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Abstract: The task of segmenting breast tumours in mammograms is very difficult, as its difficulty lies in the lack of 

contrast between the tumour and the surrounding breast tissue, especially when dealing with small tumours that are 

not clear boundaries and hidden under the tissues. Segmentation algorithms often lose the path of tumor boundaries in 

an attempt to determine the position of them. Active contours are used widely for segmentation as a high-level 

technology for boundary recognition. The main aim to create a clear contrast between the tumour and the normal breast 

region. In this study, two approaches to active contour are applied: snakes and level sets. The proposed methods were 

applied to all abnormal mammogram images taken from mini-MIAS database. The first approach showed a weakness 

in the segmentation of this type of image, while the other approach was able to segment all the mammogram's tumours. 

The Chan-Vese method was the most superior of all the active contour segmentation methods. The proposed models 

were tested in two ways, the first is statistical the best result was for the Chan-Vese method and it came as follows 

(90%,95% 98%, 97%, 97%) for Jaccard, Dice, PF-Score, Precision, and Sensitivity respectively. And the other is based 

on the segmented region's characteristics, Chan-Vese was able to accurately determine the location and shape of the 

tumor. The proposed Chan-Vese approach is appropriate in adopting computer assisted detection systems to predict 

tumor boundaries and locations in mammography for its reliability and superior performance over other algorithms. 

Keywords: Breast tumour, Mammography, Segmentation, Active contour, Level set, Chan-Vese.  

 

 

1. Introduction 

Breast cancer is one of the world's leading causes 

of death of women. An early breast cancer diagnosis 

is important to increase the survival rate [1]. Since the 

similarities between breast masses and 

microcalcifications with the background, the manual 

methods which are practiced by radiologists May fail 

to segment such abnormalities. The need for early 

diagnosis includes the development of automated 

technologies that can enable radiologists to reliably 

identify breast cancer and treat patients. The most 

powerful image system for the identification and 

diagnosis of breast cancer was considered 

mammography [2]. Active Contour Model (ACM) is 

considered one of the powerful methods of computer-

assisted medical image segmentation. The reason for 

this method's strength is its high potential to segment 

and trace the boundaries of the object of interest, as it 

can regulate the shape of the contour through the 

restrictions it imposes on it where it uses constraints 

(top to bottom) inferred from image information and 

(bottom to top) for the location, shape and size of this 

object [3].  The active contour is a thin curve drawn 

on the image inside or outside the object of interest. 

This curve is deformed towards the salient object 

with the help of the forces acting on it, the final shape 

of the curve is formed by repeating the energy 

reduction associated with the curve as the shape 

changes with each iteration until it reaches the final 

shape where the boundaries of the object are at the 

lowest energy limit. The curve behaves like a rubber 

band extending outside of a convex planar region 

would snap to the boundary of the region when 

released, as the reduction in energy corresponds to a 

decrease in the elasticity of the elastic band, making 

it shrink toward the boundary [4].The active contour 

can be divided into two basic approaches: (1) snakes 

which are represented as explicit parameterized 

segmentation curves (e.g., parametric). (2) geometric 

active contours which are represented as level sets 

based on the implicit representation of curves [5].  
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M. A. Duarte, et al. in 2015 proposed a method based 

on the methodology of “geodesic active contours” 

(GAC). Radiologists are actively engaged in the final 

phase of the process. GAC along with anisotropic 

texture filtering and also the experience of 

radiologists. The suggested procedure was tested 

using 1000 ROIs derived from the DDSM Dataset for 

segmented images, the quantitative evaluation, based 

on the area overlap measure AOM, yielded a mean of 

0.52 ± 0.20 [6]. F. Liu, et al. in 2015 proposed the 

stopping function in the classical GAC model based 

on the SPF model, to avoid boundary leaking, where 

the local image information was used to refine the 

rough contour. The model was tested on the digital 

database for screening mammography DDSM. Area 

overlay metric AOM indicates to 0.94 [7]. K. L. 

