
Received: April 11, 2021. Revised: May 25, 2021. 452

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Modified Differential Evolution Algorithm for U-Shaped Assembly Line

Balancing Type 2

Krit Chantarasamai1 On-Uma Lasunon1*

1Manufacturing and Materials Research Unit, Faculty of Engineering, Mahasarakham University, Thailand

* Corresponding author’s Email: onuma.l@msu.ac.th

Abstract: We describe a Differential Evolution (DE) algorithm for solving U-shaped Assembly Line Balancing

Problems – Type 2 (UALBP-2). The minimum cycle time in a just-in-time production line for producing a single

product with a certain number of workstations was investigated by developing solution methods and testing on 15

problem sets (101 instances). The problems were divided into 10 medium-scale problem sets (50 instances) and 5

large-scale problem sets (51 instances). When comparing the results with those obtained from the rule-based heuristic;

three rules and two rules, the DE algorithm could generate 14 better solutions (28%) in the medium-scale problems,

and 3 better solutions (about 6%) in the large-scale problems. In terms of computational time, DE algorithm was faster

than rule-based heuristic methods in medium-scale problems. In large problems, our DE algorithm used computational

times that were shorter by 73% (for two rules) and 98% (for three rules).
Keywords: Differential evolution algorithm, Just-in-time, U-shaped assembly line balancing problems.

1. Introduction

Assembly line balancing is an important problem

for many industries, especially industries that are

constantly adapting assembly lines for new products

to respond to customer needs for delivery, raw

materials, products, and services in the shortest

possible time, or "just-in-time" (JIT) manufacturing.

In on-time production and delivery of products, cycle

time is a key factor in balancing an assembly line in

a JIT system. The type of assembly line balancing is

another factor affecting the efficiency of line

balancing.

 Assembly line balancing is a form of production

planning used to assign appropriate tasks to each

workstation in order to reduce cycle time or the

number of workstations, increase flexibility in

process flow, and eliminate delays or bottlenecks

during production. There are two types of assembly

line balancing problems: simple assembly line

balancing problem (SALBP) and general assembly

line balancing problem (GALBP) [1, 2], as shown in

Fig. 1. SALBP can be classified into four types based

on the balancing objective, i.e., SALBP-1 to

minimize the number of workstations (m), SALBP-2

to minimize the cycle time (c), SALBP-E to find the

optimal efficiency of the assembly line, and SALBP-

F to balance the operations at each workstation.

GALBP can be classified into three or more types,

i.e., mixed model assembly line balancing problem

(MALBP), U-shaped assembly line balancing

problem (UALBP), and some others. The MALBP

models the production of mixed products and

multiple models of them. In the UALBP, a worker

can work on both sides of a U-shaped assembly line:

it is also divided into three types: UALBP-1 to

minimize the number of workstations (m), UALBP-2

to minimize the cycle time (c), and UALBP-E to find

the optimal efficiency of the line. The third type of

GALBP is an assembly line balancing problem with

a wide range of applications, which can be considered

for many conditions.

 In many industries, straight SALBP lines (see Fig.

2 (a)) and U-shaped GALBP lines (see Fig. 2 (b)) are

normally used to minimize the cycle time. However,

U-shaped line balancing offers more advantages than

straight line balancing: it has higher

Received: April 11, 2021. Revised: May 25, 2021. 453

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Figure. 1 Taxonomy of assembly line balancing problems [1]

(a) (b)

Figure. 2 Assembly line layouts: (a) Straight assembly

line and (b) U-shaped assembly line

efficiency and flexibility, fewer workstations, and

lower cycle time [3-5]. Therefore, we focused on

solving problems with U-shaped assembly line

balancing. In the following, we present review papers

that deal with UALBP.

U-shaped assembly line balancing problem

(UALBP) was first described in 1994 by Miltenburg

and Wijngaard [6], who solved the 7-11 tasks

problem with dynamic programming (DP) and the

21-111 tasks problem with the ranked positional

weight heuristic (RPW). Thereafter, various

approaches were developed and applied to solve the

UALBP. For example, Urban [7] used integer linear

programming for the UALBP formulation and solved

it using CPLEX software. Scholl and Klein [8] solved

the solution of the UALBP using the ULINO method.

Hwang, Katayama and Gen [9] presented a multi-

objective genetic algorithm (GA) (line efficiency and

workload variation) for solving the 21-111 tasks

problem and compared with integer programming

and RPW. Baykasoğlu and Dereli [10] applied ant

colony optimization (ACO) for the UALBP and

solved the 8-297 tasks problem using Visual Basic

software. Fathi, Alvarez and Rodríguez [11]

presented the critical task method (CTM) for solving

the UALBP and compared it with 12 other heuristics.

Kriengkorakot [12] applied heuristics (maximum

task time, minimum task time, maximum ranked

positional weight and Greedy randomized) to

improve assembly line balancing in a garment factory.

Sresracoo, Kriengkorakot and Chantarasamai [13]

applied a differential evolution algorithm (DE) to the

UALBP-1 and solved the 21-297 tasks problem using

NetBeans software. Zhang, Tang, Han and Li [14]

proposed an enhanced migrating birds optimization

algorithm (EMBO) for UALBP with worker

assignment. Li, Hu, Tang and Kucukkoc [15]

developed an algorithm based on the branch and

bound remember algorithm to solve UALBP-1 with

uncertain task time. Varnasilpin and Masuchun [16]

presented the uncertain problem of three U-shaped

lines defining time as an interval for the UALBP and

solved it using MATLAB R2014a software.

In reviewing U-shaped assembly line balancing

problem, it was found that many researchers have

specifically solved UALBP-1, while UALBP-2,

which is important for JIT, is still limited.

