
Received: February 19, 2021. Revised: May 5, 2021. 241

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

CCSA: Hybrid Cuckoo Crow Search Algorithm for Task Scheduling

in Cloud Computing

Pradeep Krishnadoss1* Gobalakrishnan Natesan1 Javid Ali1

 Manikandan Nanjappan1 Parkavi Krishnamoorthy2 Vijayakumar Kedalu Poornachary2

 1,2Vellore Institute of Technology, Chennai, Tamilnadu, India
1,1St.Joseph’s College of Engineering, Chennai, Tamilnadu, India
1St.Joseph’s Institute of Technology, Chennai, Tamilnadu, India

*Corresponding author’s Email: pradeepkrishnadoss@gmail.com

Abstract: Services are delivered promptly and efficiently managed over the Internet using cloud computing. Data

and storage services are offered to users through cloud computing without regard to the actual physical location of

the users. The cloud environment includes huge number of tasks and computing resources. Identification of

appropriate virtual machine (VM) for allocation of resources to complete any submitted task is done through the task

scheduling algorithms, which play a significant role in the cloud computing process. Task scheduling techniques

improvise the makespan of the schedule and account for considerable reduction of cost expended. In this paper, an

efficient hybridized scheduling algorithm that replicates the parasitic behaviour of the cuckoo and food gathering

habit of the crow bird, named Cuckoo Crow Search Algorithm (CCSA) had been presented for improvising the task

scheduling process. The crow bird always stares at its neighbours looking for a better food source than the one it

currently possesses. At some circumstances the crow even goes a step further and steals its neighbour’s food. The

CCSA had been inspired from such characteristics of these birds and had been designed to be applied in the cloud

environment for identifying a suitable VM for carrying out the task scheduling process. The proposed CCSA accounts

for reduction in makespan and cost and its performance had been experimentally verified by comparing it with other

existing algorithms like Multi objective - Ant Colony Optimization (MO-ACO), ACO, Min-Min and the results had

been presented. The proposed CCSA technique had produced an improvement of 3.14%, 10.70%, and 21.60% for

makespan and had reduced the overall cost to the tune of 4.56%, 11.19% and 19.35% when compared with MO-ACO,

ACO, Min-Min algorithms respectively when used with 10 VMs. The detailed description of results obtained had

been described in result section.

Keywords: Cloud computing, Task scheduling, Makespan, Cuckoo search, Crow search.

1. Introduction

 Cloud computing could be rightly regarded as

the metaphor for the Internet. Cloud provides access

from anywhere and at any time. Cloud computing

removes the physical barrier for users while

providing access to its resources, with users just

requiring internet connectivity from their end [1, 2].

Cloud grants access to its resources to the users over

the internet as a service. The cloud environment

mainly adopts the pay-per-use model while offering

its services to the users. There are several cloud

service providers who could provide the requested

services to the cloud users. Users just need to log-in

with their credentials for accessing the cloud services.

Cloud users are relieved from storing their data from

their own personal computers and instead could do so

virtually in the cloud. They can also submit their

applications to the cloud and make use of servers

available at the cloud for getting their application

manipulated and processed. Such characteristics of

cloud attract many individuals as well as corporates

to make use of the cloud services for executing their

Received: February 19, 2021. Revised: May 5, 2021. 242

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

applications. Infrastructure as a service (IaaS),

offered by the cloud acts like a foundation for other

higher level type of cloud services like the Platform

as a Service (PaaS) and Software as a Service (SaaS)

[3-7]. Due to its remarkable features like cost

effectiveness, reliability and scalability, the cloud has

gained a strong foothold in business as well as

scientific communities. It relieves the users from

making any upfront investment to their infrastructure

for executing their applications. Users need to pay for

the duration of usage of cloud resources to the cloud

service providers without worrying much about the

complex IT cloud infrastructure.

The performance of the cloud computing

environment primarily depends upon the task

scheduling strategy implemented inside it.

Scheduling in cloud is a process that maps a bunch of

received workload to a bunch of virtual machines that

are capable of executing them or alternately,

allocating the virtual machines with available

resources to meet the user demands. Optimization of

resources could be achieved through efficient

scheduling that would in turn increase the

performance efficiency of the cloud environment.

Since there is an enormous increase from the user

side approaching the cloud to meet their application

demands, there needs to be efficient scheduling

algorithms deployed in cloud for efficiently

allocating the user tasks or jobs to appropriate data

centres in cloud.