Kashyap, et al. in 2017 The technique of clustering 

based on RBF was proposed for interpolation of 

variational level set function, they used method of 

Subtraction of original and enhanced inverted images 

to suppress the normal breast tissue and highlight the 

suspicious mass and then implement the level set 

function is performed without re-initialization due to 

the mesh-free method. The algorithm was tested on a 

sample from MIAS and DDSM database it was the 

highest sensitivity of 95.12 [8] D. Saraswathi, et al. 

in 2017 proposed a technique merge the Chan-Vese 

method with Fuzzy C means to solve initialization, 

convergence to image segmentation and noise 

reduction. MIAS database is used and dice indices 

were 0.9 [9]. S. Soomro, et al. in 2017 proposed a SPF 

function is characterized by a phase-shifted 

Heaviside function, which helps to achieve the 

optimal solution in fewer iterations. The suggested 

approach is tested on many mini-MIAS Dataset 

mammogram images. Sensitivity indices were 0.9865 

[10]. A. Niaz, et al. in 2020 proposed an active 

contour approach based on a reformed mixed local 

and global fitted function. They worked to capture the 

ambiguous boundaries of areas of interest by 

included a p-Laplace term with Chan-Vese to reduce 

the requirements for reinitialization and represses 

incorrect segmentation contours. The technique was 

tested on 25% from the MIAS  Database, The result 

signifies an accuracy of 98.4% [11]. N. Badshah, et 

al. in 2020 proposed a model that combines Laplacian 

of Gaussian and level set function based on local 

intensity information for the image in order to 

overcome the problem of inhomogeneity MRI and 

mammogram images. Geometrical points were 

identified near the tumour boundary prevent the 

contour from leaking. The algorithm was applied on 

various mammogram images from real data set 

collected from different hospitals in Peshawar, 

Pakistan.  Accuracy was 99.91% [12]. M. Malathi, et 

al. in 2021 used ACM to detect the abnormal image 

before passing through the classification stage, where 

they examined the images in two ways, first through 

the deep belief network which showed an accuracy of 

97.51%. The second method is CNN which gave an 

accuracy of 95.65% [13]. 

The early detection of breast cancer is 

challenging in the medical imaging diagnose because 

difficult of identifying the boundaries of the tumour.  

Mammography was used as one of the most effective 

methods for detection. The main goal of this work is 

the detection of mass and calcifications in the breast. 

This work consists of the implementation and 

modification of active contour technique for 

detection of tumour boundaries in breast. Wherefore, 

Gaussian filter was used as a pre-processing as it 

works to intensify the low-frequency components 

while reducing the high-frequency components as the 

breast structure is enhanced and have noise 

suppression. Then, CLAHE was used to improve the 

contrast of the image, which increases the contrast 

between the tumour and the surrounding tissue and 

sharpens the edges of the tumour. Also, comparison 

among of parametric active contour segmentation 

methods that depend on the explicit representation of 

the segmentation boundary and the geometric 

segmentation method that relies on the implicit 

representation of the segmentation boundary is based. 

The remainder of this paper is organized as follows: 

The work background and the proposed methodology 

was described in section 2, and the effect of pre-

processing and parameters was described in section 3, 

while in section 4 the method of obtaining images 

was clarified and explain characteristics of tumors 

margins, in section 5 the performance measures are 

explained, while in section 6 the experience and 

results were analyzed. Finally, in section 7 the 

conclusions were presented. 

2. Methodology 

2.1 Parametric active contour Model / PACM 

The contour is a closed curve (𝐶(𝑠)) that can be 

explicitly represented (parametric) in the plane (x, y) 

as follows: 

 

𝐶(𝑠) = (𝑥(𝑠), 𝑦(𝑠))                                              (1) 
 
𝑠 , the normalized arc length. 𝑠 ∈ [0,1]  is the 

parametric domain. Contour has total energy (𝐸(𝐶)) 

that is the sum of two internal and external energies 

that can be expressed [14]: 
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𝐸(𝐶) = 𝐸𝐼𝑁𝑇 + 𝐸𝐸𝑋𝑇                                            (2) 
 

Internal Energy Function (𝐸𝐼𝑁𝑇) this energy is related 

to the contour itself, as it controls the length and the 

degree of smoothness, and thus it is a sum of two 

terms, as  

 