Jonnalagedda and Dabade [4] in 2014 used a genetic

algorithm (GA) to solve small and medium sized

problems of the UALBP-2 and found that the

algorithm can solve the problem very well for a small

number of workstations. In 2017, Li et al. [5] applied

rule-based heuristics (two rules and three rules) to

solve medium and large problems of UALBP-2 and

found that the algorithm performs well in terms of

efficiency and computational speed compared to

integer programming, but the uncertainty of its

computational accuracy limits its application.

Assembly line balancing type 2 (ALBP-2) is

important for JIT as it can minimize the cycle time

for a given number of workstations. ALBP-2 was first

reported by Klein and Scholl in 1996 to solve the

simple assembly line balancing problem - type 2

(SALBP-2) using branch-and-bound methods [17].

After that, many researchers have proposed heuristic

Assembly line balancing problem

Simple assembly line balancing problem
(SALBP)

General assembly line balancing problem
(GALBP)

SALBP-1 SALBP-2 SALBP-E SALBP-F UALBPMALBP/MSP Other

UALBP-1 UALBP-EUALBP-2

Received: April 11, 2021. Revised: May 25, 2021. 454

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

methods to solve assembly line problems, e.g. Liu,

Ong and Huang [18, 19] presented two bi-directional

heuristics for SALBP-2 to minimize the cycle time

and found that the algorithm was efficient in

minimizing both the cycle time and the mean absolute

deviation. Seyed-Alagheband, Fatemi Ghomi and

Zandieh [20] applied the simulated annealing

algorithms (SA) to solve sequence-dependent setup

time problems with the objective of minimizing the

cycle time for a given number of workstations and

found that this algorithm was effective in terms of

computation time and optimal solutions. Jirasirilerd

et al. [2] presented a variable neighborhood strategy

adaptive search (VaNSAS) to minimize the cycle

time for the SALBP-2 problem in the garment

industry considering the number and type of

machines used at each workstation and found that the

algorithm provides a better solution and much less

computation time compared to the program LINGO.

After reviewing UALBP and ALBP-2, we found

that the heuristic and metaheuristic methods are

effective in solving problems. Many researchers have

been engaged in solving problems for different

purposes by using different methods like SA, CTM,

GA, ACO and DE. However, the differential

evolution algorithm (DE), which is considered as the

optimal metaheuristic method because of its speed

and accuracy [21, 22], has attracted our attention.

The DE algorithm was first described by Storn

and Price [23] in 1997. It has been used to solve a

wide variety of problems and objectives in, for

example, assignment problem to minimize cost [22],

transportation problem to maximize profit and

minimize cost of transport [24-26], location routing

problem to minimize the fuel usage [27], simple

assembly line balancing problem-type 1 (SALBP-1)

to minimize number of workstation [28, 29] and U-

shaped assembly line balancing problem-type 1

(UALBP-1) to minimize number of workstation [13].

Ramadas, Abraham and Kumar [30] proposed a new

revised mutation strategy in DE algorithm to improve

the optimal solution. Recently, Srichok et al. [31]

combined the DE algorithm with response surface

method (RSM) to find the optimal parameters for

friction stir welding. For assembly line balancing

problems, the results showed that the DE algorithm is

more efficient and requires less computation time

compared to GA and Tabu Search (TS) in SALBP-1

[28] and with ACO in UALBP-1 [13]. However, the

DE algorithm has not yet been used to solve the U-

shaped assembly line balancing problem - type 2

(UALBP-2).

Since this study aimed to improve the efficiency

of assembly line balancing for JIT systems, we

therefore developed a heuristic method using the DE

algorithm to solve the UALBP-2 to minimize the

cycle time for a given number of workstations. The

UALBP-2 was solved by applying the Java program

in the NetBeans software. To evaluate the efficiency

of our modified DE algorithm, our results should be

compared with other efficient methods. However,

there were few reports on UALBP-2 [4, 5] due to its

complexity and difficult to solve problem, especially

when the number of tasks increases. Therefore, we

decided to use the same data and compare the results

with Li et al. [5] who used the rule-based heuristic

methods to solve medium problems with 21-58 tasks

and large problems with 70-297 tasks.

The structure of this paper is as follows: Section

2 describes the overall algorithm of our modified DE.

Section 3 presents the result and discussion. The

advantages of our modified DE algorithm over the

rule-based heuristic methods in terms of minimized

cycle time and computation speed are presented.

Section 4 draws the conclusions and presents the

future direction of our work.

2. Our modified DE algorithm

Our modified DE algorithm has four steps: (1)

generation of the initial target vector, (2) mutation,

(3) recombination, and (4) selection. In the first step,

an initial target vector for each task is generated using

a random number between 0 and 1. These target

vectors are used to choose the assignments of tasks to

workstations. Number of workstations, m, and the

number of possible initial solutions, NP, are set. In

the second step, the DE algorithm uses mutation by

1) finding the difference of the randomized vectors

from the population, 2) multiplying this difference by

the scaling factor, F, and 3) adding to another

randomized vector. In the following, we refer to the

population to be mutated as the “target vector” and

the adjusted or mutated one as the “mutant vector”.

In the recombination step, the target and mutant

vectors are combined, using a settable factor, the

crossover rate, CR, to make a decision. The

recombined vector is referred to as the “trial vector”.

