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Abstract: Brain tumors are among the most common diseases of the central nervous system and are harmful. Early 

diagnosis is essential for patient proper treatment. Radiologists need an automated system to identify brain tumor 

images successfully. The identification process is often a tedious and error-prone task. Furthermore, brain tumor binary 

classification is often characterized by malignant and benign because it involves multi-sequence MRI (T1, T2, T1CE, 

and FLAIR), making radiologist's work quite challenging. Recently, several classification methods based on deep 

learning are being used to classify brain tumors. Each model's performance is highly dependent on the CNN 

architecture used. Due to the complexity of the existing CNN architecture, hyperparameter tuning becomes a problem 

in its application. We propose a CNN method called en-CNN to overcome this problem. This method is based on 

VGG-16 that consists of seven convolutional networks, four ReLU, and four max-pooling. The proposed method is 

used to facilitate the hyperparameter tuning. We also proposed a new approach in which the classification of brain 

tumors is done directly without priorly doing the segmentation process. The new approach consists of the following 

stages: preprocessing, image augmentation, and applying the en-CNN method. Our new approach is also doing the 

classification using four MRI sequences of T1, T1CE, T2, and FLAIR. The proposed method delivers accuracy on the 

MRI multi-sequence BraTS 2018 dataset with an accuracy of 95.5% for T1, 95.5% for T1CE, 94% for T2, and 97% 

for FLAIR with mini-batch size 128 and epoch 200 using ADAM optimizer. The accuracy was 4% higher than previous 

research in the same dataset. 
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1. Introduction 

Brain tumor refers to the uncontrolled growth of 

clusters of brain cells in a particular area. Between 

2012 and 2016, the Central Brain Tumor Registry of 

the United States (CBTRUS) recorded an annual 

occurrence of benign and malignant brain tumors and 

central nervous system (CNS) tumors of 23.41 

percent or 100,000 [1]. In all brain and other CNS 

tumors, the most common form is malignant, called 

glioblastoma, which accounts for approximately 14.6 

percent of all tumors and often affects males. By 

contrast, the most prevalent benign tumor is 

meningioma, which affects 37.4 percent of women 

[1]. 

Brain tumors are categorized as benign or 

malignant based on the pattern of cell development. 

Benign tumors are noncancerous and grow slowly, 

and therefore do not spread to other areas of the brain. 

Malignant, on the other hand, is cancerous, exhibits 

rapid cell proliferation, and invades other brain 
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organs. Glioma is a tumor that arises from glial brain 

cells, accounting for 20% of brain and central 

nervous system tumors and 80% of malignant tumors. 

According to the World Health Organization, 

gliomas are categorized into four classes, from type I 

to IV [2].  Grade I tumors typically occur in children 

and are benign with a similar glial cell texture. Grade 

II tumors with prolonged growth differ slightly in 

texture. Grade III oligoastrocytoma is a malignant 

oligodendroglioma that combines oligoastrocytoma 

and anaplastic oligodendroglioma. Glioblastoma is a 

grade IV tumor that is the most serious type of 

gliomas and tissue defects visible to the naked eye [3]. 

Tumors in stages III and IV are malignant, while 

those in stages I and II are benign (low-grade glioma). 

Imaging computer technology methods, 

specifically Magnetic Resonance Imaging (MRI) and 

Computed Tomography (CT) provide a detailed brain 

tumor image [4]. MRI is one of the most frequently 

used noninvasive approaches for diagnosing and 

treating brain disorders because it determines the size 

and location of contaminated tissue [5]. MRI greatly 

increases the amount of knowledge available to 

determine normal anatomy. It is more effective than 

all other imaging techniques at detecting brain tumor 

tissues than any other imaging technique due to the 

high contrast nature of soft tissue, the high spatial 

resolution, and the lack of harmful radiation [6]. The 

diagnosis is made in this study using a variety of MRI 

sequences, including T1 MRI, T1-CE MRI, T2 MRI, 

and fluid-attenuated inversion recovery (FLAIR) 

MRI. Brain tumor examination via imaging 

modalities has gained prominence in the radiology 

department. 

Appropriate brain tumor classification is 

important for determining a patient's prognosis and 

treatment. A screening technique involving a 

radiologist visualizing the brain's MRI is important. 

Due to the time and subjective nature of the visual 

diagnosis, an accurate computer-aided diagnostic 

(CAD) method has been developed [5]. Machine 

learning and deep learning have emerged as new tools 

for medical image processing. 

Medical image processing has advanced 

significantly as a result of the rapid advancement of 

computers and deep learning. Machine learning (ML) 

is an application of artificial intelligence (AI) that 

uses statistical techniques to automatically generate a 

model from a collection of data, thus enabling 

computers to "read." It enables computers to learn 

from a variety of data and generate a model for 

performing the input-output process without the need 

for explicit software code. The ML algorithm has 

been widely used as part of AI  in medical imaging. 

Machine learning is classified into two types: 

supervised and unsupervised. The supervised 

algorithm is used to test the input variable mapping 

function to predict novel subject labels using output 

labels. The algorithm's primary objective is to 

discover inherent patterns in training data. Several 

algorithms can be used to accomplish this, including 

K-Nearest Neighbors (KNN) [7], Support Vector 

Machine (SVM) [8, 9], and Artificial Neural Network 

(ANN) [10]. Unsupervised learning is the process of 

analyzing previously undetected trends in datasets 

without the use of labels or human control, for 

example, using fuzzy c-means [9] and Self-

Organization Map (SOM) [11]. 

Extracting features from a training image is 

critical for the learning process. After segmentation, 

a grayscale, texture, and statistical feature extraction 

is performed. This is referred to as handcrafted 

feature extraction, and it needs an expert with strong 

expertise while understanding the features is critical. 

Additionally, the use of large-scale data increases 

time consumption and error rates. 

Deep learning (DL) is a sub-part of machine 

learning concerned with multiple representation 

layers and their associated hierarchical features. The 

DL algorithm uses several layers of nonlinear 

identities for extracting features. Each sequence 

layer's output corresponds to the preceding layer's 

input [12]. Convolutional neural networks (CNN) are 

used in deep learning to process visual images in 

optimal 2D and 3D formats. It is motivated by the 

way the brain works and how it deals with large 

amounts of data. Le Cun launched CNN in 1998 as a 

network called "Lenet." However, it became 

prevalent when Krizhevsky won the CNN Imagenet 

Image Classification Competition with Alexnet in 

2017. 