2. Related work

In [8] A comprehensive multi-objective

algorithm for task scheduling had been proposed. The

authors had considered four objectives that are quite

conflicting in nature namely cost of task execution,

task transfer duration, power consumed and task

queue length in their work. The algorithm considered

both the costs of execution and power consumption

and accounted for its reduction from both customer

and provider perspectives. The performance of the

proposed algorithm was compared with other multi-

objective algorithms like Multi-Objective Particle

Swarm Optimization (MOPSO) and Multi-Objective

Genetic Algorithm (MOGA). Results obtained

proved the superiority of the proposed algorithm.

In [9] An innovative multi-objective Cuckoo

Search Optimization (MOCSO) algorithm had been

proposed to address the resource scheduling issues in

cloud environment. The proposed algorithm

minimized the cost incurred by the cloud user and

increased the performance of the system by

minimizing the makespan. This technique accounted

for maximum resource utilization yielding increased

profit for the cloud service providers.

In [10] had proposed an algorithm by hybridizing

the Cuckoo Search and Harmony Search algorithms

named, CHSA for optimizing the scheduling

performance in the cloud environment. The Cuckoo

search and Harmony search algorithms were

integrated to carry out intelligent process scheduling.

A multi-objective function comprising of parameters

namely cost, energy consumption, memory expended,

and credit gained and penalty accrued had been

proposed by the authors. The performance of the

proposed CHSA had been verified by comparing it

with the hybrid cuckoo gravitational search algorithm,

Cuckoo search and Harmony search algorithms with

respect to various multi-objective parameters.

In [11] had proposed an algorithm by hybridizing

the Cuckoo Search and Particle Swarm Optimization

algorithms named, CPSO for improvising the

scheduling performance in the cloud computing

environment. QoS parameters namely makespan,

cost and deadline violation rate were effectively

reduced by the proposed CPSO algorithm. The

proposed CPSO algorithm had been evaluated for its

performance using the Cloudsim toolkit. Simulation

results obtained had proved the efficiency of the

proposed CPSO algorithm

In [12], the authors had allocated the task to a

virtual machine that accounted for least execution

cost and had the capability to meet the specified

deadline constraints. Also, the virtual machine that

had been allocated the task was placed under the most

utilized physical host category matching to its

capability. The authors had evaluated the

performance of their proposed co-optimization

technique, joint task scheduling and VM placement

(JTSVMP), by comparing it with other multi-

optimization algorithms. The results obtained had

proved that the proposed co-optimization technique

had effectively reduced the makespan, execution cost,

degree of imbalance and maximized the physical

hosts’ resource utilization capability.

In [13], the authors had integrated the genetic

algorithm and the electro search algorithm and

proposed a Hybrid Electro Search with a genetic

algorithm (HESGA) for improving the task

scheduling process in the cloud. The authors had

considered the QoS parameters namely makespan,

load balancing, resource utilization and cost for fine

tuning the task scheduling activity. Best local optimal

solutions were generated using the Genetic

Algorithm whereas the Electro Search algorithm

generated the best global optimal solutions.

Experimental results obtained had shown that the

Received: February 19, 2021. Revised: May 5, 2021. 243

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

proposed HESGA outperformed a host of other

existing algorithms.

 In [14] had integrated the genetic algorithm

(GA) and the Bacterial Foraging (BF) algorithm by

combining their most desirable characteristics. This

had led to the improvement of scheduling

performance in the cloud environment. The proposed

hybridized scheduling algorithm successfully

accounted for the reduction of makespan, energy

consumption with respect to both economic and

ecological perspectives.

The above literature review does not provide near

optimal solution for QoS parameters makespan and

cost when considered together. The proposed Cuckoo

Crow Search Algorithm (CCSA) considers the

makespan and cost parameters for optimizing the task

scheduling and resource utilization activity amongst

the virtual machines in the cloud environment [15,

16].

The remaining of this article had been structured

as follows: The proposed CCSA algorithm for

optimizing the task scheduling process had been

described in the Section 6.1. Results obtained and

their subsequent analysis had been presented in

Section 7. Conclusion and future work had been

presented in the Section 8.

