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Abstract: We describe a Differential Evolution (DE) algorithm for solving U-shaped Assembly Line Balancing 

Problems – Type 2 (UALBP-2). The minimum cycle time in a just-in-time production line for producing a single 

product with a certain number of workstations was investigated by developing solution methods and testing on 15 

problem sets (101 instances). The problems were divided into 10 medium-scale problem sets (50 instances) and 5 

large-scale problem sets (51 instances). When comparing the results with those obtained from the rule-based heuristic; 

three rules and two rules, the DE algorithm could generate 14 better solutions (28%) in the medium-scale problems, 

and 3 better solutions (about 6%) in the large-scale problems. In terms of computational time, DE algorithm was faster 

than rule-based heuristic methods in medium-scale problems. In large problems, our DE algorithm used computational 

times that were shorter by 73% (for two rules) and 98% (for three rules).  
Keywords: Differential evolution algorithm, Just-in-time, U-shaped assembly line balancing problems. 

 

 

1. Introduction 

Assembly line balancing is an important problem 

for many industries, especially industries that are 

constantly adapting assembly lines for new products 

to respond to customer needs for delivery, raw 

materials, products, and services in the shortest 

possible time, or "just-in-time" (JIT) manufacturing. 

In on-time production and delivery of products, cycle 

time is a key factor in balancing an assembly line in 

a JIT system. The type of assembly line balancing is 

another factor affecting the efficiency of line 

balancing. 

   Assembly line balancing is a form of production 

planning used to assign appropriate tasks to each 

workstation in order to reduce cycle time or the 

number of workstations, increase flexibility in 

process flow, and eliminate delays or bottlenecks 

during production. There are two types of assembly 

line balancing problems: simple assembly line 

balancing problem (SALBP) and general assembly 

line balancing problem (GALBP) [1, 2], as shown in 

Fig. 1. SALBP can be classified into four types based 

on the balancing objective, i.e., SALBP-1 to 

minimize the number of workstations (m), SALBP-2 

to minimize the cycle time (c), SALBP-E to find the 

optimal efficiency of the assembly line, and SALBP-

F to balance the operations at each workstation. 

GALBP can be classified into three or more types, 

i.e., mixed model assembly line balancing problem 

(MALBP), U-shaped assembly line balancing 

problem (UALBP), and some others. The MALBP 

models the production of mixed products and 

multiple models of them. In the UALBP, a worker 

can work on both sides of a U-shaped assembly line: 

it is also divided into three types: UALBP-1 to 

minimize the number of workstations (m), UALBP-2 

to minimize the cycle time (c), and UALBP-E to find 

the optimal efficiency of the line. The third type of 

GALBP is an assembly line balancing problem with 

a wide range of applications, which can be considered 

for many conditions.  

    In many industries, straight SALBP lines (see Fig. 

2 (a)) and U-shaped GALBP lines (see Fig. 2 (b)) are 

normally used to minimize the cycle time. However, 

U-shaped line balancing offers more advantages than 

straight line balancing: it has higher 
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Figure. 1 Taxonomy of assembly line balancing problems [1] 

 

 
(a)                                           (b) 

Figure. 2 Assembly line layouts: (a) Straight assembly 

line and (b) U-shaped assembly line 

 

efficiency and flexibility, fewer workstations, and 

lower cycle time [3-5]. Therefore, we focused on 

solving problems with U-shaped assembly line 

balancing. In the following, we present review papers 

that deal with UALBP. 

U-shaped assembly line balancing problem 

(UALBP) was first described in 1994 by Miltenburg 

and Wijngaard [6], who solved the 7-11 tasks 

problem with dynamic programming (DP) and the 

21-111 tasks problem with the ranked positional 

weight heuristic (RPW). Thereafter, various 

approaches were developed and applied to solve the 

UALBP. For example, Urban [7] used integer linear 

programming for the UALBP formulation and solved 

it using CPLEX software. Scholl and Klein [8] solved 

the solution of the UALBP using the ULINO method. 

Hwang, Katayama and Gen [9] presented a multi-

objective genetic algorithm (GA) (line efficiency and 

workload variation) for solving the 21-111 tasks 

problem and compared with integer programming 

and RPW. Baykasoğlu and Dereli [10] applied ant 

colony optimization (ACO) for the UALBP and 

solved the 8-297 tasks problem using Visual Basic 

software. Fathi, Alvarez and Rodríguez [11] 

presented the critical task method (CTM) for solving 

the UALBP and compared it with 12 other heuristics. 