Machine learning and deep learning techniques 

are often used on massive MRI brain tumor datasets 

that provide ground reality for a variety of practice 

cases. Classification problems are solved using 

artificial intelligence and historical data. While 

designing the optimal classifier, accuracy, 

performance, algorithm complexity, and 

computational resources must all be considered. 

Prior to the classification point, researchers used 

the segmentation method in their previous 

approaches. Segmentation is a repetitive, time-

consuming, and subjective procedure that is 

dependent on the medical staff's expertise. Bahadure 

et al. [13] proposed using Berkeley wavelet 

transformation (BWT) and SVM to segment and 

identify MRI brain tumors. Additionally, they 

extracted the function using the statistics feature 

formula. 
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Alfonse and Salem recommend performing a fast 

Fourier transformation to extract features for 

automatic classification using the SVM in enhancing 

the classifier's performance [9]. The reduction of 

features employs approaches based on minimum 

redundancy and maximum relevance. Additionally, 

Kumar and Vijay Kumar [14] developed a theory 

factor analysis method for feature reduction and the 

radial base function of the SVM kernel base for 

classification. Ramdlon et al. [15] categorized brain 

tumors into three types: Astrocytoma, Glioblastoma, 

and Oligodendroglioma. They performed 

segmentation using the watersheds approach and 

feature extraction using shape-based features using a 

KNN classifier. Meanwhile, the stage used a filled 

area and a centroid to extract features. 

In another publication, Amin et al. [16] 

segmented brain tumors before classifying them 

using the Potential Field (PF) clustering process. To 

boost classification accuracy, the Local Binary 

Pattern (LBP) and wavelet transform features are 

used.  Besides the disadvantage of performing 

segmentation before classification, the current 

method has a disadvantage in that the efficiency of 

the classifier machine is highly dependent on the 

combination and selection of features. This 

complicates the optimization of the classifier's 

efficiency, especially during the preprocessing stage. 

If it is assumed that selecting useful features is no 

longer necessary, then self-learning features are 

needed during the machine learning preprocessing 

stage. As a result, the best approach for the function 

to self-learn is deep learning via the CNN method. 

Compared to traditional approaches, which use 

feature extraction as an input for classification, CNN 

analyzes complex features that directly reflect the 

data in real-time. CNN takes the image's collected 

patches as input and extracts increasingly complex 

feature hierarchies using trainable constitutional 

filters and local subsampling. Amin et al. [17] 

implemented the CNN tumor classification system 

and preprocessed the data using the discrete wavelet 

transform (DWT) fusion process method. This 

technique enhances the accuracy of MRI images by 

suppressing noise. Additionally, global thresholding 

was used to isolate tumors for CNN classification. 

Sajjad et al. [18] used multimodal CNN-based 

tumor classification, segmenting the brain tumor 

using CNN. The image augmentation process was 

used to complement the pre-trained process data used 

as input to the VGG-19 model. The results obtained 

from the selected data help to boost the overall 

performance of the system. Vijh et al. [19] 

determined the optimal segmentation threshold using 

adaptive particle swarm optimization (PSO) and the 

Otsu process. Additionally, anisotropic diffusion 

(AD) filtering was used to eliminate noise and 

increase image quality, and the resulting features 

were used as CNN inputs. 

Sharif et al. [20] suggested a saliency-based 

tumor segmentation method and an inception V3 pre-

trained CNN for MRI classification of brain tumors. 

The inception V3 network is composed of 95 layers 

of batch normalization, 94 layers of convolutional 

layers, and layers of rectified linear unit (ReLU). 

Prior to classification, these studies conducted 

segmentation and feature extraction, which raises the 

probability of additional classification levels. Several 

additional methods for classifying brain tumors have 

been created. Ghasemi et al. [21] used six layers of 

CNN to complement and extract features using a 

generative adversarial network (GAN) method. 

Khan et al. [22] suggested a five-step research 

process for binary tumor classification of malignant 

and benign brain tumors using the VGG network and 

MRI images of multi-sequence brain tumors (T1, T2, 

T1CE) and FLAIR. Preprocessing edge-based 

histogram equalization and discrete cosine 

transformation (DCT) have been used for linear 

contrast stretching. VGG-16 and VGG-19 networks 

were used to extract features at the second stage. An 

extreme learning machine (ELM) was used to choose 

the best features at the third stage. A robust partial 

least squares (PLS) covariant was used in one matrix 

in the fourth step and then fed to ELM for final 

classification. Gashemi [21] and Khan [22] both used 

feature extraction and feature selection in their study. 

Additionally, they employ a sophisticated CNN 

architecture and conduct direct classification on a 

variety of MRI sequences, including T1, T1CE, T2, 

and FLAIR, lowering classification accuracy. 

However, the current approach used a CNN 

network, which is very complex, and also required 

segmentation and feature extraction prior to 

classification. Given that tuning hyperparameters 

such as the number of convolutional layers, 

optimizers, large quantities of training data, and 

dropouts all affect deep learning efficiency, CNN has 

struggled with hyperparameter tuning. 

Thus, in this paper, we propose a new method 

called en-CNN to classify brain tumors into benign 

(Low-Grade Glioma or LGG) and malignant 

(Glioblastoma or GBM). The en-CNN stands for 

“enhanced CNN.” This approach is based on VGG-

16 architecture but simpler architecture, with fewer 

layers and parameters. Seven convolutional networks, 

four ReLU networks, and four max-pooling networks 

are used to allow hyperparameter tuning. 

Additionally, we suggest a method in which brain 

tumor classification is performed directly without 
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first performing segmentation. This approach 

consists of the following stages: preprocessing, 

image augmentation, and applying the en-CNN 

method. Our new approach is also doing the 

classification using four MRI sequences of T1, T2, 

T1CE, and FLAIR. 

The contributions of this paper are as follow: 

 

1. Propose a new method called en-CNN that is 

based on VGG-16 but has simpler 

architecture by omitting several 

convolutional layers, which then simplifies 

the process of hyperparameter tuning 

2. Applying classification method directly 

without doing segmentation process before 

the classification 

3. Applying the proposed architecture using 

four sequences of MRI images: T1, T1CE, 

T2, and FLAIR 

 

The remainder of this paper is organized as follows. 

