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Abstract: The corrective action for power systems over transient space requires the transient stability prediction (TSP) 

in an accurate and timely manner. To this end, applying data mining techniques to achieve high performance on TSP 

is an inevitable approach. One of the influential factors on TSP performance is extracting the most relevant features 

(MRFs) of transient data. In this paper, first, we constructed the transient dataset in the form of reactive power-based 

two-variate time series (RP2vTS). Next, for exploiting the optimal feature subset, the MRFs of RP2vTS are obtained 

by the 1-persistence parallel fragmented hybrid feature selection scheme (PFHFS) based on filter and wrapper methods. 

Finally, to evaluate the efficacy of the proposed framework, experimental comparisons on inter-connected New 

England and New York systems (NETS-NYPS) were applied using the support vector machine (SVM) classifier. The 

results showed that the proposed framework by selecting MRFs of RP2vTS offers high-performance capacity on TSP.  

Keywords: Most relevant features (MRFs), Transient stability assessment (TSA), Hybrid feature selection. 

 

 

1. Introduction 

The power system vulnerability is a constant 

concern with network managers in exploitation 

conditions on generation, transmission, and 

distribution power lines. In fact, reliability is the 

unique goal in the design and development of power 

systems toward the secure electric power supply. 

Hence, continuous monitoring in the form of the 

situational awareness dashboard for observing 

feature variability of power system components is a 

necessary scenario to satisfy the power system 

security index. The pivot problem in grid security is 

power system stability. One of the most important 

branches of power system stability is transient 

stability which is focused on interoperability of the 

power system components when severe or sudden 

fault occurrence [1]. In this regard, the confluence of 

phasor measurement units (PMUs) and data mining 

(DM) technologies as new paradigms are significant 

hand tools for power system operators (PSOs) on 

transient stability assessment (TSA) [2]. Nowadays, 

installed PMUs equip as part of an interconnected 

transmission grid is the basic factor for precise 

measuring of power system component features (e.g.; 

rotor angle dynamics) on TSA [3]. Furthermore, DM 

technology that interlaced statistics, machine 

learning, and artificial intelligence play a 

supplementary role to discover knowledge on 

transient variation gained by PMUs [4-8]. Along with 

path-breaking technologies (DM and PMUs), it is 

inevitable to compromise between the triple issues 

namely high dimensional multivariate transient data, 

the processing time of transient analysis, and 

accuracy of TSP. Hence, the well-suited strategy for 

addressing the triangulated challenge is to select the 

optimal feature set. Therefore, this solution can be 

vetted from the following two aspects: 

(a) Defining relevant feature against transient 

analysis: The multivariate time series obtained by 

PMUs per feature of the power system component 
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causes gathering the huge volume of transient data 

points. Applying such high-dimensional transient 

data as input to DM techniques increases the 

computational complexity to find the separator 

hyperplane in the transient feature space (TFS). One 

of the significant issues which affect the performance 

of the learning model is the selection of proper 

features on transient analysis. The discussion on 

reasons for choosing effective features for transient 

stability prediction (TSP) is an important task. In fact, 

this issue will make a significant contribution to 

reducing TFS and computational complexity on TSP. 

In transient studies, several features have been 

considered by scholars. According to [9-11] the rotor 

angle monitoring has been considered for transient 

stability status prediction in the form of a PMU-based 

model-free approach. Also in [12-14], transient 

voltage and transient frequency are considered as 

predictors for TSA. The active power variations are 

considered for TSA on multi-terminal systems in 

Reference [15,16]. 

(b) Applying feature selection scheme (FSS): 

Although defining relevant features on transient 

analysis cause to reducing TFS (above-aspect), it is 

not entirely efficient. In fact, due to the occurrence of 

swift-snap events is a dominant property in transient 

stability, the corrective control action on the power 

system should be launched in a timely manner [2]. 

Hence timely actions by PSOs have a direct 

relationship with the processing time of TSP which 

itself depends on TFS (transitive relation). For this 

purpose, a great option to respond to the time-

oriented bottleneck on TSA is the feature selection 

process which one of the interdisciplinary approaches 

in DM technology. In transient studies, supervised 

feature selection techniques (wrapper and filter 

methods) to remove irrelevant features have been 

considered by scholars. According to [17], the most 

relevant features of voltage magnitude or rotor angle 

based on filter FSS (Relief) have been considered for 

TSP. The ReliefF FSS to select optimal features for 

diagnosing rotor faults has been considered in [18]. 

The min-redundancy and max-relevance (mRMR) 

FSS applied on the set of inter-complementary 

dynamic stability features for TSA [19]. In Reference 

[20], the FCBF as feature pre-screening has been 

considered for the total transfer capability calculation 

model regarding transient stability constraint. 

      Previous researches for TSA which is concerning 

defining relevant feature against transient analysis 

and applying feature selection scheme (See Section 

1; Paragraph (a) & (b)), can be developed by 

responding to the following challenges:    

1) Specific focus on features that are compatible 

with real conditions of the power grid is an important 

issue on real-time TSA. The literature review on 

transient analysis shows that the TSP of the power 

system is restricted to the measurement of a quantity 

such as a rotor angle, active power, or voltage. For 

example, the result obtained from the TSP of the 

power system in the presence of the rotor angle does 

not correspond to the result obtained in the real 

environment in terms of the same feature. In fact, 

according to the nature of the transient instability, we 

must define the novel generalized feature that 

represents the cross-effects of parameters of power 

system components in the transient state. This did not 

occur in previous research with respect to (a) aspect. 