𝐸𝐼𝑁𝑇 = 𝐸𝐸𝐿𝐴𝑆𝑇 + 𝐸𝐵𝐼𝑁𝐷                                         (3) 
 
The first term from Eq. (2) represents the elasticity 

energy (𝐸𝐸𝐿𝐴𝑆)  is responsible for controlling the 

length of the contour, whereby it makes the contour 

behave as an elastic membrane to resist stretching and 

thus be able to continue, this term tries to remove the 

curve concavity and shrink the curve. According to 

basic mechanics, it is proportional to the square of the 

first derivative of the contour with respect to 𝑠  as 

follows: 

 

𝐸𝐸𝐿𝐴𝑆𝑇 =
1

2
∫ 𝛼|𝐶′(𝑠)|2𝑑𝑠

𝑠

                                      (4) 

 

where the 𝐶′(𝑠), indicates the first-order derivative 

with respect to 𝑠, 𝛼 is the tension coefficient, as it is 

the measurement factor that controls the contour 

elasticity energy as it determines the extent to which 

the contour can extend at points s [15]. The second 

term of the internal energy equation is EBIND  this 

energy makes the contour behave like a thin plate to 

resist bending where it is a smooth curve without 

sharp angles. According to basic mechanics, this 

energy can be expressed as the square of the second 

derivative of the contour with respect to 𝑠 as follows: 

 

𝐸𝐵𝐼𝑁𝐷 =
1

2
∫ 𝛽|𝐶′′(𝑠)|2 𝑑𝑠 

𝑠

                                 (5) 

 

where the ( 𝐶′′(𝑠) ), indicates the second-order 

derivative with respect to 𝑠 , 𝛽  is known as the 

stiffness factor, and it is the parameter that controls 

the smoothness of the contour [16], that is, the ability 

of the contour to bend at points s. 

External Energy Function (𝐸𝐸𝑋𝑇) is obtained from 

the image being segmented and is formulated so that 

it forces the snake to areas of interest in segmentation, 

such as lines or edges. It can be expressed as follows: 

 

𝐸𝐸𝑋𝑇 = ∫ 𝐸𝐼𝑀𝐴𝐺𝐸(𝐶(𝑠))𝑑𝑠     

𝑠

                         (6) 

 

where 𝐸𝐼𝑀𝐴𝐺𝐸(𝐶(𝑠))   denotes a scalar function 

defined on the image plane, so the local minimum of 

𝐸𝐼𝑀𝐴𝐺𝐸(𝐶(𝑠)) attracts the contour to edges. It has 

different formulas, the most famous of which is the 

image gradient, that is given as follows: 

 

𝐸𝐼𝑀𝐴𝐺𝐸(𝐶(𝑠)) = −|𝛻𝑓(𝑥, 𝑦)|2                           (7) 

 

𝑓(𝑥, 𝑦) is the original image containing the object to 

be segmented 𝛻𝑓(𝑥, 𝑦), the gradient image will have 

high grey levels at pixels located at edges in 𝑓(𝑥, 𝑦). 

The negative signal is used to push the contour 

towards the greatest rate of change (towards the 

edges), When the negative sign is removed, the 

contour will point in the opposite direction, that is, 

away from the edges. Now we can get the final form 

of the total energy equation for the contour according 

to the explicit representation of the contour, which we 

can call the traditional snake as follows [17]: 

 

𝐸(𝐶(𝑠)) =
𝛼

2
∫ |𝐶′(𝑠)|2𝑑𝑠 +

𝛽

2
∫ |𝐶′′(𝑠)|2𝑑𝑠 +

𝑠𝑠

∫ 𝐸𝐼𝑀𝐴𝐺𝐸(𝐶(𝑠))𝑑𝑠
𝑠

     (8)  

 

Traditional snakes give an accurate identification of 

the edges of the object to be segmented only if the 

contour is drawn near the edges, meaning that we 

need prior knowledge of the shape of the object 

because it uses local information for the contour and 

this is one of the difficult problems in addition to that 

traditional snakes maintain the same structure during 

the development of the contour, so it cannot Discover 

more than one boundary at a time, meaning that it 

cannot be divided into multiple boundaries or consist 

of the merging of multiple primary lines [18].  