The trial vector was evaluated using the fitness

function. After that, the fitness for the trial vector

were compared with the target vector to find the best

vector to be used as the target vector for the next

evaluation. The DE algorithm loop was repeated for

a specified number of rounds, R, and then the final

result was displayed. Steps of our DE algorithm are

shown in Fig. 3 More details will be described and

illustrated in the next sections. Application of our DE

algorithm to a UALBP-2 problem was illustrated

using a small example taken from Jackson [32]: the

Received: April 11, 2021. Revised: May 25, 2021. 455

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Figure. 3 Data flow for our differential evolution (DE)

algorithm in UALBP-2

Figure. 4 Precedence diagram for the sample problem,

taken from Jackson [32]

precedence diagram for its 11 tasks is shown in Fig.

4

In Fig. 4, numbers in the circles label the tasks

and numbers next to the circles show the time of each

task. In balancing a UALBP-2, these variables must

be set: m = number of workstations, R = number of

rounds, NP = number of possible initial solutions, F

= scaling factor and CR = crossover rate. For this

sample, we set: m=4 workstations, R=1 round, NP=5,

F=0.8 and CR=0.8. Details of the calculation follow

in sections 2.1-2.4.

2.1 Generate the initial target vector

In this sample task, the number of possible initial

solutions, NP=5, and five sets of target vectors were

generated - see Table 1. The initial target vectors, 𝑉𝑖

where 𝑖 = (1 … 𝑁𝑃), are sets of D random numbers:

𝑉𝑖 = {𝑟1, … , 𝑟𝐷} where 𝑟𝑗 ∈ [1,0] | 𝑗 = 1, 𝐷.

Each 𝑟𝑗 was assigned to one of the 11 tasks. These

target vectors were used to make decisions for

assigning tasks to workstations. The task with the

highest target vector was determined first. If it had no

conflict with the precedence diagram, it was assigned

to the workstation, else another task with a lower

target vector was considered. Note that U-shape

assembly line balancing can be determined both

forward and backward directions in the precedence

diagram. For example, task 11 of Vector 1 has the

highest target vector, 0.88, so it is a candidate for the

first task, and, having no conflicts in Fig. 4, it was

assigned to the first workstation, see Table 1 and Fig.

4. The next tasks considered was task 7, with the

target vector of 0.85, but task 7 may not be assigned

before task 9 for the backward direction, or before

tasks 3, 4, and 5 for the forward direction, see Fig. 4.

Therefore, task 5 was evaluated next. This process

was run until the appropriate task was assigned to the

workstation. Other condition governing assigning

tasks is the cycle time for each workstation, which

can be calculated by dividing the total task times with

the number of workstations. Each workstation must

have task times lower than or equal to the cycle time.

In this case, we used a cycle time of 12; therefore,

tasks 11, 1, and 5 with total times of 11 were assigned

to the first workstation, as shown in Table 2. The next

workstations were determined using the same criteria.

Possible initial solutions are shown in Table 2

2.2 Mutation process

Mutation adjusts values in vectors (Dimension:

D) to obtain new solutions that differ from the initial

population. In the following, two subscripts are added

to each vector, 𝑉𝑖,𝐺+1, where 𝑖 ∈ {1, 𝑁𝑃} is the vector

index and 𝐺 ∈ {1, 𝑅} is a generation number. Thus,

the mutant vector, 𝑉𝑖,𝐺+1 , was calculated using the

following Eq. (1) [28].

 𝑉𝑖,𝐺+1 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹(𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) +

 𝐹(𝑋𝑟3,𝐺 − 𝑋𝑟4,𝐺) (1)

where 𝑋𝑏𝑒𝑠𝑡,𝐺 is the best vector or the vector

assigned to workstations with the minimum cycle

time, 𝑋𝑟1,𝐺 , 𝑋𝑟2,𝐺 , 𝑋𝑟3,𝐺 , 𝑋𝑟4,𝐺 are random vectors

from population, NP, and F = scaling factor, a real

constant between 0 and 2.

Received: April 11, 2021. Revised: May 25, 2021. 456

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Table 1. Target vector of initial solutions

Task 1 2 3 4 5 6 7 8 9 10 11

Vector 1 0.58 0.43 0.71 0.25 0.78 0.77 0.85 0.16 0.25 0.44 0.88

Vector 2 0.25 0.54 0.44 0.80 0.42 0.70 0.60 0.12 0.75 0.32 0.44

Vector 3 0.77 0.60 0.66 0.55 0.80 0.58 0.42 0.10 0.23 0.23 0.50

Vector 4 0.59 0.44 0.72 0.26 0.79 0.78 0.86 0.17 0.26 0.45 0.89

Vector 5 0.24 0.53 0.43 0.79 0.41 0.69 0.59 0.11 0.74 0.31 0.43

Table 2. Results for initial solutions

Initial solution Dimension 1 2 3 4 5 6 7 8 9 10 11

Vector 1

Workstation 1 2 3 4

Task 11 1 5 3 10 2 6 4 7 9 8

Target Vector 0.88 0.58 0.78 0.71 0.44 0.43 0.77 0.25 0.85 0.25 0.16

Vector 2

Workstation 1 2 3 4

Task 11 9 7 4 3 5 10 1 2 6 8

Target Vector 0.44 0.75 0.60 0.80 0.44 0.42 0.32 0.25 0.54 0.70 0.12

Vector 3

Workstation 1 2 3 4

Task 1 5 3 2 6 4 11 7 10 9 8

Target Vector 0.77 0.80 0.66 0.60 0.58 0.55 0.50 0.42 0.23 0.23 0.10

Vector 4

Workstation 1 2 3 4

Task 11 1 5 3 10 2 6 4 7 9 8

Target Vector 0.89 0.59 0.79 0.72 0.45 0.44 0.78 0.26 0.86 0.26 0.17

Vector 5

Workstation 1 2 3 4

Task 11 9 7 4 3 5 10 1 2 6 8

Target Vector 0.43 0.74 0.59 0.79 0.43 0.41 0.31 0.24 0.53 0.69 0.11

From Table 2, where vector 1 was the best vector

(𝑋𝑏𝑒𝑠𝑡,𝐺) and F=0.8, when the target vector 1 was

mutated, 4 vectors (𝑟1, 𝑟2, 𝑟3, 𝑟4) were randomized

from the target vector of the initial population, NP,

vectors 3, 2, 5 and 4 were obtained. Then, the mutant

vector, 𝑉𝑖,𝐺+1, was calculated by placing the obtained

randomized vector in Eq. (2), the obtained mutant

vector 1 was 𝑉𝑖,𝐺+1 = 0.88 + 0.8𝑥(0.77 − 0.44) +
0.8𝑥(0.43 − 0.89) = 0.78 When the calculation was