Hence, this issue motivated us to consider this 

challenge. 

2) Focus on the type of the transient feature space 

in the form of the optimal feature selection scheme is 

a significant issue.  In previous transient studies, 

presenting FSS on the point-based feature space has 

been considered by scholars. In fact, the designing 

framework for FSS in the presence of the multivariate 

transient feature space has remained the motivational 

challenge in terms of (b) aspect. On the other hand, 

in the previous FSS-based transient studies, statistical 

and machine learning-based techniques (namely, 

filter and wrapper method) are applied cohesively (on 

the whole of feature space) caused to loss of many 

useful features. In fact, extracting intrinsic 

information by performing the segment-based 

filter/wrapper approach leads to the survival of the 

optimal-blurred features. 

      According to what was mentioned above, 

defining the generalized feature and selecting the 

most discriminative features over transient sequences 

to achieve high performance (processing time and 

accuracy) on TSA is defined as the motivational 

issues in this paper. To this end, first, we generated 

the transient dataset in the form of reactive power 

two-variate time series (RP2vTS). Next, the 1-

persistent parallel fragmented hybrid feature 

selection scheme (PFHFS) is offered for selecting the 

most relevant features (MRFs) per univariate time 

series. In the proposed 1-persistence PFHFS, we 

applied the filter and wrapper phase which is derived 

from the information theory concept and 

performance retrieved from employing the 

classification technique, respectively. Also, based on 

obtained MRFs for each univariate time series, the 

proposed PFHFS applied on MRFs once again (1-

persistence scenario). Finally, the effectiveness of 

selected final optimal features on TSA is evaluated 

via the SVM-cross validation procedure.  

      The rest of the paper is organized as follows: In  
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section 2, first, we define two-variate time series via 

transient reactive power-based measurement and then 

offer a detailed description of the 1-persistence 

PFHFS scheme. Experimental results of the proposed 

framework are presented in section 3. Finally, the 

conclusion is depicted in section 4. 

2. Methodology 

      In this paper, the proposed framework for TSA is 

depicted based on triple steps as shown in Fig. 1. In 

the first step, we define the reactive power-based 

feature and then generate the transient database via 

offline contingency simulation. Second, we offer the 

1-persistence parallel fragmented hybrid feature 

selection scheme (PFHFS) for extracting 

discriminative features, and third, the efficacy of 

optimal feature set on TSA is evaluated through the 

cross-validation procedure.  

2.1 Extraction of reactive power-based feature 

Definition of the proper feature of power system 

components which is closely associated with 

transient analysis is considered as a preliminary step 

on TSA. For example, rotor angle and voltage 

magnitude are applied as the fixed features in most 

transient researches. However, the definition of the 

novel feature still remains an open issue in this scope. 

In this paper, we offer the reactive power-based 

feature according to the following basic reason.  

      In addition to the resistors elements in the power 

grid that always consume active power, other 

elements such as inductor and capacitor have the 

amount of power received and power consumed in an 

equal manner. In fact, these elements caused a kind 

of exchange in the power grid when voltage is applied, 

namely, gains power when consumed and return 

power during production. This is known as reactive 

power. Such power exchange in transmission lines 

affects the power network in two ways negatively: 

takes up the transmission line capacity and waste 

power (The beer analogy). On the other hand, all of 

the required amounts of reactive power are not 

generated by power plants. In fact, if a capacitor is 

situated next to the inductor, the upstream electric 

power system could be free from reactive power. 

Consequently, other sources play a role in generating 

reactive power. Now we have to answer the question 

of what quota of reactive power consumed by loads 

is produced by power plants? Measuring based on 

this question can reflect the active power losses in the 

power system where network instability is closely 

related to active power. According to what was 

mentioned, the reactive power-based feature is shown 

as follow:  

1) First univariate feature (Basic phrase): The 

proportion of total QLOAD to total QELEC which is 

defined as Eq. (1): 

 

𝐹1
𝑡𝑝 =

∑ 𝑄𝐿𝑂𝐴𝐷𝑖
𝑁𝑏𝑢𝑠𝑔𝑒𝑛
𝑖=1

∑ 𝑄𝐸𝐿𝐸𝐶𝑖
𝑁𝑏𝑢𝑠𝑔𝑒𝑛
𝑖=1

;    𝑝 = 1.2… . 𝑟       (1) 

 

Where QELEC is the machine reactive power and 

 

Figure. 1 The proposed framework for transient stability prediction 
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QLOAD is the reactive power consumption. Also, 

Nbusgen is the number of bus generators in the test case 

and r is the data object in total length of feature in 

second (tp). 

 

2) Second univariate feature (Gradient phrase): The 

first-order derivative of the proportion of total 

QLOAD to total QELEC which is defined as Eq. (2): 

 

𝐹2
𝑡𝑝 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝐹1 = 𝐹1

𝑡𝑝+1 − 𝐹1
𝑡𝑝  ; 𝑝 =

1.2… . 𝑟   (2) 

2.2 1-persistence PFHFS scheme 

      In this paper, the hybrid strategy including filter 

and wrapper techniques was considered for selecting 

MRFs of RP2vTS (See Fig. 2). Each univariate time 

series is individually entered into the optimal feature 

selection process in a parallel manner. As can be seen 

in Fig. 2, the 1-persistence PFHFS scheme consists of 

the conjoined steps as follow: 

Step 1) Data fragmentation on [𝑑𝑎𝑡𝑎](1122)×2×50 

(segmentation on instances and univariate time 

series):  

 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗 = 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑛         (3) 

〈[𝑑𝑎𝑡𝑎]𝑠𝑎𝑚𝑝𝑙𝑒(1122)×𝑢𝑛𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒(2)×𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠(50)〉 

 
      Where j indicates the number of univariate time 

series constrained {𝑗  |𝑗 = 1. 2}, i the segment number 

in j constrained  {𝑖  |𝑖 = 1. 2. … . 𝑛} , m number of 

samples in 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 
𝑖

 
𝑗 , and z number of feature 

points (in j univariate) selected for 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 
𝑖

 
𝑗 . In 

fact, the dimensions per 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 
𝑖

 
𝑗  is 𝑚× 𝑧. 