Kriengkorakot [12] applied heuristics (maximum 

task time, minimum task time, maximum ranked 

positional weight and Greedy randomized) to 

improve assembly line balancing in a garment factory. 

Sresracoo, Kriengkorakot and Chantarasamai [13] 

applied a differential evolution algorithm (DE) to the 

UALBP-1 and solved the 21-297 tasks problem using 

NetBeans software. Zhang, Tang, Han and Li [14] 

proposed an enhanced migrating birds optimization 

algorithm (EMBO) for UALBP with worker 

assignment. Li, Hu, Tang and Kucukkoc [15] 

developed an algorithm based on the branch and 

bound remember algorithm to solve UALBP-1 with 

uncertain task time. Varnasilpin and Masuchun [16] 

presented the uncertain problem of three U-shaped 

lines defining time as an interval for the UALBP and 

solved it using MATLAB R2014a software.  

In reviewing U-shaped assembly line balancing 

problem, it was found that many researchers have 

specifically solved UALBP-1, while UALBP-2, 

which is important for JIT, is still limited. 

Jonnalagedda and Dabade [4] in 2014 used a genetic 

algorithm (GA) to solve small and medium sized 

problems of the UALBP-2 and found that the 

algorithm can solve the problem very well for a small 

number of workstations. In 2017, Li et al. [5] applied 

rule-based heuristics (two rules and three rules) to 

solve medium and large problems of UALBP-2 and 

found that the algorithm performs well in terms of 

efficiency and computational speed compared to 

integer programming, but the uncertainty of its 

computational accuracy limits its application. 

Assembly line balancing type 2 (ALBP-2) is 

important for JIT as it can minimize the cycle time 

for a given number of workstations. ALBP-2 was first 

reported by Klein and Scholl in 1996 to solve the 

simple assembly line balancing problem - type 2 

(SALBP-2) using branch-and-bound methods [17]. 

After that, many researchers have proposed heuristic 

Assembly line balancing problem

Simple assembly line balancing problem
(SALBP)

General assembly line balancing problem
(GALBP)

SALBP-1 SALBP-2 SALBP-E SALBP-F UALBPMALBP/MSP Other

UALBP-1 UALBP-EUALBP-2
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methods to solve assembly line problems, e.g. Liu, 

Ong and Huang [18, 19] presented two bi-directional 

heuristics for SALBP-2 to minimize the cycle time 

and found that the algorithm was efficient in 

minimizing both the cycle time and the mean absolute 

deviation. Seyed-Alagheband, Fatemi Ghomi and 

Zandieh [20] applied the simulated annealing 

algorithms (SA) to solve sequence-dependent setup 

time problems with the objective of minimizing the 

cycle time for a given number of workstations and 

found that this algorithm was effective in terms of 

computation time and optimal solutions. Jirasirilerd 

et al. [2] presented a variable neighborhood strategy 

adaptive search (VaNSAS) to minimize the cycle 

time for the SALBP-2 problem in the garment 

industry considering the number and type of 

machines used at each workstation and found that the 

algorithm provides a better solution and much less 

computation time compared to the program LINGO.   

After reviewing UALBP and ALBP-2, we found 

that the heuristic and metaheuristic methods are 

effective in solving problems. Many researchers have 

been engaged in solving problems for different 

purposes by using different methods like SA, CTM, 

GA, ACO and DE. However, the differential 

evolution algorithm (DE), which is considered as the 

optimal metaheuristic method because of its speed 

and accuracy [21, 22], has attracted our attention.  

The DE algorithm was first described by Storn 

and Price [23] in 1997. It has been used to solve a 

wide variety of problems and objectives in, for 

example, assignment problem to minimize cost [22], 

transportation problem to maximize profit and 

minimize cost of transport [24-26], location routing 

problem to minimize the fuel usage [27], simple 

assembly line balancing problem-type 1 (SALBP-1) 

to minimize number of workstation [28, 29]  and U-

shaped assembly line balancing problem-type 1 

(UALBP-1) to minimize number of workstation [13]. 

Ramadas, Abraham and Kumar [30] proposed a new 

revised mutation strategy in DE algorithm to improve 

the optimal solution. Recently, Srichok et al. [31] 

combined the DE algorithm with response surface 

method (RSM) to find the optimal parameters for 

friction stir welding. For assembly line balancing 

problems, the results showed that the DE algorithm is 

more efficient and requires less computation time 

compared to GA and Tabu Search (TS) in SALBP-1 

[28] and with ACO in UALBP-1 [13]. However, the 

DE algorithm has not yet been used to solve the U-

shaped assembly line balancing problem - type 2 

(UALBP-2).  