Section 2 of this paper is material and methods, 

covering the research description and methods used, 

starting from the dataset to the network. Section 3 is 

Theory and Calculation, which describes CNN and 

how it works. Sections 4, 5, and 6 are results, 

discussion, and conclusions, respectively. 

2. Data set 

As shown in Fig. 1, this research used the Brain 

Tumor Segmentation (BraTS) dataset, which consists 

of 3T multi-sequence MRI GBM and LGG scans. It 

is updated regularly by trained radiologists in 

collaboration with regular clinicians and is confirmed 

by pathological diagnosis. 

Preprocessing of the BraTS dataset included 

recording directly with the same anatomical template, 

interpolation to the exact resolution (1 mm3), and 

skull stripping [23]. The BraTS 2018 dataset included 

multi-sequence MRI images of 101 GBM and 66 

LGG patients from various perspectives, including 

axial, coronal, and sagittal, as illustrated in Fig. 2. 

 

 
Figure. 1 From left to right, different grades of gliomas 

BraTS dataset GBM and LGG. The tumor has a yellow 

square 

 

 
Figure. 2 From left to right, different acquisition of 

Glioblastoma ( Axial, Coronal, and Sagittal). Tumors are 

localized with a red cross line 

3. Convolutional neural network (CNN) 

3.1 CNN architecture 

CNN architecture is constructed from three layers, 

consisting of Convolutional, Sub-Sampling layer, 

and fully connected (FC) layers, and each layer can 

be modified onto several layers. The first layer of 

CNN, the convolutional layer, is liable to detect local 

features extracted from input image locations. 

Subsequently, those layers provide a connecting layer 

that converts inputted images through feature maps 

wrapped with filters. The convolution representation 

is depicted in Eq. (1) [24]. 

 

𝑧𝑙 = ℎ𝑙−1 ∗𝑊𝑙                                                       (1) 
 

where 𝑧𝑙 is pre-activation layer 𝑙, ℎ𝑙 is an activation 

of layer 𝑙 function, and 𝑊𝑙 learnable parameter.  The 

second layer reduces the features map dimension by 

choosing pixel values as output based on specific 

regulations. Max pooling has been used as an 

algorithm on subsampling layers as in Eq. (2) below: 

 

ℎ𝑥𝑦
𝑙 = 𝑚𝑎𝑥𝑖=0,…,𝑎,𝑗=0….,𝑠ℎ(𝑥+𝑖)(𝑦+𝑗)

𝑙−1                       (2) 

 

FC layers are capable of classifying data and 

performing nonlinear transformations to obtain the 

desired output value. The first and second layers 

correspond to the learning section, while the third 

layers (FC layers) correspond to the classification 

section. 

 

𝑧𝑙 = 𝑊𝑙ℎ𝑙−1                                                    (3) 

 

Apart from the filter and kernel sizes, the 

convolutional layer has parameters for stride (S) and 

zero-padding (ZP). Suppose the stride value is 1, the 

convolution filter shifts by 1 pixel horizontally, 

followed by a 1-pixel vertically. The smaller the step, 

the more detailed information input can be obtained, 

even when it affects the computing process. 

Additionally, the output of the convolutional layer 

becomes the input of the subsequent convolutional 

layer. The output is always smaller than the original 
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condition's input dimension, wasting much 

information (except using a stride one 1x1 filter). 

However, ZP, a parameter that specifies the number 

of pixels on either side of the convolutional layer's 

input (which contains the value 0), is used to 

circumvent this limitation. Additionally, it acts as a 

manipulator, ensuring that the output of the 

convolutional layer matches the dimensions of the 

input. By utilizing a deeper convolutional layer to 

extract additional features, the ZP parameter 

improves CNN performance and makes CNN 

increasingly useful for extracting and identifying 

multi-dimensional data. 

Fig. 3 shows a 3x3 kernel implementation on a 

3x3-size image with zero paddings and producing a 

3x3 convolved image with S = 1. The activation 

function is before the pooling layer and after the 

convolution process.  

An activation function is the resulting convolution 

value at this point. The activation function is ReLU, 

where the output value of the neuron can be 

represented as 0 when the input is negative. If the 

activation function input is positive, the neuron 

output equals the value of the activation function 

input. The activation mechanism of ReLU is depicted 

in Fig. 4. 

 

𝑓(𝑧) = max⁡(0, 𝑧)                                           (4) 

 

The pooling layer decreases the size of the image 

dimension, a process known as downsampling. The 

downsampling method divides the image into small 

rectangles, such as 2x2, traverses the image in steps 

of 2x2, and determines the maximum value of the 

four elements. Fig. 5 illustrates a max-pooling layer 

in action. 

Another often used parameter in CNN is the 

dropout function. Dropout is a regularization 

technique for neural networks in which multiple 

neurons are randomly chosen and ignored during 

training, though they can be spelled out randomly. 

The network temporarily disables the input of  

 

 
Figure. 3 Convolutional layer example with 3×3 input 

image, 1 zero paddings, 3×3 kernel size,  stride:1, and 

output: (3×3) 

 
Figure. 4 ReLU activation function 

 

discarded neurons, and the new weight cannot be 

used during backpropagation. 

Dropout refers to the process of eliminating secret 

or observable neurons from a network in order to 

avoid overfitting and accelerate learning. Removing 

a neuron from the network means momentarily 

removing it from the network. A neuron is randomly 

selected and given a probability value between 0 and 

1. In the proposed architecture, 10% dropout 

probabilities were found to be the most appropriate 

for dropout layers 1 and 2. 

Fig. 6 (a) illustrates a simple neural network with 

two hidden layers. In part (b), the neural network 

used the dropout regularization strategy, which 

eliminated the need for multiple activation neurons. 

This technique was applied to CNN models and had 

an impact on their training efficiency in addition to 

eliminating overfitting. 