Step 2) Applying information theory-based scheme 

(filter phase) per 𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗  to identify optimal 

features subset (OFSS) via cross-validation scenario: 

a) First, we applied k-fold cross validation 

on 𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗 : 

 

𝑓𝑜𝑙𝑑𝑣
𝑗

𝑡𝑟𝑎𝑖𝑛: [𝑚′×𝑧]−𝑡𝑒𝑠𝑡 [𝑚″×𝑧]
𝑖

 

 
= 

𝑘 − 𝑓𝑜𝑙𝑑 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 [ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗 ];   (4) 

 
Where k represents the number of desired partition or 

iteration on 𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗 . These partitions called 

𝑓𝑜𝑙𝑑𝑣
𝑗

𝑡𝑟𝑎𝑖𝑛: [𝑚′×𝑧]−𝑡𝑒𝑠𝑡 [𝑚″×𝑧]
𝑖

 

 
 where 𝑣 = 1: 𝑘 . 𝑚′ 

and 𝑚″ number of samples for training and testing 

procedure in v iteration, respectively which is used 

for filter and wrapper phases.  

b) Next, filter phase for each 𝑓𝑜𝑙𝑑𝑣
𝑗

𝑡𝑟𝑎𝑖𝑛: [𝑚′×𝑧]
𝑖

 

 
  

related to 𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗  was applied:  

 

[𝑂𝐹𝑆𝑆{1#}. 𝑂𝐹𝑆𝑆{2#}.… . 𝑂𝐹𝑆𝑆{ℎ#}] 
𝑖 =𝑣

𝑗
  

𝑓𝑖𝑙𝑡𝑒𝑟 𝑝ℎ𝑎𝑠𝑒 [ 𝑓𝑜𝑙𝑑𝑣
𝑗

𝑡𝑟𝑎𝑖𝑛: [𝑚′×𝑧]
𝑖

 

 
] ; ℎ#[1: 𝑠]      (5) 

 

Where h# is the length of OFSS and s the maximum 

length of OFSS for each 𝑓𝑜𝑙𝑑𝑣
𝑗

𝑡𝑟𝑎𝑖𝑛: [𝑚′×𝑧]
𝑖  per j. 

Step 3) Applying wrapper phase (SVM classifier) 

on  𝑓𝑜𝑙𝑑𝑣
𝑗

 
𝑖

 

 
 for performance evaluation based on 

obtained 𝑂𝐹𝑆𝑆{ℎ#} . First, we used Eq. (6) for 

training procedure. Next, testing procedure is 

conducted according to Eq. (7):  

 

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒[𝑚′×𝑂𝐹𝑆𝑆{1#}:𝑂𝐹𝑆𝑆{ℎ#}]
𝑖 =𝑣

𝑗
 

𝑆𝑉𝑀 [ 𝑓𝑜𝑙𝑑𝑡𝑟𝑎𝑖𝑛: [𝑚′×𝑂𝐹𝑆𝑆{1#}:𝑂𝐹𝑆𝑆{ℎ#}]
𝑖

𝑣
𝑗

]      (6) 
𝑡𝑟𝑎𝑖𝑛  

 

[𝐴𝑐𝑐(𝑂𝐹𝑆𝑆{1#}).… . 𝐴𝑐𝑐(𝑂𝐹𝑆𝑆{ℎ#})] 
𝑖 =𝑣

𝑗
 

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒[𝑚′×𝑂𝐹𝑆𝑆{1#}:𝑂𝐹𝑆𝑆{ℎ#}]
𝑖 [𝑦]𝑣

𝑗
 

(7) 

 

Where 𝑦 = ( 𝑓𝑜𝑙𝑑𝑡𝑒𝑠𝑡: [𝑚″×𝑂𝐹𝑆𝑆{1#}:𝑂𝐹𝑆𝑆{ℎ#}]
𝑖

𝑣
𝑗

)
 
. 

 Step 4) Calculating mean value of OFSS 

performance with equal length situated in folds of  

𝑆𝑒𝑔𝑚𝑒𝑛𝑡[𝑚×𝑧]
𝑖

 
𝑗 , then return the maximum value of 

𝑀𝑒𝑎𝑛 
𝑖

𝑣
𝑗

: 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 𝑖 
𝑗⏞            

ℎ#

= 𝑚𝑎𝑥ℎ#[1:𝑠]

(

 
 
 
 
 
 
 
 
 
𝑀𝑒𝑎𝑛1#

𝑖 =
1

𝑘
∑ [𝐴𝑐𝑐(𝑂𝐹𝑆𝑆{1#})] 