complete, the mutant vectors were shown in Table 3.

2.3 Recombination step

Recombination enhances the diversity of

approaches to find solutions. In this step, the trial

vector will be generated by using Exponential

Crossover 1 Position [28] in Eq. (3), starting with a

set of random numbers between 0 and 1 in every

position, 𝑟𝑗. Then search for the first position, j, so

that 𝑟𝑗 < 𝐶𝑅. The trial vector after this position will

be equal to the target vector; else the trial vector will

be equal to the mutant vector.

 𝑉𝑗𝑖,𝐺+1 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ {1 … 𝑟} 𝑎𝑛𝑑

𝑈𝑗𝑖,𝐺+1 = 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 (𝑟𝑗 < 𝐶𝑅)

 𝑋𝑗𝑖,𝐺 𝑂𝑡ℎ𝑒𝑟 (2)

where 𝑈𝑗𝑖,𝐺+1 = trial vector, 𝑉𝑗𝑖,𝐺+1 = mutant

vector, 𝑋𝑗𝑖,𝐺 = target vector, 𝐶𝑅 ∈ (0,1) = crossover

rate, 𝑟𝑗 = 𝑟𝑎𝑛𝑑() ∈ (0,1) | 𝑗 = 1,2,3, … , 𝐷

Using the mutated target vector 1 in Table 3,

when CR=0.8, recombination sets a random number

in (0,1) in every position, e.g., 0.81, 0.88, 0.87, 0.92,

0.81, 0.88, 0.95, 0.99, 0.69, 0.46, 0.77. At position 9,

𝑟𝑗=0.69 was the first 𝑟𝑗 < 𝐶𝑅 in the trial vector. Thus,

the mutant vector, 𝑉𝑗𝑖,𝐺+1 , was copied into positions

1-9, and the target vector, 𝑋𝑗𝑖,𝐺+1 , was copied into

positions 10-11. Then, the trial vector was assigned

to workstations without conflicts in the precedence

diagram and the number of workstations, m. The

results of the obtained trial vectors are shown in

Table 3.

2.4 Selection

Selection chooses the target vector for the next

round or selects from the population for the next

generation, G+1, by comparing the solutions

obtained from the target vector with those from the

trial vector. If the solutions obtained from the trial

vector are lower than or equal to those from the target

vector, the trial vector will be selected for the next

generation, else the target vector is selected as the

next generation:

Received: April 11, 2021. Revised: May 25, 2021. 457

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Table 3. Trial vector generated from target vector 1

Vector 1

Workstation 1 2 3 4

Dimension 1 2 3 4 5 6 7 8 9 10 11

Task 11 1 5 3 10 2 6 4 7 9 8

Target Vector 0.88 0.58 0.78 0.71 0.44 0.43 0.77 0.25 0.85 0.25 0.16

Mutant Vector 0.78 0.74 0.67 0.61 0.54 0.51 0.54 0.37 0.34 0.22 0.10

𝑟𝑗 0.81 0.88 0.87 0.92 0.81 0.88 0.95 0.99 0.69 0.46 0.77

Trial Vector 0.78 0.74 0.67 0.61 0.54 0.51 0.54 0.37 0.34 0.25 0.16

 𝑈𝑗𝑖,𝐺+1 𝑖𝑓 𝑓(𝑈𝑗𝑖,𝐺+1) ≤ 𝑓(𝑋𝑗𝑖,𝐺+1)

𝑋𝑗𝑖,𝐺+1 =

 𝑋𝑗𝑖,𝐺 𝑂𝑡ℎ𝑒𝑟 (3)

where 𝑋𝑗𝑖,𝐺+1 = target vector and 𝑈𝑗𝑖,𝐺+1 = trial

vector

On the basis of the explanations in sections 2.1-

2.4, our modified DE is shown in Algorithm 1.

Our new DE algorithm was evaluated using data

retrieved from Scholl [33], which included 15

problem sets (101 instances): 10 medium problem

sets with 21-58 tasks (50 instances) and 5 large

problem sets with 70-297 tasks (51 instances). The

UALBP-2 was solved by applying the java program

in NetBeans software environment on a computer

with an Intel i5-8500 CPU@3.0 GHz and 4GB RAM.

The parameters used here were used in the previous

study [13], in which the DE algorithm was developed

to solve U-shaped assembly line balancing problem -

type 1 (UALBP-1). The parameters were R=30

rounds, NP=30, F=0.8, and CR=0.8.

3. Results and discussion

To assess the efficiency of our DE algorithm, our

results were compared with those of the rule-based

heuristic methods from Li et al. [5], who applied two-

rule (task selection and task assignment) or three-rule

(task selection, task assignment, and task exchange)

approaches to solve UALBP-2. Medium problem

results are shown in Table 4 and large ones in Table

5.