2.2 Geometric active contour model (GACM) 

(GACM) differs from (PACM) in that it develops 

the contour using geometric measurements, GACM 

is also called the “level set model”, level sets in our 

context are sets of points of a 2-D curve formed by 

the intersection of a plane and a 3-D surface. Unlike 

the parametric representation, level sets are based on 

implicit representations. An important aspect of this 

approach is that it can adapt to changing topology 

(e.g., the discovery of holes within a region, and the 

emergence of new regions) during curve evolution. 

Because of the continuity of derivative first and 

second order, parametric curves do not have this 

power naturally, Osher and Sethian presented the 

level-set approach in [19]. The level set model was 

introduced independently by Caselles et al. [20]. and 

Malladi et al. [21] in the image processing field, 

based on the level set method (LSM). 
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With the time, the topology of the curve changes, 

meaning that the curve may be divided into separate 

curves, or more than one curve may merge to form 

one curve. The best way to deal with easily variable 

topologies is LSM, where the curve is embedded in a 

surface of higher dimensions [22]. The contour is 

precisely the intersection between the function of the 

level set and the plane of x-y, we say that a 2-D curve 

C is embedded into a 3-D function 𝑍 = 𝛷(𝑥, 𝑦) by 

letting C be the zero-level set of this function. 

In the discussion that follows, level curves will 

become segmentation boundaries, and the power of 

this concept is that the level set approach does not 

require an explicit representation of these boundaries. 

A set of levels is described as the collection of all 

(𝑥, 𝑦) pairs that have the same z value (Height). The 

set of zero levels is the set of all the pairs (𝑥, 𝑦) 

satisfying 𝛷(𝑥, 𝑦)  =  0.  The zero-level set is, in 

other words, {(𝑥, 𝑦)|𝛷(𝑥, 𝑦)  =  0} . 

The initial contour is the zero-level set at time 

t =  0. Were x and y being the coordinates on the 

image grid. The level set function in 3D appears as a 

surface that works on the development of the initial 

contour gradually over time, depending on the speed 

function instead of the direct evolution. In other 

words, at any time (t) we extract a value (z) for all 

pair(𝑥, 𝑦)s and the contour at that moment it is the 

zero-level set. This means that the contour develops 

with the evolution of the surface and the final contour 

is the zero-level set of the last evolution of the surface. 

we can also classify geometric active contours in two 

essential categories "Edge-based Active Contouring 

Models" (GEACM) and “Region-based Active 

Contour models”. GEACM have some drawbacks. 

Since it is developing the contour in just one direction, 

either inside or outside, an initial contour then the 

primary contour must be placed entirely inside or 

outside the “Region of interested” (ROI), and thus an 

amount of prior information must be provided on the 

image as well. GEACM depend on the action of the 

image gradient, active edge-based contours may 

bypass the fuzzy boundaries and are sensitive to local 

minima or noise [4]. Most “region-based active 

contour models” consist of two components: the 

regularity component, which determines the smooth 

shape of the contours, and the energy minimization 

component, which searches within a subset for 

uniformity of the desired feature. A pleasant 

advantage of active region-based contours is that the 

initial contours can be put anywhere in the image as 

region-based segmentation depends on the 

minimization of global energy instead of the 

minimization of local energy. It is not required to 

provide a lot of prior knowledge about the part to be 

divided. However, the Chan-Vese method is a region-

based model applied in “geometric active contour” 

system. A literature review has found that it does not 

do well for images with intensity inhomogeneity, 

despite having a wider convergence spectrum and 

effectively handling topological changes using the 

(CVM). The key explanation is that the (CVM) 

algorithm is built on the premise that image 

intensities have stayed constant in each region, 

leading to the incorrect movement of the contour. 

2.3 Proposed algorithm 

Input: Mammogram image, draw initial contour at 

which the evolution of the segmentation begins. 

Output: Final snake locked on breast tumor in the 

mammogram image. 