𝑖

𝑣

𝑗
𝑘

𝑣=1

𝑣
𝑗

𝑀𝑒𝑎𝑛2#
𝑖 =𝑣

𝑗 1

𝑘
∑  [𝐴𝑐𝑐(𝑂𝐹𝑆𝑆{2#})] 

𝑖

𝑣

𝑗
𝑘

𝑣=1
·
·
·

𝑀𝑒𝑎𝑛ℎ#
𝑖 =𝑣

𝑗 1

𝑘
∑  [𝐴𝑐𝑐(𝑂𝐹𝑆𝑆{ℎ#})] 

𝑖

𝑘

𝑗
𝑘

𝑣=1 )

 
 
 
 
 
 
 
 
 

 

(8) 

 

Step 5) After extracting 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
𝑖

 
 ⏞            

ℎ#

 per j, we 

ranked it to find 𝑙 − 𝑏𝑒𝑠𝑡1(F1 univariate) and         𝑙 −

𝑏𝑒𝑠𝑡2 (F2 univariate) as the Eq. (9) and Eq. (10):  
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𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
 

 
1 =

𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑙−𝑏𝑒𝑠𝑡1

(

 
 
 
 
 
 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 

1
 
1⏞            

ℎ#

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
2

 
1⏞            

ℎ#

·
·
·

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
𝑛

 
1⏞            

ℎ#

)

 
 
 
 
 
 

 

(9) 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
 

 
2

= 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑙−𝑏𝑒𝑠𝑡2

(

 
 
 
 
 
 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 

1
 
2⏞            

ℎ#

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
2

 
2⏞            

ℎ#

·
·
·

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
𝑛

 
2⏞            

ℎ#

)

 
 
 
 
 
 

 

(10) 

 

   Where l is the first l 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
𝑖

 
 ⏞            

ℎ#

 per j which 

is ranked by accuracy index.  

Step 6) We apply obtained 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑒𝑡 
 

 
𝑗  on 

PFHFS steps once again (1-perssitence scenario) to 

achieve the final optimal feature subset per j. 

 

Figure. 2 Overall process for 1-persistence PFHFS scheme 
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      After conducting the 1-persistence scenario, we 

combine 𝑙 − 𝑏𝑒𝑠𝑡1:2 (1−𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒) as the final 

optimal features subset. Then, according to Step 3 of 

Fig. 1, the final optimal features are used for transient 

stability prediction. 

2.2.1 Filter phase: information theory 

      In the filter phase of 1-persistence PFHFS, 

statistical characteristics of features play a role in 

determining their importance. In fact, we focus on 

how attributes relate to the class target. To this end, 

relevance, interdependence, and redundancy analysis 

based on information theory criteria are considered. 

In terms of relevance, symmetric uncertainty (SU) 

[21] based on mutual information (MI) and entropy is 

used to measure the amount of information shared by 

two variables: 

 

𝑆𝑈𝑖.𝑐(𝐹𝑖. 𝐶) = 2
𝑀𝐼(𝐹𝑖 . 𝐶)

𝐻(𝐹𝑖) + 𝐻(𝐶)
              (11) 

 

      Where 𝐹𝑖 is feature and 𝐶 target class. 

      Where 𝑀𝐼(𝐹𝑖 . 𝐶) and 𝐻(𝐶) is defined as Eq. (12) 

and Eq. (13), respectively:  
 

𝑀𝐼(𝑋. 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)             (12) 

 

Let X be a discrete random variable and probability 

density function 𝑝(𝑥) = Pr {𝑋 = 𝑥}: 

 

𝐻(𝑋) = −∑ 𝑝(𝑥) log 𝑝(𝑥)𝑥∈𝑋               (13) 

 

      In terms of interdependence and redundancy 

analysis (IR), redundancy and the interdependent 

ratio between two features are used, which is given as 

Eq. (14): 

 

𝐼𝑅(𝑖. 𝑗) = 2
𝑀𝐼(𝐹𝑖; 𝐶|𝐹𝑗) − 𝑀𝐼(𝐹𝑖. 𝐶)

𝐻(𝐹𝑖) + 𝐻(𝐶)
         (14) 

 

      Where −1 ≤ 𝐼𝑅(𝑖. 𝑗) ≤ 1. 

      According to what was mentioned above, after 

the data fragmentation process, in the first step of the 

filter phase, the weight of features computed using 

SU measure (See Eqs. (11) to (13)) represents the 

degree of importance of the features. In the second 

step, as a supplementary analysis, redundancy and 

interdependence ratio has an influence on the weight 

of the features. First, the feature with higher SU is 

considered as an initial optimal feature (OFFS {1#}). 

Then, for the rest of the features, the weight update 

factor (WUF) is defined such that its amount is 

obtained from the redundancy and interdependence 

ratio (Eq. (14)) of each feature in the presence of the 

initial final feature. WUF is applied as a coefficient 

in SU of features, and the weight of features is 

updated. After sorting, the second final feature 

(OFFS {2#}) is selected. This process will be 

continued until (OFFS {h#}) features are selected. In 

this way, by applying the two-steps filter phase, s 

most important features among the initial features are 

selected and entered into the wrapper phase as input. 