Since this study aimed to improve the efficiency 

of assembly line balancing for JIT systems, we 

therefore developed a heuristic method using the DE 

algorithm to solve the UALBP-2 to minimize the 

cycle time for a given number of workstations. The 

UALBP-2 was solved by applying the Java program 

in the NetBeans software. To evaluate the efficiency 

of our modified DE algorithm, our results should be 

compared with other efficient methods. However, 

there were few reports on UALBP-2 [4, 5] due to its 

complexity and difficult to solve problem, especially 

when the number of tasks increases. Therefore, we 

decided to use the same data and compare the results 

with Li et al. [5] who used the rule-based heuristic 

methods to solve medium problems with 21-58 tasks 

and large problems with 70-297 tasks.  

The structure of this paper is as follows: Section 

2 describes the overall algorithm of our modified DE. 

Section 3 presents the result and discussion. The 

advantages of our modified DE algorithm over the 

rule-based heuristic methods in terms of minimized 

cycle time and computation speed are presented. 

Section 4 draws the conclusions and presents the 

future direction of our work. 

2. Our modified DE algorithm 

Our modified DE algorithm has four steps: (1) 

generation of the initial target vector, (2) mutation, 

(3) recombination, and (4) selection. In the first step, 

an initial target vector for each task is generated using 

a random number between 0 and 1. These target 

vectors are used to choose the assignments of tasks to 

workstations. Number of workstations, m, and the 

number of possible initial solutions, NP, are set. In 

the second step, the DE algorithm uses mutation by 

1) finding the difference of the randomized vectors 

from the population, 2) multiplying this difference by 

the scaling factor, F, and 3) adding to another 

randomized vector. In the following, we refer to the 

population to be mutated as the “target vector” and 

the adjusted or mutated one as the “mutant vector”. 

In the recombination step, the target and mutant 

vectors are combined, using a settable factor, the 

crossover rate, CR, to make a decision. The 

recombined vector is referred to as the “trial vector”. 

The trial vector was evaluated using the fitness 

function. After that, the fitness for the trial vector 

were compared with the target vector to find the best 

vector to be used as the target vector for the next 

evaluation. The DE algorithm loop was repeated for 

a specified number of rounds, R, and then the final 

result was displayed. Steps of our DE algorithm are 

shown in Fig. 3 More details will be described and 

illustrated in the next sections. Application of our DE 

algorithm to a UALBP-2 problem was illustrated 

using a small example taken from Jackson [32]: the 
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Figure. 3 Data flow for our differential evolution (DE) 

algorithm in UALBP-2 

 

 

Figure. 4 Precedence diagram for the sample problem, 

taken from Jackson [32] 

 

precedence diagram for its 11 tasks is shown in Fig. 

4 

In Fig. 4, numbers in the circles label the tasks 

and numbers next to the circles show the time of each 

task. In balancing a UALBP-2, these variables must 

be set: m = number of workstations, R = number of 

rounds, NP = number of possible initial solutions, F 

= scaling factor and CR = crossover rate. For this 

sample, we set: m=4 workstations, R=1 round, NP=5, 

F=0.8 and CR=0.8. Details of the calculation follow 

in sections 2.1-2.4. 

2.1 Generate the initial target vector 

In this sample task, the number of possible initial 

solutions, NP=5, and five sets of target vectors were 

generated - see Table 1. The initial target vectors, 𝑉𝑖 

where 𝑖 = (1 … 𝑁𝑃), are sets of D random numbers: 

𝑉𝑖  =  {𝑟1, … , 𝑟𝐷} where 𝑟𝑗 ∈ [1,0] | 𝑗 = 1, 𝐷.  

Each 𝑟𝑗 was assigned to one of the 11 tasks. These 

target vectors were used to make decisions for 

assigning tasks to workstations. The task with the 

highest target vector was determined first. If it had no 

conflict with the precedence diagram, it was assigned 

to the workstation, else another task with a lower 

target vector was considered. Note that U-shape 

assembly line balancing can be determined both 

forward and backward directions in the precedence 

diagram. For example, task 11 of Vector 1 has the 

highest target vector, 0.88, so it is a candidate for the 

first task, and, having no conflicts in Fig. 4, it was 

assigned to the first workstation, see Table 1 and Fig. 

4. The next tasks considered was task 7, with the 

target vector of 0.85, but task 7 may not be assigned 

before task 9 for the backward direction, or before 

tasks 3, 4, and 5 for the forward direction, see Fig. 4. 