Begin 

Step1: Load the first image from database (mini 

MIAS database). 

Step2: Input the value of  𝜎 , 𝑥 , 𝑦  for removing the 

noise by Gaussian Mask. 

Step3: enhancement image contrast which result 

from step2 by CLAHE technique. 

Step4: Choose the segmentation method PACM or 

GACM (GEACM OR CVM). 

Step5: Input parameters the contour. 

Step6: Input the No. of iteration. 

Step7: Draw initial contour by freehand tool. 

Step8: The snake can be formed by following over a 

certain number of iterations until a statistical 

equilibrium is reached. 

Step9: Save the result image after applying the step8. 

End 

3. Effect of pre-processing and parameters  

3.1 Pre-processing 

Using segmentation algorithms directly on the 

original images produces unwanted effects due to the 

inherent noise and poor contrast of the mammogram 

images. The suggested method uses a Gaussian filter, 

which is a filtering approach based on peak detection. 

The peak measurement is carried out on the basis that 

peaks are to pulse. The significant factor is that this 

filter corrects the spectral coefficient of interest and 

all amplitude spectrum coefficients within the filter 

window. It is a linear low pass filter, and greater 

significance is given to the pixels near the edge, thus 

reducing-edge blurring. The degree of smoothening 

is controllable, and computing efficiency is also in 

this filter [23]. “contrast limited adaptive histogram 

equalization” (CLAHE) is a technique that enhances 

the poor contrast problem of digital images, 

particularly medical images [24]. Instead of the 

whole image, CLAHE works on a specific area, 
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called a tile. The contrast of each tile is improved. 

The histogram of the output area roughly matches the 

histogram described by the distribution parameter to 

remove arbitrarily induced borders. The adjacent tiles 

are then mixed using bilinear interpolation. The 

contrast can be reduced, especially in homogeneous 

areas to avoid amplifying any noise that may be 

existing in the image. 

3.2 Parameters 

For image preprocessing, Gaussian Sigma (σ) 

was defined, a greater sigma value produces a 

smoother image than a smaller σ value. 0.6 is a 

reasonable estimate for a mammogram. For PACM 

segmentation, the practice has proven that the optimal 

value for the parameter α (elasticity force serves to 

prevent the curve from expanding) for mammogram 

images is 0.4. The appropriate value for the parameter 

β (rigidity force prevents the curve from twisting 

excessively) is 0.2. The parameter κ (applies to the 

external force), the appropriate value is 0.15. Values 

higher than this value led to the dominance of the 

external force because the internal force (elasticity 

and Rigidity) cannot maintain the smoothness of the 

contour. For GACM segmentation, after the tests, the 

weighted length term parameter λ =1. The weighted 

area term parameter v: The values of v are determined 

by the quality of the image's boundaries and the status 

of the objects in the image. The appropriate value for 

the parameter v is 0. The appropriate value for the 

parameter μ (the internal (penalizing) energy term 

parameter, and it must be greater than zero) for such 

type of images is 3.  

4. Image acquisition  

A mammographic image from the 

"Mammographic Image Analysis Society" (MIAS) 

which used in this research to apply the methods 

suggested. These images have previously been 

investigated by a specialist in biopsy and radiology. 

MIAS is a dataset reference. It is chosen because of 

the different cases it represents. It is also used 

extensively in related research ventures. The dataset 

comprises of 322 left and right mammograms, out of 

161 women, Patients aged 50 to 65 years of age. In 

51 of which malignancy, 64 benign, 207 normal 

diagnostics have been collected. The abnormalities 

are known as microcalcifications (CALC), spiculated 

masses (SPIC), ill-defined masses (MISC), 

circumscribed masses (CIRC), architectural 

distortion (ARCH), and asymmetry (ASYM) [25].  

 

 

5. Performance measures 

There are many evaluation criteria for comparing 

the proposed model with a segmentation technique. 

These criteria determine the performance of the 

proposed model by selecting the compatibility 

between the Grand Truth (RGT), which represents the 

region manually segmented by an expert radiologist, 

and the region resulting from the application of the 

proposed model (RSEG). 