2.2.2 Wrapper phase: SVM classifier 

      One of the important approaches to cover the 

weakness of filter methods is applying learning 

models for selecting the optimal feature set. In fact, 

the performance evaluation of classification 

techniques in the presence of the selected features 

subset is considered a complementary step to explore 

optimal feature sets. Hence, after selecting the 

features subset in the filter phase, their effectiveness 

in increasing the accuracy of the classification 

technique in the training and testing procedure is 

examined. In this paper, the SVM classifier is used in 

the wrapper phase of the 1-persistence PFHFS 

scheme. The SVM is a supervised learning model 

based on Vapnik–Chervonenkis (VC) theory [22] for 

binary classification. Due to SVM's high-

performance prediction on various scientific research, 

applying SVM for transient analysis is an incentive 

approach that has been considered by scholars on the 

TSA problem. On the other hand, in high-

dimensional transient space, non-linear separability 

is the potential way to detect stability or instability 

accurately. To this end, kernel machine-based SVM 

to decrease the generalization error (maximum-

margin hyperplane) is formulated following: 

      The optimization problem and the constraints of 

SVM is defined according to Eq. (15): 

 

𝛼∗ = arg𝑚𝑖𝑛𝛼  
1

2
∑∑𝛼𝑖

𝑙

𝑗=1

𝛼𝑗

𝑙

𝑖=1

𝑦𝑖𝑦𝑗𝐾(𝑥𝑖. 𝑥𝑗)

−∑𝛼𝑘;

𝑙

𝑘=1

 

0 ≤ 𝛼𝑖 ≤ 𝐶.    ∑𝛼𝑖𝑦𝑖 = 0.      𝑖. 𝑗 = 1.… . 𝑙

𝑙

𝑗=1

 

(15) 

 

      Where 𝐾(𝑥𝑖. 𝑥𝑗) is Gaussian radial basis function 

(RBF) kernel which is defined as Eq. (16): 
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𝐾(𝑥 . 𝑥′) = 𝑒𝑥𝑝(−
||𝑥 − 𝑥′||2

2𝜎2
)                    (16) 

 

   Where ||𝑥 − 𝑥′||2  is squared Euclidean distance 

between the two trajectory features. The optimal  

 

𝑓(𝑥) = 𝑠𝑔𝑛(∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖. 𝑥)

𝑖∈𝑆

+ 𝑏) ; 

𝑏 =
1

𝑆
∑[𝑦𝑖 −∑𝛼𝑗𝑦𝑗𝐾(𝑥𝑗. 𝑥𝑖)

𝑗

]

𝑖∈𝑆

 

(17) 

3. Experimental results 

3.1 Transient dataset generation 

The required transient dataset for the 1-

persistence PFHFS scheme (See Fig. 1; step 2) and 

performance evaluation of the proposed framework 

(See Fig. 1; step 3) was described in this section. In 

this paper, transient simulations are conducted on the 

16-Bus, 68-Machine, 5-Area system, a reduced-order 

equivalent of the New England-New York 

interconnection (NETS-NYPS) system. The single-

line diagram (SLD) of the NETS-NYPS grid case is 

shown in Fig. 3 [23].  

According to Fig. 4, the transient data generation 

procedure includes three steps: 1) run load flow, 2) 

sample transient disturbance characterized by its type, 

duration, and convert load options, and 3) save output 

channel related to QELEC and QLOAD. These steps 

are followed based on SIEMENS PSS/E application 

program interfaces (APIs) and Python technology. 

The APIs used in Python technology to automate 

dynamic simulation in PSS/E can be seen around the 

triple steps (e.g.; tysl, conl). All APIs based on the 

‘psspy’ module for dynamic simulation using python 

scripting are shown in Table 1. We commented 

concise description per APIs (its function and 

argument) in Table 1 (# comments) according to 

Reference [24]. Consequently, 1122 simulation cases 

(578 case is stable and 544 case is unstable) was 

obtained based on defined RP2vTS for training and 

testing procedure. As can be seen in Table 1, the 

simulation time step is 0.0167 second (s), fault 

duration time almost 0.23. Also, we observed 50 

cycles after fault clearing time (run simulation to 

1.1027 s). Also, failure on any generator and line has 

been simulated on the N-1 contingency criterion. 

Furthermore, parameter tuning based on convert load  

 

 
 

for applying severe transient was considered in the 

form of four elements of “conl” activity namely 

convert the constant MVA load to constant current 

active/reactive load and constant admittance 

active/reactive load. According to what was 

mentioned above, for example, Fig. 5 shows the 

proportion of total QLOAD to the total QELEC (F1  

univariate of RP2vTS) for stable and unstable 

samples on NETS-NYPS grid case. 

3.2 Extracting MRFs of RP2vTS by                    

1-persistence PFHFS 

    In this section, the result of applying the 1-

persistence PFHFS scheme on RP2vTS is shown in 

Table 2. According to 1-persistence PFHFS scheme 

steps (See Section 2.2), the number of segments and 

size of its, maximum selected features by filter phase 

(s), type of cross-validation related to wrapper phase, 

and selected features based on filter and wrapper 

phase regarding PFHFS and 1-persistence PFHFS are 

shown in Table 2. After selecting the best subsets per 

time series features (F1 & F2) in PFHFS, these subsets 

are considered as input for the 1-persistence scenario. 

Finally, after conducting the 1-persistence scenario, 

we integrated selected best subsets per time-series 

features. In fact, F1 cycle (22,26,27,28,42) and F2 

cycle (31,37) are final optimal cycles based on 

proposed feature selection scheme for transient 

stability prediction. 