Therefore, task 5 was evaluated next. This process 

was run until the appropriate task was assigned to the 

workstation. Other condition governing assigning 

tasks is the cycle time for each workstation, which 

can be calculated by dividing the total task times with 

the number of workstations. Each workstation must 

have task times lower than or equal to the cycle time. 

In this case, we used a cycle time of 12; therefore, 

tasks 11, 1, and 5 with total times of 11 were assigned 

to the first workstation, as shown in Table 2. The next 

workstations were determined using the same criteria. 

Possible initial solutions are shown in Table 2 

2.2 Mutation process 

Mutation adjusts values in vectors (Dimension: 

D) to obtain new solutions that differ from the initial 

population. In the following, two subscripts are added 

to each vector, 𝑉𝑖,𝐺+1, where 𝑖 ∈ {1, 𝑁𝑃} is the vector 

index and 𝐺 ∈ {1, 𝑅} is a generation number. Thus, 

the mutant vector, 𝑉𝑖,𝐺+1 , was calculated using the 

following Eq. (1) [28]. 

 

     𝑉𝑖,𝐺+1 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹(𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) +     

                            𝐹(𝑋𝑟3,𝐺 − 𝑋𝑟4,𝐺)                          (1) 

 

where 𝑋𝑏𝑒𝑠𝑡,𝐺  is the best vector or the vector 

assigned to workstations with the minimum cycle 

time,  𝑋𝑟1,𝐺 , 𝑋𝑟2,𝐺 , 𝑋𝑟3,𝐺 , 𝑋𝑟4,𝐺  are random vectors 

from population, NP, and F = scaling factor, a real 

constant between 0 and 2. 
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Table 1. Target vector of initial solutions 

Task 1 2 3 4 5 6 7 8 9 10 11 

Vector 1 0.58 0.43 0.71 0.25 0.78 0.77 0.85 0.16 0.25 0.44 0.88 

Vector 2 0.25 0.54 0.44 0.80 0.42 0.70 0.60 0.12 0.75 0.32 0.44 

Vector 3 0.77 0.60 0.66 0.55 0.80 0.58 0.42 0.10 0.23 0.23 0.50 

Vector 4 0.59 0.44 0.72 0.26 0.79 0.78 0.86 0.17 0.26 0.45 0.89 

Vector 5 0.24 0.53 0.43 0.79 0.41 0.69 0.59 0.11 0.74 0.31 0.43 

 

Table 2. Results for initial solutions 

Initial solution Dimension 1 2 3 4 5 6 7 8 9 10 11 

Vector 1 

Workstation 1 2 3 4 

Task 11 1 5 3 10 2 6 4 7 9 8 

Target Vector 0.88 0.58 0.78 0.71 0.44 0.43 0.77 0.25 0.85 0.25 0.16 

Vector 2 

Workstation 1 2 3 4 

Task 11 9 7 4 3 5 10 1 2 6 8 

Target Vector 0.44 0.75 0.60 0.80 0.44 0.42 0.32 0.25 0.54 0.70 0.12 

Vector 3 

Workstation 1 2 3 4 

Task 1 5 3 2 6 4 11 7 10 9 8 

Target Vector 0.77 0.80 0.66 0.60 0.58 0.55 0.50 0.42 0.23 0.23 0.10 

Vector 4 

Workstation 1 2 3 4 

Task 11 1 5 3 10 2 6 4 7 9 8 

Target Vector 0.89 0.59 0.79 0.72 0.45 0.44 0.78 0.26 0.86 0.26 0.17 

Vector 5 

Workstation 1 2 3 4 

Task 11 9 7 4 3 5 10 1 2 6 8 

Target Vector 0.43 0.74 0.59 0.79 0.43 0.41 0.31 0.24 0.53 0.69 0.11 

From Table 2, where vector 1 was the best vector 

(𝑋𝑏𝑒𝑠𝑡,𝐺  ) and F=0.8, when the target vector 1 was 

mutated, 4 vectors ( 𝑟1, 𝑟2, 𝑟3, 𝑟4 ) were randomized 

from the target vector of the initial population, NP, 

vectors 3, 2, 5 and 4 were obtained. Then, the mutant 

vector, 𝑉𝑖,𝐺+1, was calculated by placing the obtained 

randomized vector in Eq. (2), the obtained mutant 

vector 1 was 𝑉𝑖,𝐺+1 = 0.88 + 0.8𝑥(0.77 − 0.44) +
0.8𝑥(0.43 − 0.89) = 0.78 When the calculation was 

complete, the mutant vectors were shown in Table 3. 