The Jaccard similarity (JS) defines as the area 

overlap measure between (RGT) and (RSEG). While 

Dice coefficients (DS) is calculated the degree to 

which two binary images have spatial overlap. The 

(JS) and (DS) values are between 0 (no overlap) and 1 

(perfect agreement). The values closer to 1 show an 

accurate result of segmentation, and the values closer 

to 0 imply poor segmentation. Precision (PRES) is 

the pixels number of correctly identified which not 

belonging to the tumour divided by all pixels. While 

Sensitivity (SENS) is the pixels number of correctly 

identified belonging to the tumour divided by the 

number of all pixels. Also, PF-Score (PFS) is the 

harmonic mean of precision and Sensitivity [26]. 

The quantitative results give the extent of 

congruence and difference between RGT and RSEG  in 

terms of the number of correctly and wrongly 

diagnosed pixels, but it does not give us an idea of the 

similarity in terms of shape, so we will use the 

region's properties to provide us more about the shape 

of the segmentation results. To describe the 

congruence and the difference in terms of shape 

between RGT and RSEG , we will use the following 

area properties (Distance, Area, Diameter, Axis).  

Distance is the distance between the center RGT and 

RSEG , the smaller the distance, the higher the 

accuracy of the measurement. The area is 

representing the area difference between the two 

regions divided by area of RGT. The smaller is the 

value, the higher is the congruence; Diameter, the 

ratio of between a diameter of RSEG to diameter of 

RGT which is a value with three possibilities: 

1 perfect match, < 1 this means that RSEG >  RGT , 

> 1 means that RSEG <  RGT . Axis the difference 

between ratio of   major axis length of RSEG to minor 

axis length of RSEG and ratio of major axis length of 

RGT to minor axis length of RGT, the congruence is 

higher when the result approaches zero, i.e., the shape 

approaches the ball. In all the images included in the 

study, the colors of the external borders will be blue, 

green, and red for (ROI , RGT, RSEG) respectively [27].  
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6. Results and discussion 

The PACM is weak in identifying fine details 

even after the image has gone through the pre-

processing step because it depends on the explicit 

representation of the edges and that most of the 

tumors have weak or hidden borders by the 

surrounding tissues of the breast, in addition to the 

fact that the tumors have margins of different shapes, 

so it is difficult for PACM to deal with them, as it 

cannot respond to the topological changes that 

characterize this type of margins, since it has the 

property of continuity due to the presence of 

derivatives within some terms of the Eq. (8). Also, it 

maintaining the shape of the initial contour due to the 

constraints of regularity which cannot handle 

structure changes, so it needs to prepare an ROI close 

to the shape and boundaries of the tumor. The 

segmentation criteria scored low results, as the best 

outcome was for tumor MISC JS = 48 and DS = 65. 

The rest of the results were listed in the Table 1. This 

was visually confirmed in the third row from the Fig. 

1. Iteration was fixed at 400 for all tumors until the 

segmentation contour takes sufficient time by 

deformation to reach the final segmentation contour. 

Additionally, no change was observed when the 

iteration was increased beyond this limit. 

GEACM was able to identify large tumors with 

clear boundaries with a great degree of accuracy, as 

the best result was obtained when the tumor was 

(CIRC) with results JS = 88% and DS = 94% for being 

one of the tumors with relatively clear boundaries, 

this is due to the fact that GEACM is an edge-based 

segmentation method. As for tumors with weak 

margins and different topologies, it was able to 

 

 

      
      

      
      

      
      

      
      

      
      

Figure. 1 Segmentation result of the images, first row returns to the original images, second row returns to the images 

after Pre-processing, third row returns to the final result by PACM, fourth row returns to the final result by GEACM, 

last row returns to the result by CVM. 
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Table 1. Measurements (JS, DS, PFS, PRES, SENS, and 

Iteration) for PACM segmentation 

PACM 

Similarity CIRC SPIC MISC ASYM CALC ARCH 

JS % 10 12 48 31 25 24 

DS % 17 22 65 47 40 39 

PFS % 4 17 66 20 44 21 

PRES % 7 20 45 35 42 9 

SENS % 5 18 53 26 43 13 

Iteration 400 

 

