybrid 

approac

h using 

Bayesia

n 

Optimiz

ed-KNN 

DTCWT, SVD-

Entropy, 

Autoregressive 

modeling, and 

Multifractal analysis 

based features 

Bayesia

n 

Optimiz

ed-K-

Nearest 

Neighb

ors 

96.57

% 

Propose

d Hybrid 

approac

h 

Random 

Forest 

Classifie

r 

DTCWT, SVD-

Entropy, 

Autoregressive 

modeling, and 

Multifractal analysis 

based features 

Rando

m 

Forest 

Classifi

er 

98.29

% 

 

specific dataset with morphological features tuned for 

that dataset only using KNN classifier. The approach 

is carried out in [66] is not generalized and deviation 

of features may leads to improper results. Authors of 

paper [67] has proposed the automatic classification 

of electrocardiograms (ECG) based on the 

combination of multiple Support Vector Machines 

(SVMs). The method relies on the time intervals 

between consequent beats and their morphology for 

the ECG characterisation. Different descriptors based 

on wavelets, local binary patterns (LBP), higher order 

statistics (HOS) and several amplitude values were 

employed. Instead of concatenating all these features 

to feed a single SVM model, in this approach 

different SVM models are defined according to their 

specific features and decisions of the different models 

are combined with the product, sum, and majority 

rules, which creates more complex system. Authors 

of [68] proposes permutation entropy (PE) and the 

conditional entropy of ordinal patterns (CEOP) to 

Electrocardiogram (ECG) data analysis. It is 

dependent on threshold formulation which is 

sensitive to the database. The proposed method 

proposes a combination of hybrid traits. The present 

work is concluded to the detection of hybrid features 

(DTCWT, SVD-Entropy, Autoregressive modeling, 

and Multifractal analysis) followed by the 

classification by using random forest, k-nearest 

neighbors, and Bayesian optimized-KNN classifiers. 

An estimate of the multiscale wavelet variant based 

on DTCWT was extracted for each signal along the 

entire data length and further incorporation with 

specific features after QRS detection ensures the 

proposed algorithm is less sensitive to the parameter 

setting and more dataset independent. 

Comparative analysis of the proposed framework 

with the existing techniques on the benchmark 

datasets i.e. MIT-BIH Arrhythmia is illustrated in 

Table 5. The proposed model is a five-class for beat 

classification framework that was evaluated on the 

dataset with various feature extraction, where the 

proposed framework yields an accuracy of 98.29%, 

96.57 %, and 94.29% respectively. It shows that in 

previous studies [66], [67] and [68], models were 

evaluated classification was performed for the 5-class 

beats. 

4. Conclusion 

The main advantage of using computational 

detection of ECG arrhythmias is that this analysis 

makes the diagnosis more efficient than conventional 

analysis. This form of detection is very useful when 

analyzing long-term electrocardiogram signals, 

because, in conventional analysis, errors caused by 

the professional carrying out the analysis may occur. 

This work aimed to implement an ECG signal 

classification framework using hybrid features 

(DTCWT, SVD-Entropy, Autoregressive modeling, 

and Multifractal analysis), which was applied to the 

MIT-BIH ECG signal database in order to assess the 

performance of the detection. The results obtained by 

the Random forest classifier were quite satisfactory 

and outperforms the KNN and Bayesian Optimized-

KNN. 

It was found that the KNN based approach 

achieves an accuracy of 94.29% while the Bayesian 

optimization of KNN provides 2.28% of 

improvement in accuracy i.e. 96.57%. Moreover the 

Random Forest classifier attains 4% improvement in 

accuracyas compared to the KNN approach and 

1.72% of improvement than the Bayesian optimized 

KNN technique. 
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Future work may be dedicated to the detection of 

other types of cardiac arrhythmias, the use of 

improved versions of classification, as well as the 

implementation of a prototype for applications in 

hospital environments. 
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