2.3 Recombination step 

Recombination enhances the diversity of 

approaches to find solutions. In this step, the trial 

vector will be generated by using Exponential 

Crossover 1 Position [28] in Eq. (3), starting with a 

set of random numbers between 0 and 1 in every 

position, 𝑟𝑗. Then search for the first position, j, so 

that 𝑟𝑗 < 𝐶𝑅. The trial vector after this position will 

be equal to the target vector; else the trial vector will 

be equal to the mutant vector. 

 

                     𝑉𝑗𝑖,𝐺+1 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ {1 … 𝑟} 𝑎𝑛𝑑                                               

𝑈𝑗𝑖,𝐺+1 =             𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 (𝑟𝑗 < 𝐶𝑅) 
                                                       

                     𝑋𝑗𝑖,𝐺 𝑂𝑡ℎ𝑒𝑟                                           (2)                                                              

where 𝑈𝑗𝑖,𝐺+1 = trial vector, 𝑉𝑗𝑖,𝐺+1 = mutant 

vector, 𝑋𝑗𝑖,𝐺 = target vector, 𝐶𝑅 ∈ (0,1) = crossover 

rate, 𝑟𝑗 = 𝑟𝑎𝑛𝑑() ∈ (0,1) | 𝑗 = 1,2,3, … , 𝐷 

Using the mutated target vector 1 in Table 3, 

when CR=0.8, recombination sets a random number 

in (0,1) in every position, e.g., 0.81, 0.88, 0.87, 0.92, 

0.81, 0.88, 0.95, 0.99, 0.69, 0.46, 0.77. At position 9, 

𝑟𝑗=0.69 was the first 𝑟𝑗 < 𝐶𝑅 in the trial vector. Thus, 

the mutant vector, 𝑉𝑗𝑖,𝐺+1 , was copied into positions 

1-9, and the target vector, 𝑋𝑗𝑖,𝐺+1 , was copied into 

positions 10-11. Then, the trial vector was assigned 

to workstations without conflicts in the precedence 

diagram and the number of workstations, m. The 

results of the obtained trial vectors are shown in 

Table 3. 

2.4 Selection 

Selection chooses the target vector for the next 

round or selects from the population for the next 

generation, G+1, by comparing the solutions 

obtained from the target vector with those from the 

trial vector. If the solutions obtained from the trial 

vector are lower than or equal to those from the target 

vector, the trial vector will be selected for the next 

generation, else the target vector is selected as the 

next generation:  
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Table 3. Trial vector generated from target vector 1 

Vector 1 

Workstation 1   2   3   4  

Dimension 1 2 3 4 5 6 7 8 9 10 11 

Task 11 1 5 3 10 2 6 4 7 9 8 

Target Vector 0.88 0.58 0.78 0.71 0.44 0.43 0.77 0.25 0.85 0.25 0.16 

Mutant Vector 0.78 0.74 0.67 0.61 0.54 0.51 0.54 0.37 0.34 0.22 0.10 

𝑟𝑗 0.81 0.88 0.87 0.92 0.81 0.88 0.95 0.99 0.69 0.46 0.77 

Trial Vector 0.78 0.74 0.67 0.61 0.54 0.51 0.54 0.37 0.34 0.25 0.16 

              𝑈𝑗𝑖,𝐺+1 𝑖𝑓 𝑓(𝑈𝑗𝑖,𝐺+1 ) ≤ 𝑓(𝑋𝑗𝑖,𝐺+1 ) 

𝑋𝑗𝑖,𝐺+1 =                                                           

               𝑋𝑗𝑖,𝐺 𝑂𝑡ℎ𝑒𝑟                                      (3) 

 

where 𝑋𝑗𝑖,𝐺+1 = target vector and 𝑈𝑗𝑖,𝐺+1 = trial 

vector 

On the basis of the explanations in sections 2.1-

2.4, our modified DE is shown in Algorithm 1. 

Our new DE algorithm was evaluated using data 

retrieved from Scholl [33], which included 15 

problem sets (101 instances): 10 medium problem 

sets with 21-58 tasks (50 instances) and 5 large 

problem sets with 70-297 tasks (51 instances). The 

UALBP-2 was solved by applying the java program 

in NetBeans software environment on a computer 

with an Intel i5-8500 CPU@3.0 GHz and 4GB RAM. 

The parameters used here were used in the previous 

study [13], in which the DE algorithm was developed 

to solve U-shaped assembly line balancing problem - 

type 1 (UALBP-1). The parameters were R=30 

rounds, NP=30, F=0.8, and CR=0.8.  