3. Problem with solution framework

The cloud service providers set up an

environment in cloud comprising of the physical

machine (PM) and the virtual machine (VM) for

providing a public interface. The cloud consumers

submit their tasks through the interface. All of such

received task requests are aggregated and effectively

managed by the Request Manager. The Resource

Monitor keeps an update of the availability record of

the cloud resource pool that includes CPU, memory

and storage. The Scheduler component effectively

schedules the tasks in the cloud environment such

that the formulated fitness function is minimized. The

constrained tasks are assigned to virtual machines in

accordance to the latter’s performance in the

scheduling process. The Scheduler, after obtaining

the needed information from both the Request

Manager and Resource Monitor, begins to schedule

the tasks. Once the needed information is obtained, a

decision regarding the allocation of tasks to

appropriate virtual machines is made.

Each task needs to be allocated to appropriate

virtual machine. The allocation process can be fine-

tuned after gathering the location information of the

VMs. This information helps in decreasing a host of

parameters including the migration cost, total time,

load utilization and energy consumption.

Table 1. Notation used in CCSA algorithm

Let Ta represent the task submitted by the user.

Each of such received task needs to be assigned to

appropriate virtual machines (VMi). Notations used

in the CCSA algorithm are depicted in Table 1 above.

4. Problem statement

A task set T, could be defined as T = {t1, t2...tm},

where m indicates the total number of tasks. The

Virtual Machine (VM) set could be defined as VM =

{vm1, vm2...vmn}, where n represents the total number

of virtual machines. The mapping of a task to any

specific virtual machine could be represented in a

matrix (M) form as depicted below:

 M =[

𝑚11 𝑚12 𝑚1𝑛

𝑚21 𝑚22 𝑚2𝑛

𝑚𝑚1 𝑚𝑚2 𝑚𝑚𝑛

] (1)

Where mij represents the assignment association

between the ith task on the jth virtual machine. The

time expected to execute a task on any specific virtual

machine could be represented in a matrix (ET) form

as shown below:

 ET=[

𝑒𝑡11 𝑒𝑡12 𝑒𝑡1𝑛

𝑒𝑡21 𝑒𝑡22 𝑒𝑡2𝑛

𝑒𝑡𝑚1 𝑒𝑡𝑚2 𝑒𝑡𝑚𝑛

] (2)

Here

𝑒𝑡𝑖𝑗 =
𝑡𝑙𝑒𝑛𝑔𝑡ℎ_𝑖

𝑉𝑀𝑐𝑜𝑚𝑝_𝑗
 (3)

Where 𝑒𝑡𝑖𝑗 is the execution time of task i on

virtual machine j, tlength_i denotes the length of each

taski, which is actually the number of instructions that

are present in a task that is being executed,

VMcomp_j is the processing power of the virtual

machine j and the same could be obtained from the

below eqn:

VMcomp_j=VMmips_j × VMpenum_j (4)

Notations Description

PMi Physical machine i, ni 1

VMi Virtual machine i, Ii 1

Ti Task i, mi 1

Ci Cost

 ET Execution time

BW Bandwidth

𝑤1,𝑤2 Control Parameters

Mips Million instruction per second

Received: February 19, 2021. Revised: May 5, 2021. 244

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

 Where VMmips_j is the computing power of the

virtual machine j and VMpenum_j denotes the

number of CPUs that are utilized in virtual machine j.

The time taken for transmitting the task can be

represented in a matrix (ER) form as depicted below:

 𝐸𝑅 = [

𝑒𝑟11 𝑒𝑟12 𝑒𝑟1𝑛

𝑒𝑟21 𝑒𝑟22 𝑒𝑟2𝑛

𝑒𝑟𝑚1 𝑒𝑟𝑚2 𝑒𝑟𝑚𝑛

] (5)

Here

𝑒𝑟𝑖𝑗 =
𝑡𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒_𝑖

𝑉𝑀𝑏𝑤_𝑗
 (6)

Where 𝑒𝑟𝑖𝑗 represents the time at which the taski is

assigned to jth virtual machine, 𝑡𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒_𝑖

indicates the size of datai for taski and 𝑉𝑀𝑏𝑤_𝑗 is the

available bandwidth at the jth virtual machine.