For both tables, column 2 shows the numbers of

workstations for each problem; columns 3-6 show the

optimal cycle time (OPT) and computational time

(CPU in seconds) using the rules based heuristic

methods [5]. Columns 7-8 show the same results for

our new DE algorithm. Column 9 shows the cycle

time difference (as %) between the DE algorithm and

two rules method (PDCT-1) and column 10 shows the

differences with three rules method (PDCT-2).

Negative values indicate that our DE algorithm

generated better cycle times, whereas positive values

Algorithm. Pseudo code of the DE for (UALBP-2)

Setup initial DE parameter: NP,CR,F,D (size of

vector)

 Begin randomly generate a set of target vector Vi

 (i=1…NP);

 while termination condition is not satisfied do

 for i=1 to NP do

 Perform mutation process using Eq. (1)

 Perform recombination process using Eq. (2)

 Perform selection process using Eq. (3)

 End for

 End while

 Select best solution from all DE in the iteration

End DE

Show/select best solution from all DE in all

iteration

represent worse times. A "0" in the PDCT-1 or

PDCT-2 columns indicates no difference.

Table 4 shows the minimized cycle times for 50

medium problems with 21-58 tasks. The results show

that our DE algorithm generated a better cycle time

than two rules and three rules for 14 instances (28%),

the same cycle time as three rules but better than two

rules for 19 instances (38%), a worse cycle time than

three rules but better than two rules for 2 instances

(4%), and the same cycle time as two rules and three

rules for 14 instances (28%). It is obvious that our

modified DE algorithm solves all problems better

than using two rules. For the Hahm-53-9 problem,

our method took 24% less time than the two rules.

With three rules, our DE algorithm found solutions

with equal and better results in 96% of the cases and

only in two cases (4%) no better times were found.

Moreover, our DE algorithm required less

computation time than both the two and three rules

for medium problems.

As for large problems, our DE algorithm was tested

on 51 large problems containing 70-297 tasks. The

minimum cycle times were compared with two rules

and three rules, data from Li et al. [5], see Table

Received: April 11, 2021. Revised: May 25, 2021. 458

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Table 4. Results for medium problems

Example m

Rules-based heuristic [5]
Differential Evolution (DE)

Two rules Three rules

OPT CPU OPT CPU OPT1 CPU PDCT-1 PDCT-2

Mitchell-21

4 27 0.24 27 0.26 27 0.02 0 0

5 22 0.3 21 0.1 21 0.03 -4.76 0

6 18 0.31 18 0.37 18 0.03 0 0

Rosenberg-25

4 33 0.22 33 0.27 32 0.06 -3.13 -3.13

5 25 0.14 25 0.11 25 0.03 0 0

6 23 0.19 21 0.43 21 0.03 -9.52 0

7 18 0.35 18 0.43 18 0.03 0 0

8 16 0.43 16 0.5 16 0.04 0 0

Heskiaoff-28

6 171 1.16 171 1.27 171 0.03 0 0

7 152 0.29 147 1.18 147 0.03 -3.40 0

8 129 0.82 129 0.82 129 0.04 0 0

9 117 0.63 116 0.58 116 0.05 -0.86 0

10 109 0.27 108 0.77 108 0.06 -0.93 0

Buxey-29

5 69 0.23 66 0.5 65 0.02 -6.15 -1.54

6 56 0.34 55 0.6 54 0.03 -3.70 -1.85

7 50 0.24 48 0.55 47 0.03 -6.38 -2.13

8 44 0.25 41 0.59 41 0.03 -7.32 0

9 39 0.16 38 0.45 38 0.05 -2.63 0

10 35 0.29 34 0.57 33 0.03 -6.06 -3.03

Sawyer-30

5 65 0.79 65 0.7 65 0.03 0 0

6 55 0.8 54 0.17 54 0.03 -1.85 0

7 48 0.82 47 0.73 47 0.04 -2.13 0

8 41 0.71 41 0.84 41 0.05 0 0

Lutz1-32

6 2448 0.22 2404 0.49 2424* 0.03 -0.99 0.83

7 2092 0.3 2092 0.37 2092 0.04 0 0

8 1830 0.18 1816 0.38 1816 0.05 -0.77 0

9 1644 0.27 1622 0.16 1624* 0.05 -1.23 0.12

10 1474 0.3 1474 0.31 1474 0.06 0 0

Gunther-35

5 98 0.97 97 1.09 97 0.05 -1.03 0

6 83 0.56 82 0.73 81 0.05 -2.47 -1.23

7 71 0.65 70 0.75 69 0.05 -2.90 -1.45

8 62 0.7 61 0.82 61 0.05 -1.64 0

Kilbridge & Wester-45

6 95 0.61 92 0.41 92 0.08 -3.26 0

7 83 0.88 79 1.9 79 0.1 -5.06 0

8 73 0.89 69 0.39 69 0.11 -5.80 0

9 66 0.77 62 1.61 62 0.12 -6.45 0

10 59 0.89 56 1.77 56 0.14 -5.36 0

Hahm-53

5 2948 0.23 2823 1.57 2820 0.09 -4.54 -0.11

6 2420 0.36 2416 1.21 2416 0.12 -0.17 0

7 2082 0.51 2013 1.71 2010 0.14 -3.58 -0.15

8 1840 0.44 1827 1.21 1775 0.16 -3.66 -2.93

9 2193 0.11 1775 0.15 1775 0.18 -23.55 0

Warnecke-58

10 162 0.92 155 2.66 155 0.24 -4.52 0

11 149 0.96 143 2.59 143 0.26 -4.20 0

12 136 0.76 131 2.29 131 0.28 -3.82 0

13 127 0.95 122 2.15 120 0.31 -5.83 -1.67

14 115 1.27 112 2.14 111 0.33 -3.60 -0.90

15 110 0.88 105 2.5 104 0.35 -5.77 -0.96

16 103 1.03 98 2.1 97 0.37 -6.19 -1.03

17 96 1.34 94 1.83 92 0.4 -2.13 0
Remarks1: 0 = better cycle time than two rules and three rules