3. Results and discussion 

To assess the efficiency of our DE algorithm, our 

results were compared with those of the rule-based 

heuristic methods from Li et al. [5], who applied two-

rule (task selection and task assignment) or three-rule 

(task selection, task assignment, and task exchange) 

approaches to solve UALBP-2. Medium problem 

results are shown in Table 4 and large ones in Table 

5. 

For both tables, column 2 shows the numbers of 

workstations for each problem; columns 3-6 show the 

optimal cycle time (OPT) and computational time 

(CPU in seconds) using the rules based heuristic 

methods [5]. Columns 7-8 show the same results for 

our new DE algorithm. Column 9 shows the cycle 

time difference (as %) between the DE algorithm and 

two rules method (PDCT-1) and column 10 shows the 

differences with three rules method (PDCT-2). 

Negative values indicate that our DE algorithm 

generated better cycle times, whereas positive values 

 

Algorithm. Pseudo code of the DE for (UALBP-2)  

Setup initial DE parameter: NP,CR,F,D (size of 

vector) 

  Begin randomly generate a set of target vector Vi    

             (i=1…NP); 

  while termination condition is not satisfied do 

  for i=1 to NP do 
 

      Perform mutation process using Eq. (1)  
 

      Perform recombination process using Eq. (2)  
 

      Perform selection process using Eq. (3)  
 

  End for 

  End while 

     Select best solution from all DE in the iteration 

End DE 

Show/select best solution from all DE in all 

iteration 

 

represent worse times. A "0" in the PDCT-1 or 

PDCT-2 columns indicates no difference. 

Table 4 shows the minimized cycle times for 50 

medium problems with 21-58 tasks. The results show 

that our DE algorithm generated a better cycle time 

than two rules and three rules for 14 instances (28%), 

the same cycle time as three rules but better than two 

rules for 19 instances (38%), a worse cycle time than 

three rules but better than two rules for 2 instances 

(4%), and the same cycle time as two rules and three 

rules for 14 instances (28%). It is obvious that our 

modified DE algorithm solves all problems better 

than using two rules. For the Hahm-53-9 problem, 

our method took 24% less time than the two rules. 

With three rules, our DE algorithm found solutions 

with equal and better results in 96% of the cases and 

only in two cases (4%) no better times were found. 

Moreover, our DE algorithm required less 

computation time than both the two and three rules 

for medium problems.  

As for large problems, our DE algorithm was tested 

on 51 large problems containing 70-297 tasks. The 

minimum cycle times were compared with two rules 

and three rules, data from Li et al. [5], see Table 
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Table 4. Results for medium problems 

Example m 

Rules-based heuristic [5] 
Differential Evolution (DE) 