Table 2. Measurements (JS, DS, PFS, PRES, SENS, and 

Iteration) for GEACM segmentation 

GEACM 

Similarity CIRC SPIC MISC ASYM CALC ARCH 

JS % 88 60 68 68 73 66 

DS % 94 75 81 81 85 79 

PFS % 98 49 74 60 95 53 

PRES % 98 63 79 39 97 57 

SENS % 98 56 76 47 96 55 

Iteration 500 700 450 700 200 700 

 

determine them to an acceptable degree, because it is 

a segmentation method that depends on the implicit 

representation based on the level set, as it has the 

advantage of changing the initial contour with 

changing the topology of the boundaries of the tumor. 

The leakage that occurred in the contour of some 

tumors where a number of false positives were 

recorded came as a result of the algorithm’s inability 

to distinguish weak boundaries of tumors, where the 

weakest result was when the tumor (SPIC) as follows 

JS = 60% and DS = 75%. All results are detailed in 

Table 2 and the GEACM segmentation contour can 

be traced in the fourth line of Fig. 1. 

The CVM outperformed both PACM and 

GEACM in capturing the boundaries of all types of 

tumors in the dataset, whether with clear or weak 

margins because it is a segmentation method based 

on region and not boundaries as in the previous two 

algorithms, that is, it is able to collect tumor pixels 

according to the characteristics of similarity between 

them without dependence on edges with the ability to 

define edges. 

CVM shares with GEACM the ability to track 

tumor topology because it relies on implicit 

representation based on the level set. CVM differs 

from the previous two algorithms by not having to 

configure a good ROI because it is looking to reduce 

the global energy of the image instead of the local. 

The best segmentation result for the tumor was CIRC, 

with results JS = 90% and DS = 95%, and the weakest 

was for CALC and ARCH with JS = 78% and DS =  

 

Table 3. Measurements (JS, DS, PFS, PRES, SENS, and 

Iteration) for CVM segmentation 

CVM 

Similarity CIRC SPIC MISC ASYM CALC ARCH 

JS % 90 84 84 82 78 78 

DS % 95 91 91 90 88 88 

PFS % 98 95 97 75 94 79 

PRES % 97 98 98 63 98 86 

SENS % 97 96 98 69 96 83 

Iteration 260 190 190 440 110 320 

 

88%. The rest of the results are detailed in the Table 

3, and the results were visually confirmed in the fifth 

line of the Fig. 1. 

Tables 2 and 3 note that the number of iterations 

of GEACM is greater than that of CVM, this is due 

to the GEACM have a bias in one direction only 

either inside or outside the region of interest. So, it is 

limited in movement and needs more iterations to 

reach the segmentation required. The segmentation 

method is very slow and needs more time. while, 

CVM has a bi-directional bias, which means the 

initial contour can deform both inside and outside the 

region of interest at the same time, reducing the 

number of iterations and thus reducing the time. 

Furthermore, from discussing and interpreting the 

images visually, and statistical results assessment for 

using active contour algorithms. There is confusion 

in the visual and statistical evaluation of the results. 

May be led to an inappropriate medical decision. 

Wherefore, statistical properties are proposed based 

on the calculation of the values of the area properties 

of the images. These characteristics (Distance, Area, 

Diameter, Axis) aid in identifying breast tumors and 

decision making with the highest accuracy. 

From Fig. 2 it can be seen the performance of the 

CVM & PACM algorithms is identical in CIRC & 

MISC tumors. So, the two algorithms can identify the 

affected region with high accuracy. Despite the  
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Figure. 2 Relationship between Distance and tumor 

type for the three ACM algorithms 
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Figure. 3 Relationship between Area and tumor type 

for the three ACM algorithms 
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Figure. 4 Relationship between Diameter and tumor 

type for the three ACM algorithms 
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Figure. 5 Relationship between Axis and tumor type 

for the three ACM algorithms 

 

superiority of the CVM algorithm in the rest of the 

tumors.  