Additionally, three advanced layers were used: 

FC, sigmoid, and classification layer. The FC is used 

to bind each neuron in a layer to those in the 

preceding and following layers. The sigmoid layer is 

used to suppress all predicted classes between 0 and 

1. This layer's performance can be determined as 

follows: 

 

𝑦(𝑧𝑘)𝑗 =
1

1+𝑒−𝑧𝑘
                                                  (5) 

 

The probability of any class (j) can be calculated 

over (k) different classes as a function y (z).      Finally, 

the classification layer was evaluated using cross-

entropy loss. Additionally, these classifications 

assign a final binary prediction mark to each image 

that was used. Eq. (6) is used to represent loss, where 

p(z) denotes the target label vector, q (z) denotes the 

contribution from the sigmoid layer, and C denotes 

the number of classes. 

 

𝐻(𝑝, 𝑞) = ⁡−∑ (𝑝𝑖(𝑧)log⁡(𝑞𝑖(𝑧)
𝐶
𝑖=1 )               (6) 
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3.2 Regularization and optimization techniques 

Regularization is used to eliminate generalization 

errors while minimizing training losses. The 

generalization error is the difference between the 

sampling error obtained when testing the model using 

previously observed data and the error obtained when 

testing the model using previously unknown data. 

With a narrow generalization error, the model created 

by the learning process should be well 

generalized.  When the generalization error is high, 

the model tends to overfit because its capacity is too 

high.  The model is restricted to the training data 

given and cannot be generalized to previously unseen 

data. The inverse of overfitting is underfitting, which 

occurs when the resulting model cannot extract the 

appropriate function from the data. 

Numerous techniques are used to mitigate over-

or under-fitting, including data augmentation by 

geometric and original image color adjustments. 

Additionally, dropout layers are used to 

stochastically erase hidden unit weights. 

Regularization with L2 applies a penalty to the cost 

function and decays the weights, as shown in the 

following equation [25]. 

 

𝐶𝑜𝑠𝑡⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛′ = 𝐿𝑜𝑠𝑠 + 𝜆∑ 𝑤𝑖
2𝑘

𝑖=1              (7) 

 

Where λ is regularization parameter and w is the 

corresponding weight(s) for i = 1, . . . , k. In an 

idealistic situation, it is critical to achieving the 

global minimum by optimizing parameters and 

minimizing the loss feature. Convergence reaches 

when small steps towards a negative gradient are 

taken. This study shows that the "adaptive moment 

estimation" is the optimal optimizer for the proposed 

structure.  

4. The proposed method 

Fig. 7 illustrates the proposed method's block 

diagram. The system begins by extracting the raw 

brain tumor data image set and then labeling the 

image. The extracted picture and its mark are fed into 

the system. Considering that, preprocessing and 

augmentation are performed, proceeded by the  

 

 
Figure. 5 Max-pooling layer 2x2 example 

 
                     (a) 

 
(b) 

Figure. 6 Dropout layer example with 50% probability 

 

 
Figure. 7 The CNN architecture block diagram 

 

 
(a)                  (b)                  (c)                   (d) 

Figure. 8: (a) The original image, (b) rotation, (c) zoom, 

and (d) horizontal flip (From the left to right) 

 

dataset being divided into preparation, validation, 

and test datasets. 

Regarding that, a deep learning model was built 

using the proposed network, followed by 

hyperparameter tuning, regularization techniques, 
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and algorithm optimization. Even after that, network 

training and computing efficiency were discussed. 

4.1 Preprocessing stage 

The classification stage used only MRI slices 

with tumors for pre-processing. Slices are chosen in 

accordance with the BraTS ground-truth image. 

Apart from shrinking the original image from 

255x255x1 to 224x224x1, the dataset is resized to 

reduce processing time. Prior to splitting, data is 

shuffled to preserve the process, train with the 

original data, and focus on the dataset's narrow band. 

The data will be segmented into three groups: training, 

validation, and testing (64 % for training and 36 % 

for testing and validation). The next step is to 

augment image data in order to reduce overfitting and 

improve model accuracy. As shown in Figure 8, 

augmentation involves multiplying the dataset for the 

machine to accept the image as fresh. 

 
Algorithm 1. Pseudocode for preparing the data and 

augmentation 

Input   : Image X, Labels Y 

Output: Image X_generated and Labels 

Y_generated 

 

1. Get X as array of images 

2. Get Y as array of each image label 

3. Set num_operations as number of 

augmentation operations 

4. Initialize BATCH_SIZE 

5. For each i in num_operations 

Initialize augmentation operation 

{shear, zoom, horizontal flip} 

6. For each slice in BATCH_SIZE 

Generate data based on 

augmentation operations: 

X_aug[i][slice] as result of 

generated image data 

Y_aug[i][slice] as the image label 

of generated image 

7. Initialize generated_data array to save all 

generated images and labels 

8. For each i in num_operations 

For each slice in BATCH_SIZE 

Combine X_aug[i][slice] and 

Y_aug[i][slice] to the 

generated _data 

9. Shuffle the data inside the generated_data 

10. Create X_generated array 

11. Create Y_generated array 

12. For each images and labels in generated_data 

X_generated = images 

Y_generated = labels 

 
                  (a)                                            (b) 

Figure. 9 (a) CNN Network, (b) en-CNN (Proposed 

Network) 

 

This study analyzed 1000 slices of GBM from 

101 patients and 1000 slices of LGG from 66 patients. 

Each of the shear [26], zoom [27], and horizontal flip 

processes [28] adds a multiplier factor of two to the 

results. This means that the datasets for the GBM and 

LGG classes were each 6000. 

4.2 Proposed CNN architecture 

Fig. 9 (a) illustrates a 16-layer CNN network, 

beginning with the input, which is the image added in 

the previous preprocessing step. The activation 
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function is used to select features, and downsampling 

is used to reduce the size of the CNN layers' arrays 

through sequential convolution, ReLU, and pooling. 

The dropout layer, followed by a completely linked 

and sigmoid layer, eliminates overfitting. 

Classification is used to forecast future grades. The 

2D layer performs convolution on an image by 

applying a convolution kernel (filter) of a defined size 

(MxN). 

Additionally, the machine obtains new 

representative data by multiplying portions of the 

image with the filter and calculating the dot product 

of the weights (kernel weights) and the input. The 

filter alters the picture vertically and horizontally, 

which is referred to as stride (S). The padding or zero 

padding parameter determines how many pixels are 

inserted to each side of the input and is used to control 

the convolution layer (feature map). The output 

measurements can be calculated to ensure that they 

remain consistent with the input or that they are not 

significantly reduced using padding. As a result, a 

deeper convolutional layer is used to remove 

additional features effectively, as shown in Fig. 9. (a). 