 0 = the same cycle time as three rules, but better cycle time than two rules

 0* = worse cycle time than three rules, but better cycle time than two rules

 0** = worse cycle time than three rules, but the same cycle time as two rules

Received: April 11, 2021. Revised: May 25, 2021. 459

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Table 5. Results for large problems

Example m

Rules-based heuristic [5]
Differential Evolution (DE)

Two rules Three rules

OPT CPU OPT CPU OPT1 CPU PDCT-1 PDCT-2

Tonge-70

10 359 1.54 352 3.87 359** 0.39 0 1.95

11 323 2.03 320 3.28 320 0.44 -0.94 0

12 298 2.19 295 2.9 293 0.46 -1.71 -0.68

13 275 1.14 273 2.15 275** 0.54 0 0.73

14 255 1.45 252 2.46 255** 0.55 0 1.18

15 237 1.26 236 2 237** 0.6 0 0.42

16 232 1.24 222 1.52 232** 0.61 0 4.31

Lutz2-89

13 40 1.91 38 2.88 38 0.95 -5.26 0

14 37 1.92 35 2.89 35 1.03 -5.71 0

15 33 2.74 33 2.78 33 1 0 0

16 31 2.57 31 2.62 31 1.17 0 0

17 30 2.38 30 2.45 29 1.24 -3.45 -3.45

18 29 1.72 27 2.73 27 1.32 -7.41 0

19 27 2.42 27 2.32 26 1.4 -3.85 -3.85

20 27 1.71 25 2.65 25 1.47 -8.00 0

21 24 2.59 24 2.76 24 1.56 0 0

Mukherjee-94

14 307 3.67 302 8.12 307** 0.66 0 1.63

15 284 6.12 283 6.92 283 0.69 -0.35 0

16 267 3.65 265 6.31 265 0.72 -0.75 0

17 252 3.01 251 5.71 251 0.79 -0.40 0

18 237 4.55 236 6.05 236 0.85 -0.42 0

19 224 4.03 224 4.44 224 0.9 0 0

20 223 2.85 212 5.37 221* 0.95 -0.90 4.07

21 211 4.47 205 8.07 210* 0.99 -0.48 2.38

22 203 2.04 193 4.16 201* 1.03 -1.00 3.98

23 193 1.64 185 7.54 193** 1.09 0 4.15

24 186 2.47 179 7.24 186** 1.14 0 3.76

Bartholdi-148

7 806 19.04 805 20.77 805 2.19 -0.12 0

8 712 12 705 20.23 705 2.51 -0.99 0

9 628 16.38 626 11.33 626 2.85 -0.32 0

10 564 14.3 564 15.87 564 3.14 0 0

11 520 10.27 513 13.68 513 3.46 -1.36 0

12 475 10.03 470 10.51 470 3.79 -1.06 0

13 437 11.12 434 24.6 434 4.1 -0.69 0

14 405 12.58 403 22.35 403 4.46 -0.50 0

Scholl-297

21 3490 10.13 3328 35.65 3460* 20.1 -0.87 3.82

23 3189 10.27 3034 53.13 3133* 21.65 -1.79 3.16

25 2931 11.32 2790 47.36 2925* 22.57 -0.21 4.62

27 2695 25.45 2582 69.36 2684* 24.26 -0.41 3.80

29 2526 14.11 2406 48.9 2519* 25.46 -0.28 4.49

31 2366 10.67 2256 43.26 2358* 25.25 -0.34 4.33

33 2203 16.08 2114 56.53 2144* 27.55 -2.75 1.40

35 2011 41.62 1993 62.17 2001* 28.1 -0.50 0.40

37 1983 13.43 1888 45.6 1980* 29.22 -0.15 4.65

39 1882 14.91 1792 40.66 1880* 31.02 -0.11 4.68

41 1779 17.18 1702 58.57 1774* 32.22 -0.28 4.06

43 1706 13.87 1623 36.72 1697* 33.12 -0.53 4.36

45 1620 12.98 1551 53.3 1616* 37.55 -0.25 4.02

47 1562 8.67 1488 42.92 1544* 38.45 -1.17 3.63

49 1496 15.44 1438 34.72 1479* 39.25 -1.15 2.77

50 1458 12.13 1398 40.51 1421* 40.13 -2.60 1.62
Remarks1: 0 = better cycle time than two rules and three rules

 0 = the same cycle time as three rules, but better cycle time than two rules

 0* = worse cycle time than three rules, but better cycle time than two rules
 0** = worse cycle time than three rules, but the same cycle time as two rules

Received: April 11, 2021. Revised: May 25, 2021. 460

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

5. The DE algorithm generated better cycle time than

both the two and three rules methods for 3 instances

(6%), the same cycle time as three rules but better

than two rules for 16 instances (31%), worse cycle

time than three rules but better than two rules for 19

instances (37%), worse cycle time than three rules but

the same as two rules for 8 instances (16%), and the

same cycle time as both two rules and three rules

methods for 5 instances (10%).

Comparing the computational time with two rules,

our DE algorithm was shorter for 37 instances (73%)

and was longer for 14 instances (27%), and these 14

instances were in the Scholl-297 problems with high

number of workstations, ranging from 21 to 50. With

three rules, the DE algorithm was faster for 50

instances (98%) and slower for only a single instance

(2%).