3. 3. TSP results based on MRFs of RP2vTS 

After extracting MRFs of RP2vTS via the               

1-persistence PFHFS scheme, we evaluated the 

performance of the proposed framework for TSP. To  

this end, 5-fold cross-validation based on the SVM-

RBF classifier was considered in this section. The 

prediction performnace based on triple matrics (See  

 

 
Figure. 3 SLD of NETS-NYPS grid case 
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Table 3) per splits (5-fold training and testing sets) 

was calculated via fine-tuning on parameters for the 

classifier (C and σ). The optimal pairs in SVM-RBF 

are selected from {2𝑖|𝑖 = 0.  1.  2. … .8} and {2𝑗|𝑗 =

−5.−3.… .4}, respectively. Fig. 6 shows the SVM-

RBF performance for TSP based on fine-tuning (C, 

σ) grouped by folds. The maximum value of the Acc 

index (best values of C and σ) for each fold is 

obtained according to Table 4. 

Also, TPR and TNR are measured according to 

obtained Acc per folds. The mean of indices (Acc, 

TPR, TNR) obtained in folds depicted in the 

underline-face. As can be seen in Table 4, the 

classification accuracy of SVM-RBF based on MRFs 

shows the high-performance capacity for TSP (Acc: 

96%, TPR: 95%, and TNR: 97%).  

In addition to the importance of prediction 

accuracy on TSP, the processing time is also of great 

concern on real-time TSA. As stated in the third 

paragraph of the paper’s introduction (applying 

feature selection scheme), the timely corrective 

control action (<1 s) [2] is possible through low 

processing time. As mentioned earlier, we observed 

50 cycles after fault  

Table 1. Python scripting for dynamic simulation based on PSS/E API (‘psspy’ module) 

for k in xrange(1,buscon+1): 

     x=busm[0,k-1] 

     psspy.psseinit(150000000) #Initialize PSS/E, requested bus size 

     psspy.case(CASE) #PSS/E Saved Case file and transfers its data into the PSS/E working case 

     report = r"C:\Users\...\report"+`k`+".txt"  

     ierr=psspy.progress_output(2,report,[0,0]) #specify the progress output device; direct output to a file and 

open with carriage control format and, for files, for overwrite of existing files 

     psspy.conl(-1,1,1) #initialize for load conversion 

     psspy.conl(-1,1,2,[0,0],[100,0,0,100]) #convert the constant MVA load for a specified grouping of 

network loads to a specified mixture of the constant MVA, constant current, and constant admittance load 

characteristics  

                psspy.conl(-1,1,3) # postprocessing housekeeping 

     psspy.cong() #convert generators from their power flow representation in preparation for switching 

studies and dynamic simulations 

     psspy.ordr() #calculate a sparsity preserving ordering of buses in preparation for the processing of 

network matrices 

     psspy.fact() #factorize the network admittance matrix in preparation for switching studies and dynamic 

simulations 

     psspy.tysl() #run switching study network solutions 

     case_root=os.path.splitext(CASE)[0] 

     psspy.save(case_root+"_C"+`k`+".sav") #save the PSS/E working case in a Saved Case File 

     psspy.dyre_new(dyrefile="C:\Program Files (x86)\PTI\PSSE33\EXAMPLE\NETS-NYPS 68 Bus 

Syste.dyr") #read a dynamics data file, and place the model references specified on its data records into 

dynamics working memory 

     psspy.chsb(sid=0,all=1,status=[-1,-1,-1,1,3,0]) #chsb: specify the simulation variables to monitor during 

dynamic simulation. run (activity chsb); machine reactive power: QELEC 

     psspy.chsb(sid=0,all=1,status=[-1,-1,-1,1,26,0]) #chsb: specify the simulation variables to monitor during 

dynamic simulation. run (activity chsb); reactive power consumption: Qload 

     psspy.snap(sfile="C:\Program Files (x86)\PTI\PSSE33\EXAMPLE\python_test_"+`k`+".snp") #save 

PSS/E dynamics working memory into a Snapshot File 

     psspy.dynamics_solution_param_2(intgar=[11,271,0,0,0,0,0,1],realar= 

[1,0.0005,0.0167]) #modify the dynamic simulation solution parameters in dynamics working memory, e.g.; 

intgar[1] for  network solution maximum number of iterations and intgar[2] for number of output channels 

being monitored 

     psspy.strt(outfile="C:\Users\...\out\python_test_"+`k`+".out") #recorded during the dynamic simulation 

     psspy.throwPsseExceptions = True #throw exceptions instead of returning error codes values    

     psspy.run(tpause=0.03677) #fault occurrence time 

     psspy.dist_bus_fault(ibus=x,units=3,values=[0,0]) #apply a fault at a bus during dynamic sim; ibus:  # bus 

which the fault is to be placed; basekv: base voltage in kV used to calculate the per unit fault admittance. 

     psspy.run(tpause=0.2677) #fault clearing time 

     psspy.dist_clear_fault() #clear a fault during dynamic simulation 

     psspy.dist_bus_trip(ibus=x) #disconnect a bus during dynamic simulation 

     psspy.run(tpause=1.1027) #simulation time termination 
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clearing time. The transient space search on 50 cycles 

in the F1 time series and 50 cycles in the F2 time 

series for selecting MRFs, does not exceed 42 cycles 

(cycle 42 and less than 42 selected as the MRFs in the 

F1 time series, in the F2 time series cycles less than 42 

are selected) (See Table 2). Hence, it is enough to 

observe 42 cycles after fault clearing time, which is 

about 701 milliseconds (ms) (See Table 5). Also, 

according to our measurements, the prediction time 

based on SVM-RBF regarding selected MRFs is 13.4 

ms. Consequently, the processing time for TSP is 

714.8 ms, which provides ample time to take 

corrective action. 