VGG Net is a simpler CNN architecture meant to 

stack convolutional layers by increasing filter size. 

Suppose the convolution layer 1 has 13 filters. The 

next one should have the same filter size, 13 or more 

filters. Furthermore, all the filter sizes used are the 

exact dimensions of 3 x 3. The size of these two 3x3 

filters is cheaper than one 5x5 filter.  

Since VGG-16 has thirteen convolutions, five 

max-pooling, three fully connected (FC) layers, and 

one Softmax as a classification layer, the process of 

hyperparameter tuning are not accessible. An en-

CNN (Fig. 9(b)) was developed based on VGG-16 

with seven convolution, four max-pooling layers,  

and one fully connected layer. A sigmoid layer was 

used after a fully connected layer instead of softmax 

for binary classification. After each layer, a dropout 

layer was added to reduce overfitting. By simplifying 

the VGG network (en-CNN), the hyperparameter 

tuning process becomes more manageable.  

The en-CNN model is implemented using a 

higher level Python library, Keras, which runs over 

an open-source deep learning framework Tensor 

Flow as a backend to classify the brain tumor MRI 

images. 

5. Experiment result 

The accuracy and loss of multimodal MRI brain 

tumors show in Fig. 10. The training accuracy is 

nearly 100% after the 200 epochs, while the resulting 

loss is close to zero for all MRI sequences. MRI 

 

.Algorithm 2. Building the en-CNN model 

Training Algorithm 

Input   : Image , label   

Output: Trained Model 

 

1. Define the epoch number 

2. Define the input shape of the network  

3. Initialize number of blocks = 4 

4. for each number of block 

If number == 0 

Get feature maps by 

convolutional process 

using Eq. (1) 

Else 

Get feature maps by doubling 

the convolutional process 

Do nonlinearity operation with Relu 

layer using Eq. (4) 

Maxpool the feature maps using Eq. 

(2) 

Dropout some number of layer 

outputs 

5. Flatten the feature maps  

6. Feed flattened feature maps through fully 

connected layer using Eq. (3) 

7. Get output class through sigmoid layer using 

Eq. (5) 

8. For each epoch 

 Update the weights and loss using 

Eq. (6) and Eq. (7) respectively 

 
Algorithm 3. Classification algorithm for en-CNN  

Testing Algorithm 

Input   : TestImage, label 

Output: Prediction Result 

1. Feed the test set with n number of data to the 

trained network 

2. Get prediction score 

3. For each test data 

  If prediction score > 0.5 

Prediction result is “HGG” 

  Else 

Prediction result is “LGG” 

 

sequences T1 and T2 have more fluctuations in the 

loss. Fig. 11 shows validation accuracy and losses for 

multimodal brain tumors. Accuracy shows a plateau 

of nearly 100 percent, with loss decreasing to zero. 

According to Fig. 11, the accuracy and loss of 

validation on T1 and T2 sequences are more unstable 

than T1CE and FLAIR. In T1CE and FLAIR 

sequences, the curve tends to be smoother after epoch 

150. 

The models performance can be measured by 

finding its accuracy and recall. Some terms 
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commonly used to measure classification model 

performance include positive and negative predicted 

cases, the basis for the search for true positive (Tp), 

true-negative (Tn), false-positive (Fp), and false-

negative values (Fn). These terms are usually 

summarized as a confusion matrix, as shown in      Fig. 

12. Precision, Sensitivity, Specificity, and Accuracy 

are calculated, as shown in Eq. (8). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
 .100% 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑝

𝑇𝑛+𝐹𝑛
. 100%  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑛+𝑇𝑛+𝐹𝑝
. 100%    

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

𝐹1⁡𝑠𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                         (8)  

 True positive and negative values refer to 

positive and negative predicted cases that are 

classified correctly by the model. In comparison, 

false positives and negatives are negative and 

positive predicted cases classified as positive and 

negative classes by the model. The confusion matrix 

on the image shows that the classification models 

performance can be calculated, as shown in Table 1. 

In this study, various hyperparameter tunings 

were assessed to obtain the appropriate tuning and 

high accuracy results, as shown in Table 2. The 

highest classifier performance was achieved at epoch 

200, as shown in Table 3 and Fig.12. The batch value 

was constant at 128 with a dropout layer, variable 

number of epochs, and an optimizer function in the 

design trials. Table 3 shows the test results, where the 

more extensive the epoch, the higher the accuracy. 

The en-CNN architecture provides accuracy 

values that increase from epoch 30 to 300. The best 

performance is obtained at epoch 200 with 97 % 

accuracy, 97.03 % sensitivity, 96.97 % specificity, 

0.97 precision, and 0.97 F1 scores. FLAIR MRI brain 

tumor image dataset obtained the highest 

performance value. In Fig. 12, the proposed network 

was tested with variations in optimizer function and 

epoch value from 30 to 300 epoch and batch size 128. 

The optimizer value that best matches the FLAIR 

is The adaptive moment estimation, or "ADAM," it 

was performed on an MRI brain tumor dataset. 

According to Figure 13, the ADAM optimizer 

function achieves a higher accuracy of 97 percent as 

compared to Root Mean Square Propagation 

(RMSProp) at 92.6 percent and Stochastic Gradient 

Descent (SGD) at 87.5 percent. According to Kingma 

[29], the ADAM optimizer excels at dealing with 

massive datasets and space parameters with a high 

dimension. Additionally, the Adam optimizer has 

been used to accelerate network convergence [30]. 

This is consistent with the brain tumor dataset we use, 

which is a large collection of high-dimensional 

parameters designed to aid in the computation 

process. 

The following table compares pre-existing layers 

to en-CNN. According to Table 4, the en-CNN 

architecture has fewer convolutional layers, a smaller 

filter size, a ReLU layer, a max-pooling layer, and an 

FC layer than the VGG-16 and VGG-19 architectures. 