Two rules Three rules 

OPT CPU OPT CPU OPT1 CPU PDCT-1 PDCT-2 

Mitchell-21 

4 27 0.24 27 0.26 27 0.02 0 0 

5 22 0.3 21 0.1 21 0.03 -4.76 0 

6 18 0.31 18 0.37 18 0.03 0 0 

Rosenberg-25 

4 33 0.22 33 0.27 32 0.06 -3.13 -3.13 

5 25 0.14 25 0.11 25 0.03 0 0 

6 23 0.19 21 0.43 21 0.03 -9.52 0 

7 18 0.35 18 0.43 18 0.03 0 0 

8 16 0.43 16 0.5 16 0.04 0 0 

Heskiaoff-28 

6 171 1.16 171 1.27 171 0.03 0 0 

7 152 0.29 147 1.18 147 0.03 -3.40 0 

8 129 0.82 129 0.82 129 0.04 0 0 

9 117 0.63 116 0.58 116 0.05 -0.86 0 

10 109 0.27 108 0.77 108 0.06 -0.93 0 

Buxey-29 

5 69 0.23 66 0.5 65 0.02 -6.15 -1.54 

6 56 0.34 55 0.6 54 0.03 -3.70 -1.85 

7 50 0.24 48 0.55 47 0.03 -6.38 -2.13 

8 44 0.25 41 0.59 41 0.03 -7.32 0 

9 39 0.16 38 0.45 38 0.05 -2.63 0 

10 35 0.29 34 0.57 33 0.03 -6.06 -3.03 

Sawyer-30 

5 65 0.79 65 0.7 65 0.03 0 0 

6 55 0.8 54 0.17 54 0.03 -1.85 0 

7 48 0.82 47 0.73 47 0.04 -2.13 0 

8 41 0.71 41 0.84 41 0.05 0 0 

Lutz1-32 

6 2448 0.22 2404 0.49 2424* 0.03 -0.99 0.83 

7 2092 0.3 2092 0.37 2092 0.04 0 0 

8 1830 0.18 1816 0.38 1816 0.05 -0.77 0 

9 1644 0.27 1622 0.16 1624* 0.05 -1.23 0.12 

10 1474 0.3 1474 0.31 1474 0.06 0 0 

Gunther-35 

5 98 0.97 97 1.09 97 0.05 -1.03 0 

6 83 0.56 82 0.73 81 0.05 -2.47 -1.23 

7 71 0.65 70 0.75 69 0.05 -2.90 -1.45 

8 62 0.7 61 0.82 61 0.05 -1.64 0 

Kilbridge & Wester-45 

6 95 0.61 92 0.41 92 0.08 -3.26 0 

7 83 0.88 79 1.9 79 0.1 -5.06 0 

8 73 0.89 69 0.39 69 0.11 -5.80 0 

9 66 0.77 62 1.61 62 0.12 -6.45 0 

10 59 0.89 56 1.77 56 0.14 -5.36 0 

Hahm-53 

5 2948 0.23 2823 1.57 2820 0.09 -4.54 -0.11 

6 2420 0.36 2416 1.21 2416 0.12 -0.17 0 

7 2082 0.51 2013 1.71 2010 0.14 -3.58 -0.15 

8 1840 0.44 1827 1.21 1775 0.16 -3.66 -2.93 

9 2193 0.11 1775 0.15 1775 0.18 -23.55 0 

Warnecke-58 

10 162 0.92 155 2.66 155 0.24 -4.52 0 

11 149 0.96 143 2.59 143 0.26 -4.20 0 

12 136 0.76 131 2.29 131 0.28 -3.82 0 

13 127 0.95 122 2.15 120 0.31 -5.83 -1.67 

14 115 1.27 112 2.14 111 0.33 -3.60 -0.90 

15 110 0.88 105 2.5 104 0.35 -5.77 -0.96 

16 103 1.03 98 2.1 97 0.37 -6.19 -1.03 

17 96 1.34 94 1.83 92 0.4 -2.13 0 
Remarks1:  0 = better cycle time than two rules and three rules 

   0 = the same cycle time as three rules, but better cycle time than two rules 

   0* = worse cycle time than three rules, but better cycle time than two rules 

   0** = worse cycle time than three rules, but the same cycle time as two rules 
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Table 5. Results for large problems 

Example m 

Rules-based heuristic [5] 
Differential Evolution (DE) 