The time at which an individual task gets completed

can be obtained from the equation given below:

 𝑇𝑎𝑠𝑘𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑖𝑗 = 𝑒𝑡𝑖𝑗 + 𝑒𝑟𝑖𝑗 (7)

Therefore the time taken for completing the tasks

that were assigned to jth virtual machine could be

obtained by summing up the time taken to complete

all the tasks that were allocated to the jth virtual

machine as shown below:

𝑉𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 _𝑗 = ∑ 𝑇𝑎𝑠𝑘𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑖𝑗

𝑘

𝑖=1

 (8)

Since the virtual machines are subjected to

simultaneous execution, the task completion time

could then be deduced by appropriating the time

taken by the last virtual machine to complete the

assigned task [10]. This has been represented as

shown below:

𝐶𝑇𝑖𝑚𝑒(𝐼) = max(𝑉𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑡𝑖𝑚𝑒_𝑗) 𝑗 ∈ [1, 𝑛] (9)

Let the unit cost for completing a task at the jth

virtual machine be Ucostj, then the total cost for

executing all subtasks could be represented as

shown below:

𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡(𝐼) = ∑ 𝑉𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑡𝑖𝑚𝑒_𝑗 ∗𝑛
𝑗=1

𝑈𝑐𝑜𝑠𝑡𝑗 (10)

The time constraint function for task scheduling

activity could be defined as shown below:

𝑇𝑖𝑚𝑒𝑐𝑓(𝐼) =
𝐶𝑇𝑖𝑚𝑒(𝐼)−𝐶_𝑇𝑖𝑚𝑒𝑚𝑖𝑛

𝐶𝑇𝑖𝑚𝑒𝑚𝑎𝑥−𝐶_𝑇𝑖𝑚𝑒𝑚𝑖𝑛
 (11)

Where C_Timemin is the time consumed by the task

while getting executed at the best virtual machine,

C_Timemax is time consumed by the task while

executed at the worst machine. The values of

C_Timemin and C_Timemax could be deduced as shown

below:

 𝐶𝑇𝑖𝑚𝑒𝑚𝑖𝑛
=

∑ 𝑡𝑙𝑒𝑛𝑔𝑡ℎ_𝑖
𝑚
𝑖=1

𝑛 × max (𝑉𝑀𝑐𝑜𝑚𝑝_𝑗)
+

∑ 𝑡𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒_𝑖
𝑚
𝑖=1

𝑛×𝑉𝑀𝑏𝑤_𝑗

(12)

𝐶𝑇𝑖𝑚𝑒𝑚𝑎𝑥
=

∑ 𝑡𝑙𝑒𝑛𝑔𝑡ℎ_𝑖
𝑚
𝑖=1

𝑛×max (𝑣𝑚𝑐𝑜𝑚𝑝_𝑗)
+

∑ 𝑡𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒_𝑖
𝑚
𝑖=1

𝑛×𝑉𝑀𝑏𝑤_𝑗

(13)

In a similar fashion the cost constraint function for

task scheduling activity could be defined as shown

below:

𝐶𝐶𝑜𝑠𝑡(𝐼) =
𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝐼) − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑖𝑛

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑎𝑥 − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑖𝑛
 (14)

Where TotalCostmin indicates the cost expended by

the user task while getting executed on a least cost

virtual machine in parallel and TotalCostmax

indicates the cost expended by the user task while

getting executed on an expensive virtual machine in

parallel. The values of TotalCostmin and TotalCostmax

could be deduced as given below:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑖𝑛 = 𝐶𝑇𝑖𝑚𝑒𝑚𝑖𝑛

× 𝑀𝐼𝑁(𝑈𝐶𝑜𝑠𝑡𝑗) (15)

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑎𝑥 = 𝐶𝑇𝑖𝑚𝑒𝑚𝑎𝑥

× 𝑀𝐼𝑁(𝑈𝐶𝑜𝑠𝑡𝑗) (16)

Finally the fitness function for the proposed approach

could be formulated as given below:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑤1𝑇𝑖𝑚 + 𝑤2𝐶𝐶𝑜𝑠𝑡 (17)

In the function, w1+w2=1, w1 is the weight factor

of time and w2 is the weight factor of the cost.

5. Cuckoo search algorithm

 The cuckoo species that hatch their eggs in other

host birds’ nest had been the inspiration for the

Cuckoo Search algorithm. [10] The cuckoo bird

generally hatches their fertilized eggs in other

cuckoos’ nest with the intention of raising their baby

birds by other proxy parent cuckoos. Every egg

Received: February 19, 2021. Revised: May 5, 2021. 245

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

present in the cuckoo nest denotes a solution, with the

cuckoo egg denoting an innovative solution. Once the

host birds identify that the eggs are not their own,

they either abandon them by throwing them off their

nest or just leave their nest once for all and build a

new nest for them. The Cuckoo Search optimization

algorithm adheres to three basic rules listed below:

1. Every cuckoo hatches a single egg at a time and

drops it in a randomly selected nest.

2. The nests containing high quality eggs

(solutions) will be carried over to succeeding

generations.