 

 

 

 
(a)                                                                                      (b) 

 
                         (c)                                                                                     (d)                                                                        

Figure. 10 en-CNN  Network Training Accuracy and Loss for: (a) T1, (b) T1CE, (c) T2, and (d) FLAIR  brain tumor 

MRI image classification 
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Table 1. Proposed classifier performance of brain tumor multimodal MRI sequences 

Multimodal Accuracy (%) Sensitivity (%) Specificity (%) Precision F1 Score 

T1 95.5 96.08 94.9 0.96 0.95 

T1CE 95.5 95.7 95.33 0.95 0.95 

T2 94 97 91 0.94 0.94 

FLAIR 97 97.09 96.91 0.97 0.97 

 

 

(a)                                                                                           (b) 

 

                         (c)                                                                                               (d)                                                                        

Figure. 11 en-CNN Network Validation Accuracy and Loss for: (a) T1, (b) T1CE, (c) T2, and (d) FLAIR  brain tumor 

MRI image classification. 

 
Table 2. Hyperparameter and architecture before the final model 

Factor(s) Values 

Number of convolutional + ReLU layers 1,2,3,4,5,6 

Number of drop out layers 1,2,3 

Maximum epochs 30,50,100,150,200,250,300 

Number of fully connected layers 1,2 

Optimizer ADAM, RMSprop, SGD. 

Mini batch size 32, 64, 128 

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 

 

Table 3. Classifier performance for brain tumor FLAIR MRI according to various epoch 

Epoch Accuracy (%) Sensitivity (%) Specificity (%) Precision F1 Score 

30 89 84 94 0.89 0.89 

50 89 92.86 86.21 0.89 0.89 

100 92.5 92.05 92.86 0.92 0.92 

150 96 94.39 97.85 0.96 0.96 

200 97 97.03 96.97 0.97 0.97 

250 96 98.96 93.27 0.96 0.96 

300 97 97.09 96.91 0.97 0.97 
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                                                        (a)                                                                       (b) 

 

                                                        (c)                                                                       (d) 

Figure. 12 en-CNN prediction Confusion Matrix for: (a)  T1, (b) T1CE, (c) T2, (d) and FLAIR brain tumor MRI image 

classification. 

 

 
Figure. 13 Proposed network accuracy based on optimizer function for FLAIR brain tumor image classification 
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Table 4. Layer comparison of VGG-19, VGG-16, and en-CNN 

Layers VGG-19 VGG-16 en-CNN (Proposed) 

Image Input Size 224x224 pixel 224x224 pixel 224x224 pixel 

Convolutional Layer 16 13 7 

Filter Size 64,128, 256,512 64,128 32,64,128 

ReLU 18 5 4 

Max Pooling 5 5 4 

FC Layer 3 3 1 

 

Table 5. The proposed model and previous related comparison  

Model Dataset MRI. 

Modal 

Classification 

Type 

Classification 

Method 

Accuracy 

(%) 

Bahadure  [13] Brain Web  T1 Multi SVM 96.51 

Ramdlon   [15] The Cancer Imaging Archives 

(TCIA) 

T1 Multi KNN 89.5 

Sajjad [18] Radiopedia and Nanfang 

Hospital and General Hospital, 

Tianjin Medical University. 

T1CE Multi VGG-19  95.5 

J. Amin [16] BraTS 2015 T2, 

FLAIR 

Binary SVM 94 

Sharif  [20] BraTS 2018 T1, T1CE, 

T2, 

FLAIR 

Binary Inception V3 92.5 

Khan [22] BraTS 2018 FLAIR Binary  VGG-16 92.79 

Proposed  BraTS 2018 T1, T1CE, 

T2, 

FLAIR 

Binary en-CNN 97 

 

Meanwhile, Table 5 shows a comparison of the 

proposed methods against existing research. Table 5 

shows that the proposed method has higher accuracy 

in the classification of brain tumors.  

6. Discussion 

This study explained how to classify brain tumors 

using a deep learning technique called en-CNN. The 

Proposed Approach is more reliable than the SVM 

methods proposed by Bahadure [13] and Amin [16]. 

This is because, in addition to several multi-

modalities, deep learning classifications were used, 

while the previous two studies focused exclusively on 

a single sequence modality and machine learning 

methods. 

Additionally, the proposed method outperforms 

Ramdlon [15], as we used a deep learning-based 

classification method without segmentation or 

feature extraction stages in this analysis. 

Moreover, the proposed approach outperforms 

Sajjad [18],  Sharif [20], and Khan [22] as compared 

to other approaches in the deep learning community. 

This is because Sajjad [18] uses fewer sequences, 

specifically two, whereas other researchers' proposed 

method is more effective while using the same 

number of sequences. This is because they conducted 

their research using a complex network, namely 

VGG-16 and Inception V3. Meanwhile, the approach 

we suggest is more reliable due to the simpler design, 

which makes determining the architecture's tuning 

hyperparameter easier. 

As input, the network receives an MRI brain 

tumor image. In contrast to machine learning, the 

proposed classification approach does not require 

manual feature extraction; rather, a filter on a 

convolutional network performs feature extraction 

automatically. Similar to some current approaches, 

the proposed classification method is non-segmented. 

This research experimented with different CNN 

model parameters before settling on the optimal value 

in the previous architecture. The most difficult part of 

the process is the CNN preparation, which takes 

weeks to complete without overfitting or underfitting 

brain tumor datasets. As Triwiyatno [31] states, the 

efficiency of deep learning is highly dependent on 

hyperparameters. The more complex the network, the 

more challenging the tuning of the hyperparameters 

becomes. 

We addressed this issue in this work by 

simplifying the CNN network called en-CNN. En-

CNN was able to distinguish two distinct types of 

brain tumors correctly. A confusion matrix with a 

precision of greater than 95% indicates the accuracy 

achieved. As illustrated in Table 4, en-CNN appeared 

to have a simpler architecture than VGG-16 and 
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VGG-19 but did not degrade classification results. 

We used VGG-16 as a comparison; while VGG-16 

used thirteen convolutional layers, en-CNN used 

seven. If VGG-16 used five layers of ReLU and max-

pooling, en-CNN used four layers of ReLU and max-

pooling. Three FC layers were used in VGG16, while 

en-CNN used a single FC layer. 