Two rules Three rules 

OPT CPU OPT CPU OPT1 CPU PDCT-1 PDCT-2 

Tonge-70 

10 359 1.54 352 3.87 359** 0.39 0 1.95 

11 323 2.03 320 3.28 320 0.44 -0.94 0 

12 298 2.19 295 2.9 293 0.46 -1.71 -0.68 

13 275 1.14 273 2.15 275** 0.54 0 0.73 

14 255 1.45 252 2.46 255** 0.55 0 1.18 

15 237 1.26 236 2 237** 0.6 0 0.42 

16 232 1.24 222 1.52 232** 0.61 0 4.31 

Lutz2-89 

13 40 1.91 38 2.88 38 0.95 -5.26 0 

14 37 1.92 35 2.89 35 1.03 -5.71 0 

15 33 2.74 33 2.78 33 1 0 0 

16 31 2.57 31 2.62 31 1.17 0 0 

17 30 2.38 30 2.45 29 1.24 -3.45 -3.45 

18 29 1.72 27 2.73 27 1.32 -7.41 0 

19 27 2.42 27 2.32 26 1.4 -3.85 -3.85 

20 27 1.71 25 2.65 25 1.47 -8.00 0 

21 24 2.59 24 2.76 24 1.56 0 0 

Mukherjee-94 

14 307 3.67 302 8.12 307** 0.66 0 1.63 

15 284 6.12 283 6.92 283 0.69 -0.35 0 

16 267 3.65 265 6.31 265 0.72 -0.75 0 

17 252 3.01 251 5.71 251 0.79 -0.40 0 

18 237 4.55 236 6.05 236 0.85 -0.42 0 

19 224 4.03 224 4.44 224 0.9 0 0 

20 223 2.85 212 5.37 221* 0.95 -0.90 4.07 

21 211 4.47 205 8.07 210* 0.99 -0.48 2.38 

22 203 2.04 193 4.16 201* 1.03 -1.00 3.98 

23 193 1.64 185 7.54 193** 1.09 0 4.15 

24 186 2.47 179 7.24 186** 1.14 0 3.76 

Bartholdi-148 

7 806 19.04 805 20.77 805 2.19 -0.12 0 

8 712 12 705 20.23 705 2.51 -0.99 0 

9 628 16.38 626 11.33 626 2.85 -0.32 0 

10 564 14.3 564 15.87 564 3.14 0 0 

11 520 10.27 513 13.68 513 3.46 -1.36 0 

12 475 10.03 470 10.51 470 3.79 -1.06 0 

13 437 11.12 434 24.6 434 4.1 -0.69 0 

14 405  12.58 403 22.35 403 4.46 -0.50 0 

Scholl-297 

21 3490 10.13 3328 35.65 3460* 20.1 -0.87 3.82 

23 3189 10.27 3034 53.13 3133* 21.65 -1.79 3.16 

25 2931 11.32 2790 47.36 2925* 22.57 -0.21 4.62 

27 2695 25.45 2582 69.36 2684* 24.26 -0.41 3.80 

29 2526 14.11 2406 48.9 2519* 25.46 -0.28 4.49 

31 2366 10.67 2256 43.26 2358* 25.25 -0.34 4.33 

33 2203 16.08 2114 56.53 2144* 27.55 -2.75 1.40 

35 2011 41.62 1993 62.17 2001* 28.1 -0.50 0.40 

37 1983 13.43 1888 45.6 1980* 29.22 -0.15 4.65 

39 1882 14.91 1792 40.66 1880* 31.02 -0.11 4.68 

41 1779 17.18 1702 58.57 1774* 32.22 -0.28 4.06 

43 1706 13.87 1623 36.72 1697* 33.12 -0.53 4.36 

45 1620 12.98 1551 53.3 1616* 37.55 -0.25 4.02 

47 1562 8.67 1488 42.92 1544* 38.45 -1.17 3.63 

49 1496 15.44 1438 34.72 1479* 39.25 -1.15 2.77 

50 1458 12.13 1398 40.51 1421* 40.13 -2.60 1.62 
Remarks1: 0 = better cycle time than two rules and three rules 

 0 = the same cycle time as three rules, but better cycle time than two rules 

 0* = worse cycle time than three rules, but better cycle time than two rules 
 0** = worse cycle time than three rules, but the same cycle time as two rules 
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5. The DE algorithm generated better cycle time than 

both the two and three rules methods for 3 instances 

(6%), the same cycle time as three rules but better 

than two rules for 16 instances (31%), worse cycle 

time than three rules but better than two rules for 19 

instances (37%), worse cycle time than three rules but 

the same as two rules for 8 instances (16%), and the 

same cycle time as both two rules and three rules 

methods for 5 instances (10%).  

Comparing the computational time with two rules, 

our DE algorithm was shorter for 37 instances (73%) 

and was longer for 14 instances (27%), and these 14 

instances were in the Scholl-297 problems with high 

number of workstations, ranging from 21 to 50. With 

three rules, the DE algorithm was faster for 50 

instances (98%) and slower for only a single instance 

(2%).   

From Tables 4 and 5, we can observe that the DE 

algorithm provides comparable or better solutions 

than the two rules methods for all instances of 

medium and large problems. However, for the three 

rules, there were 29 from 101 instances, in which the 

DE algorithm did not find better or comparable cycle 

times. When examining these 29 instances, 27 

instances, ~93%, were large problems with a high 

number of tasks and complicated precedence. Thus, 

further study to explore this issue, particularly in 

large problems, is needed. 

4. Conclusions  

Minimum cycle times in U-shaped assembly line 

balancing problem - type 2 (UALBP-2) were 

measured using our modified DE algorithm for 50 

medium problems, with 21-58 tasks and 51 large 

problems, with 70-297 tasks. All 101 instances could 

be solved and found the best solutions. The minimum 

cycle times obtained from this approach were also 

compared with those from the rule-based heuristic 

methods, with two rules or three rules, used by Li et 

al. [5]. Our DE algorithm found the best solutions for 

both medium and large problems faster. When 

analyzing the optimal solutions, the DE algorithm 

was able to find the best, better, or equivalent 

solutions in almost all instances for medium-scale 

problems (48 from 50 instances or 96%). However, 

the proposed approach failed to find the best solutions 

in the large-scale problems for approximately 54% 

(27 from 51 instances). This is due to the number of 

tasks and precedence relationship conditions 

increased and more complicated. Thus, our DE 

algorithm is a potential and effective approach to 

solve the UALBP-2, particularly in medium-scale 

problems. 

In future work, we will improve our DE algorithm 

for better solutions in large problems and verify our 

expectation that the DE algorithm can efficiently 

solve other assembly line balancing problems, for 

example, Mixed/Multi line, Parallel line, Two-Sided 

Line and others.  
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