3. 4. Comparison of experimental methods:             

1-persistence PFHFS vs. three efficient FSS 

Comparing the performance of 1-persistence 

PFHFS with three efficient FSS for TSA is 

 

 
Figure. 4 Overall transient simulation on NETS-NYPS grid case 

 
Figure. 5 F1 univariate fluctuations of RP2vTS: stable and unstable sample 
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considered in this section. Hence, we concentrated on 

the minimum redundancy maximum relevance 

(mRMR), ReliefF, and fast correlation-based filter 

(FCBF) algorithms which considered by scholars in 

the field of transient stability [17-20]. In the first step, 

three efficient FSS (3eFSS) was applied to RP2vTS 

for selecting MRFs.  

 

 
 

Next, the obtained MRFs by 3eFSS entered to SVM-

RBF classifier for performance evaluation on TSP. 

After conducting FSS methods on RP2vTS, the  

 

Table 2. The obtained MRFs based on 1-persistence PFHFS 

 F1 time series: Max of Acc. based on SVM-cross validation on segments (fine-

tuning of SVM-RBF parameters) 

 Segment Size Features 

(cycle) 

[Selected features based on  

filter and wrapper phase] (Acc.) 

 

 

 

PFHFS 

(F1 time series) 

(5-cross validation) 

(s: 4#) 

Segment 1 115×5 [1,2,3,4,5] [1,2] (89.56) 

Segment 2 115×5 [6,7,8,9,10] [6,7,8,9] (88.69) 

Segment 3 115×5 [11,12,13,14,15] [11] (86.95) 

Segment 4 115×5 [16,17,18,19,20] [16,17] (98.26) 

Segment 5 115×5 [21,22,23,24,25] [21,22,23] (100) 

Segment 6 115×5 [26,27,28,29,30] [26,27,28,29] (100) 

Segment 7 115×5 [31,32,33,34,35] [31] (100) 

Segment 8 115×5 [36,37,38,39,40] [36] (97.39) 

Segment 9 115×5 [41,42,43,44,45] [41,42] (97.39) 

Segment 10 87×5 [46,47,48,49,50] [46,47,48,49] (90.71) 

1-persistence  

PFHFS 

(F1 time series) 

(3-cross validation) 

(s: 2#) 

Segment 1 270×3 [26,22,41] [26,22] (90.37) 

Segment 2 270×3 [27,42,16] [27,42] (98.51) 

Segment 3 270×3 [28,17,21] [28] (96.66) 

Segment 4 312×3 [31,23,29] [31,23] (90.06) 

 F2 time series: Max of Acc. based on SVM-cross validation on segments (fine-

tuning of SVM-RBF parameters) 

 

 

 

PFHFS 

(F2 time series) 

(5-cross validation) 

(s: 4#) 

Segment 1 115×5 [1,2,3,4,5] [1,2,3,4] (75.65) 

Segment 2 115×5 [6,7,8,9,10] [6,7,8] (78.26) 

Segment 3 115×5 [11,12,13,14,15] [11,12,13,14] (75.65) 

Segment 4 115×5 [16,17,18,19,20] [16,17,18] (78.26) 

Segment 5 115×5 [21,22,23,24,25] [21,22] (81.73) 

Segment 6 115×5 [26,27,28,29,30] [26,27,28,29] (73.04) 

Segment 7 115×5 [31,32,33,34,35] [31,32,33,34] (87.82) 

Segment 8 115×5 [36,37,38,39,40] [36,37,38,39] (84.34) 

Segment 9 115×5 [41,42,43,44,45] [41,42] (71.30) 

Segment 10 87×5 [46,47,48,49,50] [46,47,48] (64.31) 

1-persistence 

PFHFS 

(F2 time series) 

(3-cross validation) 

(s: 2#) 

Segment 1 270×4 [6,16,21,36] [6,16] (71.11) 

Segment 2 270×4 [17,7,31,37] [31,37] (82.96) 

Segment 3 270×4 [8,32,38,64] [32,38] (78.14) 

Segment 4 312×3 [18,33,34,39] [18, 33] (66.98) 

Integration of best [F1 1-persistence & F2 1-persistence]: (F1 cycle: [22,26,27,28,42] + F2 cycle [31,37]) 

 

 Table 3. The performance metrics 

Metrics                                                     Descriptions    

Accuracy 

Sensitivity 

Specificity 

Acc=(TP+TN)/(TP+TN+FP+FN)    

TPR=TP/(TP+FN)                             

TNR=TN/(TN+FP)                             

Symbols; P: stable sample, N: unstable sample,  

T: predicted correctly, F: predicted incorrectly 

 

 Table 4. Results of transient stability status 

prediction based on MRFs of RP2vTS 

SVM-RBF (5-fold cross validation) 

Max Acc. per fold: (Accuracy) [TPR/TNR] 

          fold 1                          fold 2                         

(96.22) [ 96.30/ 96.15]      (97.16) [ 96.30/ 98.08] 

            fold 3             fold 4 

(97.16) [ 98.15/ 96.15] (92.45) [88.89/ 96.15]                         

                                   fold 5 

                        (96.22) [ 92.59/ 100] 

Mean (measures): Accuracy/TPR/TNR 

95.84/ 94.44/ 97.30 
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MRFs grouped by 1-persistence PFHFS and 3eFSS 

was obtained according to Table 6. As can be seen in 

Table 7, 1-persistence PFHFS outperformed mRMR, 

 

 
 

 

 

 

Figure. 6 Illustration of SVM-RBF performance for TSP based on learning parameters group by folds. 