3. The available host nests are fixed and at any

point of time a host cuckoo bird can very well

identify the presence of a foreign egg with the

probability p ϵ [0, 1]. In such case, the host

cuckoo can either just throw the egg off the nest

or leaves its nest once for all and builds its own

nest at a new location.

The rule 3 presented above could be tweaked by

swapping a fraction (represented as pa) of the total

available n host nests with new nests (infusing new

random solutions). The chosen solution is deemed to

be qualified or fit when it is proportional to the value

of identified objective function. Implementation-wise,

the principle adopted is that every egg in a nest

represents a solution and a cuckoo can hatch only one

egg at a time (which represents a new solution). The

intention is to select the new and hypothetically better

solution (cuckoo egg) by swapping it with an inferior

solution (cuckoo egg) from the nest.

Since the Cuckoo Search algorithm balances the

local random walk and global random walk more

effectively, it is normally best suited for providing

solutions to global optimization problems. Control

and balance between the local and global random

walks are achieved through the switching parameter

pa ∊ [0, 1]. The local and global random walks can be

represented using Eqs. (18) and (19) respectively, as

shown below:

X𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼𝑠  𝐻(𝑃𝑎 − ) (𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) (18)

X𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼𝐿(𝑠, λ) (19)

Where X𝑖
𝑡+1indicates the Next position, 𝑋𝑖

𝑡represents

the current positions selected by applying the random

permutation, 𝛼 represents the positive step size

scaling factor, s indicates the step

size,  indicates the entry-wise product of two

vectors, 𝐻 indicates heavy-side

function, the 𝑃𝑎 value is used to adjust between local

and global random walks,  is the random number

obtained from uniform distribution, L(𝑠, λ)indicates

the Levy distribution that is applied for defining the

step size of random walk.

6. Crow search algorithm

Crows (crow species) are noted for their

intelligence [17]. Their brain is as large as their body

size when the brain-to-body ratio is taken into

consideration, the crow’s brain slightly lags behind

the human brain. The intelligence characteristics of

crow have been strongly established with many a

proof. Despite the fact that they lag behind humans in

intelligence, they build tools and have the possess the

capability of identifying themselves in mirrors. They

can recollect faces and alert each other when a foe

approaches them. They have the most sophisticated

form of communication and can recollect where they

had hidden their food even after several months.

Crows keep an eye on other bird species, look for

where these birds are hiding their food and eventually

steal their food once they find a chance. Whenever a

crow commits a theft, it starts moving away to newer

locations so that it itself doesn’t become a victim of

theft in future. Since they themselves had enacted a

theft, they clearly read the intention of other thieves

and make themselves secured from being robbed.

 This population-based behaviour of crows, like

storing their extra food in hidden locations and

recovering it during their needy times had been

incorporated in this article. The principles of Crow

Search algorithm are herewith enlisted:

1. Crows live in groups.

2. Crows are capable enough to recollect where they

had dumped their food.

3. Crows trail each other and whenever they find a

chance, steal other’s food.

4. Crows safeguard their location from adversaries

with a probability in the interval [0, 1].

Let us assume an environment with d-dimension

that includes a number of crows. Let N be their flock

size and the location of the crowi at time (iteration)

iter, in the search space is represented by a vector

denoted by 𝑋𝑖𝑡𝑒𝑟, and i=1, 2..., N.

Where 𝑖𝑡𝑒𝑟 = 1,2, . . 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , 𝑋𝑖𝑡𝑒𝑟 =

[𝑋1
𝑖𝑡𝑒𝑟 , 𝑋2

𝑖𝑡𝑒𝑟, … 𝑋𝑑
𝑖𝑡𝑒𝑟] and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 indicates the

maximum number of iterations.

Each crow recollects the location of its hiding

place from its memory. At iteration iter, the location

of hiding of crowi could be given by miter. This

location is the best one which the crowi had obtained

Received: February 19, 2021. Revised: May 5, 2021. 246

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

Figure. 1 Architecture of the proposed hybrid cuckoo crow search algorithm

till now. In fact, each crow memorizes the location

that it considers to be the best one. Crows roam

around the environment in search of better food

sources.

Let us consider that at iteration iter, crowj visits

its hiding location miter
. Also, in the same iteration,

crowi follows crowj to identify its hiding location. At

this juncture two scenarios are possible:

Scenario 1: Crowj is unaware of it being followed by

crowi. Subsequently the hidden location of crowj is

revealed to crowi.

Scenario 2: Crowj is aware of it being followed by

crowi. Usually in such case, crows fly to a different

place far much far away from the place where they

had hidden their food, just to fool their followers.