Additionally, we compared our results to those of 

previous research, as shown in Table 5. We compare 

many reported findings to proven methods. Amin 

[16] analyzed the BraTS 2015 dataset using machine 

learning techniques. The authors used a handcrafted 

feature in their analysis, achieving a classification 

accuracy of 94% using SVM for the LBP and wavelet 

transform fusion features. Khan [22] classified brain 

tumors using the BraTS dataset using a combination 

of pre-trained VGG networks. This approach 

achieved a classification accuracy of 92.5 %. Sharif 

[20] classified brain tumors using the BraTS 2018 

dataset and a 92.5 % accurate Inception V3 network. 

In comparison to previous research using the same 

dataset, our findings indicated a 4% improvement in 

classification accuracy. 

The BraTS data set was used in this analysis. 

While we are still in the segmentation stage of the 

BraTS datasets usage problem, we have not ruled out 

the possibility of using datasets for brain tumor 

classification. Table 5 contrasts brain tumor datasets 

from a variety of sources in light of these similarities. 

Apart from comparing our findings to the same data 

set, we compared the results of this analysis to a 

variety of other datasets. Despite the use of diverse 

datasets, it can be concluded that deep learning is 

generally superior to machine learning for 

classification. 

7. Conclusions 

This article introduced a new approach called en-

CNN that is based on VGG-16 but has a more 

straightforward architecture for classifying brain 

tumors visible in MRI images. Seven convolutional 

layers, four ReLU layers, and four Maxpooling layers 

comprise the en-CNN. Additionally, we used an 

optimizer to tune the hyperparameters, which 

included a dropout layer, followed by completely 

connected and sigmoid layers to predict the class 

performance. 

Although the dataset was insufficiently large, the 

new approach achieved a high level of accuracy. 

Additionally, hyperparameter tuning was used to 

achieve a 97 % accuracy value with the ADAM 

optimizer for the FLAIR series, which is greater than 

the T1, T1CE, and T2 sequences in the same dataset, 

using the values of 200 epoch, 128 mini-batch size, 

and 0.1 dropouts. 

Conflicts of interest 

The authors declare no conflict of interest.  

Author contributions 

Conceptualization, Hapsari Peni; methodology, 

Hapsari Peni; software, Dewinda Julianensi Rumala 

and Nurul Zainal Fanani; validation, Anggraini Dwi 

Sensusiati; Formal analysis, Joan Santoso; writing—

original draft preparation, Hapsari Peni; writing—

review and editing, I Ketut Eddy Purnama and Peter 

M.A van Ooijen; visualization, Cucun Very Angkoso; 

supervision, Mauridhi Hery Purnomo; Funding 

acquisition, I Ketut Eddy Purnama. 

Acknowledgments 

This research has been sponsored by the 

Indonesian Education Scholarship (BPPDN) and 

partially funded by Lembaga Pengelola Dana 

Pendidikan under the scheme of Riset Inovatif 

Produktif (RISPRO) - Invitasi 2019 Grant, contract 

number: PRJ-41/LPDP/2019.  

References 

[1] Q. T. Ostrom, G. Cioffi, H. Gittleman, N. Patil, 

K. Waite, C. Kruchko, and J. S. Barnholtz-Sloan, 

“CBTRUS Statistical Report: Primary Brain and 

Other Central Nervous System Tumors 

Diagnosed in the United States in 2012-2016”, 

Neuro-Oncology, vol. 21, no. S5. Oxford 

University Press, pp. V1–V100, 01-Oct-2019. 

[2] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. 

Cavenee, P. C. Burger, A. Jouvet, B. W. 

Scheithauer, and P. Kleihues, “The 2007 WHO 

classification of tumours of the central nervous 

system”, Acta Neuropathologica, Vol. 114, No. 

2. Springer, pp. 97–109, Aug-2007. 

[3] L. M. DeAngelis, “Medical progress: Brain 

tumors”, N. Engl. J. Med., Vol. 344, No. 2, pp. 

114–123, 2001. 

[4] G. Mohan and M. M. Subashini, “MRI based 

medical image analysis: Survey on brain tumor 

grade classification”, Biomed. Signal Process. 

Control, Vol. 39, pp. 139–161, 2018. 

[5] J. E. Villanueva-Meyer, M. C. Mabray, and S. 

Cha, “Current clinical brain tumor imaging”, 

Clin. Neurosurg., Vol. 81, No. 3, pp. 397–415, 

Sep. 2017. 

[6] S. C. Thust, M. J. van den Bent, and M. Smits, 

“Pseudoprogression of brain tumors”, J. Magn. 



Received:  March 14, 2021.     Revised: May 21, 2021.                                                                                                    450 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.38 

 

Reson. Imaging, Vol. 48, No. 3, pp. 571–589, 

Sep. 2018. 

[7] P. Thanh Noi and M. Kappas, “Comparison of 

Random Forest, k-Nearest Neighbor, and 

Support Vector Machine Classifiers for Land 

Cover Classification Using Sentinel-2 Imagery”, 

Sensors (Basel)., Vol. 18, No. 1, Dec. 2017. 

[8] W. L. Al-Yaseen, A. Jehad, Q. A. Abed, and A. 

K. Idrees, “The Use of Modified K-Means 

Algorithm to Enhance the Performance of 

Support Vector Machine in Classifying Breast 

Cancer”, International Journal of Intelligent 

Engineering and Systems, Vol. 14, No. 2, pp. 

190-200, 2021. 

[9] M. Alfonse and A.-B. M. Salem, “An Automatic 

Classification of Brain Tumors through MRI 

Using Support Vector Machine”, 2016. 

[10] L. Zhang, L. Li, M. Tang, Y. Huan, X. Zhang, 

and X. Zhe, “A new approach to diagnosing 

prostate cancer through magnetic resonance 

imaging,” Alexandria Eng. J., Oct. 2020. 

[11] H. P. Bahareh Shahangian, “Automatic brain 

hemorrhage segmentation and classification 

algorithm based on weighted grayscale 

histogram feature in a hierarchical classification 

structure”, Biocybern. Biomed. Eng., Vol. 36, 

No. 1, pp. 217–232, Jan. 2016. 

[12] L. Deng and D. Yu, “Deep learning: Methods 

and applications”, Found. Trends Signal 

Process., Vol. 7, No. 3–4, pp. 197–387, 2013. 

[13] N. B. Bahadure, A. K. Ray, and H. P. Thethi, 

“Image Analysis for MRI Based Brain Tumor 

Detection and Feature Extraction Using 

Biologically Inspired BWT and SVM”, Int. J. 