From Tables 4 and 5, we can observe that the DE

algorithm provides comparable or better solutions

than the two rules methods for all instances of

medium and large problems. However, for the three

rules, there were 29 from 101 instances, in which the

DE algorithm did not find better or comparable cycle

times. When examining these 29 instances, 27

instances, ~93%, were large problems with a high

number of tasks and complicated precedence. Thus,

further study to explore this issue, particularly in

large problems, is needed.

4. Conclusions

Minimum cycle times in U-shaped assembly line

balancing problem - type 2 (UALBP-2) were

measured using our modified DE algorithm for 50

medium problems, with 21-58 tasks and 51 large

problems, with 70-297 tasks. All 101 instances could

be solved and found the best solutions. The minimum

cycle times obtained from this approach were also

compared with those from the rule-based heuristic

methods, with two rules or three rules, used by Li et

al. [5]. Our DE algorithm found the best solutions for

both medium and large problems faster. When

analyzing the optimal solutions, the DE algorithm

was able to find the best, better, or equivalent

solutions in almost all instances for medium-scale

problems (48 from 50 instances or 96%). However,

the proposed approach failed to find the best solutions

in the large-scale problems for approximately 54%

(27 from 51 instances). This is due to the number of

tasks and precedence relationship conditions

increased and more complicated. Thus, our DE

algorithm is a potential and effective approach to

solve the UALBP-2, particularly in medium-scale

problems.

In future work, we will improve our DE algorithm

for better solutions in large problems and verify our

expectation that the DE algorithm can efficiently

solve other assembly line balancing problems, for

example, Mixed/Multi line, Parallel line, Two-Sided

Line and others.

Conflicts of interest

The authors confirm that this publication has no

established conflicts of interest and that there has

been no substantial financial funding for this work

that may have influenced its result.

Author contributions

The contributions of authors are as follows:

conceptualization, K. Chantarasamai; methodology,

K. Chantarasamai; software, K. Chantarasamai;

validation, K. Chantarasamai and O. Lasunon; formal

analysis, K. Chantarasamai; investigation, K.

Chantarasamai; resources, K. Chantarasamai; data

curation, K. Chantarasamai; writing—original draft

preparation, K. Chantarasamai; writing—review and

editing, K. Chantarasamai and O. Lasunon;

visualization, O. Lasunon; supervision, O. Lasunon;

project administration, O. Lasunon. All authors read

and approved the final manuscript.

Acknowledgments

We would like to thank the Manufacturing and

Material Research Unit, Faculty of Engineering,

Mahasarakham University for providing research

equipment.

References

[1] N. Kriengkorakot and N. Pianthong, “The

Assembly Line Balancing Problem: Review

Articles”, KKU Engineering Journal, Vol. 34,

No. 2, pp. 133-140, 2007.

[2] G. Jirasirilerd, R. Pitakaso, K. Sethanan, S.

Kaewman, W. Sirirak, and M. Kosacka-Olejnik,

“Simple Assembly Line Balancing Problem

Type 2 by Variable Neighborhood Strategy

Adaptive Search: A Case Study Garment

Industry”, Journal of Open Innovation:

Technology, Market, and Complexity, Vol. 6,

No. 1, pp. 1-22, 2020.

[3] N. Kriengkorakot and N. Pianthong, “The U-

Line Assembly Line Balancing Problem”, KKU

Engineering Journal, Vol. 34, No. 3, pp. 267-

274, 2007.

[4] V. Jonnalagedda and B. Dabade, “Application of

Simple Genetic Algorithm to U-Shaped

Received: April 11, 2021. Revised: May 25, 2021. 461

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Assembly Line Balancing Problem of Type II”,

In: Proc. of International Conf. On Automatic

Control, Cape Town, South Africa, pp. 6168-

6173, 2014.

[5] M. Li, Q. Tang, Q. Zheng, X. Xia, and C. A.

Floudas, “Rules-Based Heuristic Approach for

the U-Shaped Assembly Line Balancing

Problem”, Applied Mathematical Modelling,

Vol. 48, pp. 423-439, 2017.

[6] G. J. Miltenburg and J. Wijngaard, “The U-line

Line Balancing Problem”, Management Science,

Vol. 40, No. 10, pp. 1378-1388, 1994.

[7] T. L. Urban, “Note. Optimal Balancing of U-

Shaped Assembly Lines”, Management Science,

Vol. 44, No. 5, pp. 738-741, 1998.

[8] A. Scholl and R. Klein, “ULINO: Optimally

Balancing U-shaped JIT Assembly Lines”,

International Journal of Production Research,

Vol. 37, No. 4, pp. 721-736, 1999.

[9] R. K. Hwang, H. Katayama, and M. Gen, “U-

Shaped Assembly Line Balancing Problem with

Genetic Algorithm”, International Journal of

Production Research, Vol. 46, No. 16, pp. 4637-

4649, 2008.

[10] A. Baykasoğlu and T. Dereli, “Simple and U-

type Assembly Line Balancing by using an Ant

Colony Based Algorithm”, Mathematical and

Computational Applications, Vol. 14, No. 1, pp.

1-12, 2009.

[11] M. Fathi, M. J. Alvarez, and V. Rodríguez, “The

U-line Line Balancing Problem”, World

Academy of Sciences Journal, Vol. 5, No. 11, pp.

2115-2123, 2011.

[12] N. Kriengkorakot, and P. Kriengkorakot,

“Heuristics Comparison for U-Shaped

Assembly Lin Balancing in the Apparel

Factory”, KKU Engineering Journal, Vol.41,

No.2, pp.155-162, 2014.

[13] P. Sresracoo, N. Kriengkorakot, P.