 Table 5. Processing time for TSP based on MRFs 

Observation 

in second / cycle 

Processing Time a 

42 / 0.7014 701.4 ms+13.4 ms= 714.8  ms 
a Processing Time=PoT+prediction time; b millisecond 

 

 

Table 6. Obtained MRFs grouped by FSS 

Methods Obtained MRFs : F1 cycle + F2 

cycle 

1-persistence 

PFHFS 

F1: [22,26,27,28,42]+F2 [31,37]) 

mRMR F1: [1,2,3]+F2 [5,6,7,31]) 
ReliefF F1: [2,3,4,5,7,9,10]+F2 [-]) 
FCBF F1: [6,8,16,17,18,19,20]+F2 [-]) 
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ReliefF, and FCBF approaches based on triple metric 

(Acc, TPR, and TNR) regarding cross validation 

technique (ignoring only 0.74% less TPR than 

ReliefF). An important point to note is that among the 

3eFSS applied cohesively on the whole of feature 

space, only the mRMR can extract the optimal cycles 

of the F2 time series feature (See Table 6). In fact, 

based on ReliefF and FCBF methods, none of the 

cycles in F2 survive. However, mRMR does not have 

a high performance compared to the FCBF and 

ReliefF algorithms (ignoring only 0.37% more TPR 

than FCBF) due to applying its own information 

theory formula on F1 in shallow-mining manner. On 

the other hand, by sacrificing blurred MRFs of F2 

through F1-oriented filter mechanism in FCBF and 

ReliefF, the opportunity to gain high-performance 

capacity than 1-persistence PFHFS is lost. Overall, 

conducting the segment-based filter-wrapper scheme 

by 1-persistence PFHFS on dual time-series features 

separately caused to taking optimal cycles of F1 and 

F2 and achieving high accuracy than FCBF, mRMR, 

and ReliefF on TSP. 

4. Conclusion 

      In this paper, the 1-persistence PFHFS scheme is 

offered for extracting optimal feature subset on 

RP2vTS for TSA in an accurate and timely manner. 

According to the proposed framework, first, we 

define reactive power-based two-variate time series 

(called RP2vTS). Next, the hybrid feature selection 

scheme based on filter and wrapper methods is 

offered for selecting the most relevant features 

(MRFs) per univariate time series. The information 

theory concept was considered in the triple index in 

the filter phase, namely relevance, interdependence, 

and redundancy analysis. Next, the obtained 

preliminary optimal features subset entered into the 

wrapper phase for measuring classification 

performance based on selected subsets. Also, as the 

1-persistence scenario, the obtained MRFs per 

univariate time series followed the PFHFS steps once 

again. Finally, after integrating the final optimal 

feature subset per univariate features, we evaluated 

the efficacy of the MRFs for TSP based on the SVM-

RBF classifier. The results showed that the proposed 

framework by selecting MRFs of RP2vTS offers 

high-performance capacity (Acc: 96%, TPR: 95%, 

and TNR: 97%, processing time:714.8 ms) on TSP. 

To ensure the efficacy of the 1-persistence PFHFS for 

TSA, experimental comparison in the presence of 

3eFSS was considered as the final report in this paper. 

The results showed that the 1-persistence PFHFS 

outperformed mRMR, ReliefF, and FCBF algorithms 

based on triple metric regarding cross-validation 

technique. 
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Table 7. Comparing 1-persistence PFHFS performance with mRMR, ReliefF, and FCBF. 

 

Methods 

 

                                         

       5-fold cross validation 

 

 

       fold 1 fold 2 fold 3    fold 4     fold 5 

 

 

1-persistence 

PFHFS  

Max Acc. per fold: (Accuracy) [TPR/TNR]  

(96.22)  

[96.30/ 96.15] 

(97.16)  

[96.30/ 98.08] 

(97.16) 

[98.15/ 96.15] 

(92.45) 

 [88.89/ 96.15]                         

     (96.22) 

 [92.59/ 100] 

Mean (measures): Accuracy/TPR/TNR  

95.84/ 94.44/ 97.30 

 

 

mRMR 

Max Acc. per fold: (Accuracy) [TPR/TNR] 

      (92.45)                 (92.45)                (94.33)                 (89.62)               (92.45) 

 [92.59/ 92.31]     [94.44/ 90.38]      [98.15, 90.38]      [90.74, 88.46]    [88.89, 96.15] 

Mean (measures): Accuracy/TPR/TNR 

92.26/ 92.96/ 91.53 

 

 

ReliefF 

Max Acc. per fold: (Accuracy) [TPR/TNR] 

      (93.39)                  (98.11)               (95.28)                 (90.56)                 (97.16) 

 [98.15/ 88.46]       [98.15/ 98.08]     [96.30/ 94.23]      [88.89/ 92.31]     [94.44/ 100] 

Mean (measures): Accuracy/TPR/TNR  

 94.90/ 95.18/ 94.61 

 

 

FCBF 

Max Acc. per fold: (Accuracy) [TPR/TNR] 

      (95.28)                  (94.33)                (94.33)                 (89.62)                 (94.33) 

 [94.44/ 96.15]       [96.30/ 92.31]     [94.44/ 94.23]     [87.04/ 92.31]     [90.74/ 98.08] 

Mean (measures): Accuracy/TPR/TNR 

 93.57/ 92.59/ 94.61 
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