In the area feature, it can be noted the superiority 

of the GEACM and CVM algorithms in the CALC 

tumor as shown in Fig. 3. This is due to the 

calcifications extend over a larger area and GEACM 

and CVM has been able to determine the boundaries 

of the area better than PACM. There is a high close 

between GEACM & CVM in the CIRC & ARCH 

areas.  

 

Table 4. Comparison with other works on MIAS dataset 

Authors & 

Year. 
Methods Used JS DS PFS PRES SENS 

Kashyap et 

al, 2017[8] 
level set 87 89 95.12 ــــــ ــــــ 

Hmida et 

al, 

2018[28] 

Fuzzy contours 91.12 88.08 ــــــ ـــــ ـــــــ 

Azlan et al, 

2020[29] 
ــــــ   93.94 94.66 94.34 ـــــ ـ

Proposed 

Method 

PACM 48 65 66 45 53 

GEACM 88 94 98 98 98 

CVM 90 95 98 97 97 

 

Fig. 4 illustrates the optimal CVM method for all 

tumors with close to GEACM results in CIRC, CALC 

& ARCH tumors in determining the diameter of 

abnormal regions. 

From Fig. 5 it can be seen the GEACM algorithm 

outperforms CVM algorithm in CIRC tumor. There 

is great convergence between them in ASYM tumor 

through the identification of tumor axes. 

There is great difficulty in comparing current work 

with other techniques. The authors use a different 

number of mammogram samples from different 

datasets, public and private, and applying 

measurement criteria that differ from one study to 

another. Comparison is made with studies that used 

the MIAS dataset, as shown in Table 4. 

We compared the proposed algorithm with the 

work of K. L. Kashyap et al.[8], developed a level set 

function for segmentation of mammogram images 

using a Mesh-free based radial basis function (RBF) 

collocation approach. A comparison is also made 

with the algorithm of M. Hmida et al. [28], where the 

algorithm was a hybrid between CVM and fuzzy c-

means, they dealt with 57 mammogram images of the 

class of masses only. N. A. N. Azlan et al. [29], used 

normalization and filtration as a pre-processing 

before segmenting the image by the active contour 

method. The algorithms were implemented on all 

dataset images. Our algorithm with the GACM 

approach showed superiority over all the previously 

mentioned algorithms with CVM progression on 

GEACM according to the statistical results. In 

addition to our algorithm being unique to 

successfully deal with all tumours in the dataset, we 

took an example of difficult segmented tumours 

calcifications. Whereas, in the previous studies 

ACMs did not deal with all dataset images if this type 

of tumour was not segmented or the segmentation 

results were weaker with this type of tumour. This is 

due to the appropriate combination of pre-processing 

methods and the appropriate selection of parameters. 
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7. Conclusions  

In this work, the tumor segmentation challenge in 

mammograms was developed by applying ACM 

algorithms using both PACM and GACM approaches. 

Pre-Processing with a mixture of Gaussian filter and 

CLAHE is important which has proven to work well. 

The PACM algorithm was not able to efficiently in 

mammograms. So, it miscalculated boundary 

locations in most tumors according to segmentation 

results criteria. The GACM algorithm was able to 

record efficiency with mammogram tumors as 

indicated by the segmentation results. As it has the 

advantage of dealing with different topologies of 

tumors. But it needs a large number of iterations, 

because its bias is limited in one direction only, either 

inside or outside the region of interest. The CVM 

algorithm outperformed all previous algorithms, as 

the results were perfect in determining the boundaries 

and location of all types of breast tumors. The 

statistical results returned on the highest segmented 

image are as follows Jaccard=90 and Dace=95. The 

main contribution of this works was the ability to 

segment very small tumors with high accuracy. 

Although the proposed method yields strong and 

promising results, there are still some aspects that 

could be improved upon. The initial contour is 

determined manually in most studies. 

In future works, we suggest determining the 

initial contour automatically based on the size and 

location of the tumor image. And some parameters 

must be set experimentally when performing ACM 

segmentation by image data. Furthermore, we 

suggest determining the parameters automatically in 

a certain range taking into account the statistical 

information of the image. 
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