Kriengkorakot, and K. Chantarasamai, “U-

Shaped Assembly Line Balancing by Using

Differential Evolution Algorithm”,

Mathematical and Computational Applications,

Vol. 23, No. 4, pp. 1-21, 2018.

[14] Z. Zhang, Q. Tang, D. Han, and Z. Li,

“Enhanced Migrating Birds Optimization

Algorithm for U-shaped Assembly Line

Balancing Problems with Workers

Assignment”, Neural Computing and

Applications, Vol. 31, pp. 7501-7515, 2019.

[15] Y. Li, X. Hu, X. Tang, and I. Kucukkoc, “Type-

1 U-shaped Assembly Line Balancing under

uncertain task time”, In: Proc. of International

Conf. On Manufacturing Modelling, Berlin,

Germany, pp. 992-997, 2019.

[16] S. Varnasilpin and R. Masuchun, “The

Allowable Time Approach of the Uncertain

Task for Three U-shaped Lines with the

Minimum Workstations”, International Journal

of Intelligent Engineering and Systems, Vol. 13,

No. 1, pp.203-213, 2020.

[17] R. Klein and A. Scholl, “Maximizing the

Production Rate in Simple Assembly Line

Balancing - A Branch and Bound Procedure”,

European Journal of Operational Research,

Vol. 91, No. 2, pp. 367-385, 1996.

[18] S. B. Liu, H. L. Ong, and H.C. Huang, “Two Bi-

Directional Heuristics for the Assembly Line

Type II Problem”, The International Journal of

Advanced Manufacturing Technology, Vol. 22,

pp. 656-661, 2003.

[19] S. B. Liu, H. L. Ong, and H. C. A. Huang,

“Bidirectional Heuristic for Stochastic

Assembly Line Balancing Type II Problem”,

The International Journal of Advanced

Manufacturing Technology, Vol. 25, pp. 71-77,

2005.

[20] S. A. Seyed-Alagheband, S. M. T. Fatemi

Ghomi, and M. A. Zandieh, “Simulated

Annealing Algorithm for Balancing the

Assembly Line Type II Problem with Sequence-

Dependent Setup Times between Tasks”,

International Journal of Production Research,

Vol. 49, No. 3, pp. 805-825, 2011.

[21] D. Karaboǧa, and S. Ökdem, “A Simple and

Global Optimization Algorithm for Engineering

Problems: Differential Evolution Algorithm”,

Turkish Journal of Electrical Engineering and

Computer Sciences, Vol. 12, No. 1, pp. 53-60,

2004.

[22] S. Kaewman, T. Srivarapongse, C. Theeraviriya,

and G. Jirasirilerd, “Differential Evolution

Algorithm for Multilevel Assignment Problem:

A Case Study in Chicken Transportation”,

Mathematical and Computational Applications,

Vol. 23, No. 4, pp. 1-19, 2018.

[23] R. Storn and K. Price, “Differential Evolution –

A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces”, Journal

of Global Optimization, Vol. 11, pp. 341-359,

1997.

[24] U. Ketsripongsa, R. Pitakaso, K. Sethanan, and

T. Srivarapongse, “An Improved Differential

Evolution Algorithm for Crop Planning in the

Northeastern Region of Thailand”,

Mathematical and Computational Applications,

Vol. 23, No. 3, pp. 1-19, 2018.

[25] R. Kamphukaew, K. Sethanan, T. Jamrus, and H.

K. Wang, “Differential Evolution Algorithms

with Local Search for the Multi-Products

Received: April 11, 2021. Revised: May 25, 2021. 462

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.39

Capacitated Vehicle Routing Problem with

Time Windows: A Case Study of the Ice

Industry”, Engineering and Applied Science

Research, Vol. 45, No. 4, pp. 273-281, 2018.

[26] P. Chokanat, R. Pitakaso, and K. Sethanan,

“Methodology to Solve a Special Case of the

Vehicle Routing Problem: A Case Study in the

Raw Milk Transportation System”,

AgriEngineering. Vol. 1, No. 1, pp. 75-93, 2019.

[27] R. Akararungruangkul and S. Kaewman,

“Modified Differential Evolution Algorithm

Solving the Special Case of Location Routing

Problem”, Mathematical and Computational

Applications, Vol. 23, No. 3, pp. 1-16, 2018.

[28] R. Pitakaso, “Differential Evolution Algorithm

for Simple Assembly Line Balancing Type 1

(SALBP-1)”, Journal of Industrial and

Production Engineering, Vol. 32, No. 2, pp.
104-114, 2015.

[29] A. C. Nearchou and S. L. Omirou, “Assembly

Line Balancing Using Differential Evolution

Models”, Cybernetics and Systems, Vol. 48, No.

5, pp. 436-458, 2017.

[30] M. Ramadas, A. Abraham, and S. Kumar,

“ReDE- A Revised mutation strategy for

Differential Evolution Algorithm”,

International Journal of Intelligent Engineering

and Systems, Vol. 9, No. 4, pp. 51-58, 2016.

[31] T. Srichok, R. Pitakaso, K. Sethanan, W. Sirirak,

and P. Kwangmuang, “Combined Response

Surface Method and Modified Differential

Evolution for Parameter Optimization of

Friction Stir Welding”, Processes, Vol. 8, No. 9,

pp. 1-22, 2020.

[32] J. R. Jackson, “A Computing Procedure for a

Line Balancing Problem”, Management Science,

Vol. 2, No. 3, pp. 261-271, 1956.

[33] A. Scholl, “Data of Assembly Line Balancing

Problems”, 1993, [Online]. Available:

https:assembly-line-

balancing.de/salbp/benchmark-data-sets-1993.