Biomed. Imaging, Vol. 2017, pp. 1–12, Mar. 

2017. 

[14] P. Kumar and B. Vijay Kumar, “Brain tumor 

MRI segmentation and classification using 

ensemble classifier”, Int. J. Recent Technol. 

Eng., Vol. 8, No. 1 Special Issue4, pp. 244–252, 

2019. 

[15] R. H. Ramdlon, E. Martiana Kusumaningtyas, 

and T. Karlita, “Brain Tumor Classification 

Using MRI Images with K-Nearest Neighbor 

Method”, in IES 2019 - International 

Electronics Symposium: The Role of Techno-

Intelligence in Creating an Open Energy System 

Towards Energy Democracy, Proceedings, 2019, 

pp. 660–667. 

[16] J. Amin, M. Sharif, M. Raza, T. Saba, and M. A. 

Anjum, “Brain tumor detection using statistical 

and machine learning method”, Comput. 

Methods Programs Biomed., Vol. 177, pp. 69–

79, Aug. 2019. 

[17] J. Amin, M. Sharif, N. Gul, M. Yasmin, and S. 

A. Shad, “Brain tumor classification based on 

DWT fusion of MRI sequences using 

convolutional neural network”, Pattern 

Recognit. Lett., Vol. 129, pp. 115–122, Jan. 2020. 

[18] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. 

Ullah, and S. W. Baik, “Multi-grade brain tumor 

classification using deep CNN with extensive 

data augmentation”, J. Comput. Sci., Vol. 30, pp. 

174–182, Jan. 2019. 

[19] S. Vijh, S. Sharma, and P. Gaurav, “Brain tumor 

segmentation using OTSU embedded adaptive 

particle swarm optimization method and 

convolutional neural network”, in Lecture Notes 

on Data Engineering and Communications 

Technologies, Vol. 32, Springer, 2020, pp. 171–

194. 

[20] M. I. Sharif, J. P. Li, M. A. Khan, and M. A. 

Saleem, “Active deep neural network features 

selection for segmentation and recognition of 

brain tumors using MRI images”, Pattern 

Recognit. Lett., Vol. 129, pp. 181–189, Jan. 2020. 

[21] N. Ghassemi, A. Shoeibi, and M. Rouhani, 

“Deep neural network with generative 

adversarial networks pre-training for brain 

tumor classification based on MR images”, 

Biomed. Signal Process. Control, Vol. 57, p. 

101678, Mar. 2020. 

[22] M. A. Khan, I. Ashraf, M. Alhaisoni, R. 

Damaševičius, R. Scherer, A. Rehman, and S. A. 

C. Bukhari., “Multimodal brain tumor 

classification using deep learning and robust 

feature selection: A machine learning 

application for radiologists”, Diagnostics, Vol. 

10, No. 8, Aug. 2020. 

[23] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-

Cramer, K. Farahani, J. Kirby, Y. Burren, N. 

Porz, J. Slotboom, R. Wiest, L. Lanczi, E. 

Gerstner, M. A. Weber, T. Arbel, B. B. Avants, 

N. Ayache, P. Buendia, D. L. Collins, N. Cordier, 

J. J. Corso, A. Criminisi, T. Das, H. Delingette, 

Ç. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. 

Festa, F. Forbes, E. Geremia, B. Glocker, P. 

Golland, X. Guo, A. Hamamci, K. M. 

Iftekharuddin, R. Jena, N. M. John, E. 

Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, 

S. Pereira, D. Precup, S. J. Price, T. R. Raviv, S. 

M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, 

H. C. Shin, J. Shotton, C. A. Silva, N. Sousa, N. 

K. Subbanna, G. Szekely, T. J. Taylor, O. M. 

Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. 

Wintermark, D. H. Ye, L. Zhao, B. Zhao, D. 

Zikic, M. Prastawa, M. Reyes, and K. Van 

Leemput, “The Multimodal Brain Tumor Image 

Segmentation Benchmark (BRATS)”, IEEE 

Trans. Med. Imaging, Vol. 34, No. 10, pp. 1993–



Received:  March 14, 2021.     Revised: May 21, 2021.                                                                                                    451 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.38 

 

2024, Oct. 2015. 

[24] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, 

“Learning features for offline handwritten 

signature verification using deep convolutional 

neural networks”, Pattern Recognit., Vol. 70, pp. 

163–176, Oct. 2017. 

[25] H. H. Sultan, N. M. Salem, and W. Al-Atabany, 

“Multi-Classification of Brain Tumor Images 

Using Deep Neural Network”, IEEE Access, Vol. 

7, pp. 69215–69225, 2019. 

[26] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, 

J. Goldberger, and H. Greenspan, “GAN-based 

synthetic medical image augmentation for 

increased CNN performance in liver lesion 

classification”, Neurocomputing, Vol. 321, pp. 

321–331, Dec. 2018. 

[27] J. Nalepa, M. Marcinkiewicz, and M. Kawulok, 

“Data Augmentation for Brain-Tumor 

Segmentation: A Review”, Front. Comput. 

Neurosci., Vol. 13, p. 83, Dec. 2019. 

[28] M. M. Badža and M. C. Barjaktarović, 

“Classification of brain tumors from mri images 

using a convolutional neural network”, Appl. 

Sci., Vol. 10, No. 6, 2020. 

[29] D. P. Kingma and J. Lei Ba, “Adam: A method 

for stochastic optimization,” 3rd International 

Conference on Learning Representations, ICLR 

2015 - Conference Track Proceedings, pp 1-15, 

2015. 

[30] S. Srinivas, R. K. Sarvadevabhatla, K. R. 

Mopuri, N. Prabhu, S. S. S. Kruthiventi, and R. 

V. Babu, “An Introduction to Deep 

Convolutional Neural Nets for Computer 

Vision,” in Deep Learning for Medical Image 

Analysis, Elsevier Inc., 2017, pp. 25–52. 

[31] T. Triwiyanto, I. P. A. Pawana, and M. H. 

Purnomo, “An Improved Performance of Deep 

Learning Based on Convolution Neural Network 

to Classify the Hand Motion by Evaluating 

Hyper Parameter”, IEEE Trans. Neural Syst. 

Rehabil. Eng., Vol. 28, No. 7, pp. 1678–1688, 

Jul. 2020. 