Now both scenario 1 and 2 could be together

represented as given below:

X𝑖𝑡𝑒𝑟+1 =

{
𝑋𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙𝑖𝑡𝑒𝑟 × (𝑚𝑖𝑡𝑒𝑟 − 𝑋𝑖𝑡𝑒𝑟) if 𝑟𝑖 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20)

Where 𝑟𝑖 is a random number that is randomly

distribution between 0 and 1 and 𝑓𝑙𝑖𝑡𝑒𝑟 represents

distance the crow flies, APj,iter indicates the

awareness probability of crowj, at iteration iter.

6.1 Task Scheduling using Hybrid CCSA

The main objective of the proposed approach is

to optimize the task scheduling process by applying

Received: February 19, 2021. Revised: May 5, 2021. 247

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

the hybridized Cuckoo Crow Search Algorithm

(CCSA).

Pseudo code of CCSA

Let the position of crow population be initialized

to xi = (xi1,xi2,…xin)

Consider an n dimensional search space.

Let crowi denotes the crow population where i = 1,2,

…, N.

Initialize the initial memory location (mi) of each

crow to mi = mi1, mi2,… min

Each crow is evaluated by considering the quality of

its position by applying in the fitness function that

had been formulated.

Iteration, iter begins at 1

New location for each crow, inside the search space

could be generated as follows:

Let any crowi select randomly any other crowj from

the crow family.

The crowi follows crowj to find the location where it

has hidden its food.

AS long as iter remains lesser than max number of

iterations,

Then, for each crow

Update its new location in accordance and also

Update the new location inside its memory according

to Eq. (20)

Update using CS according to Eq. (19)

iter = iter + 1

End.

The overall architecture of proposed Hybrid

Cuckoo Crow Search algorithm for efficient task

scheduling had been depicted in Figure 1. The tasks

submitted by the users are handed over to the Task

Manager. The Task Manager relays these tasks to the

Scheduler component that schedules them based on

their fitness function. The Resource component

tracks the utilization of virtual machines with respect

to the QoS parameters memory, energy and CPU. The

proposed Hybrid Cuckoo Crow Search Algorithm

optimizes the task scheduling process by reducing the

cost and execution time[18-22].

7. Results and discussion

Experiments were conducted in a simulated

environment using Java (jdk 1.6) with Cloudsim tool.

The implementation setup comprised of a PC with

Windows 7 OS @ 2 GHz dual core, a RAM of 4 GB

and a 64-bit windows 2007 OS. The experiments

were conducted by varying the input task from 50 to

300 numbers. The performance of the proposed

Table 2. Parameter setting for Cloud Simulator

Entity Type Parameters Values

Task

(Cloudlet)

Task Length 5000-100000

Total tasks 50-250

File size 300-5000

Virtual

Machine

(VM)

MIPS 512-1024

Number of VM 10

Bandwidth 500-1200

Memory 512-2048

Storage 100000-800000

Unit cost of VM 1-10

Hybrid CCSA had been evaluated by comparing its

results with respect to cost and execution time

(makespan) parameters against MO-ACO, ACO and

MIN-MIN algorithms [23]. Both ACO and Min-Min

algorithms aim to provide optimized solutions for

task scheduling activity in cloud by continuously

iterating the candidate solutions. In a similar manner,

the MO-ACO algorithm generates optimized solution

for task scheduling activity by taking into

consideration of makespan and cost parameters.

Since the proposed CCSA also strives to provide a

near optimal solution to task scheduling activity, it

has been compared with the MO-ACO, ACO, Min-

Min algorithms. The Table 2 lists out the types of

entity, parameters and their corresponding values that

are considered in the experiment.

7.1 Comparison of makespan

The proposed CCSA increases the efficiency of

the task scheduling process by minimizing the

makespan and cost parameters. The performance of

the proposed CCSA with respect to the makespan

parameter had been compared with MO-ACO, ACO

and MIN-MIN algorithms. In Figure 2, the

comparison of task execution time using 10 VMs by

applying CCSA, MO-ACO, ACO and MIN-MIN

algorithms had been shown. For 50 number of tasks,

the makespan values obtained are 150.52,165, 174.69

and 183.706 for CCSA, MO-ACO, ACO and MIN-

MIN respectively. When the task count is increased

to 100 numbers, the makespan values obtained are

315.4, 332.347, 358.802 and385.199 for CCSA, MO-

ACO, ACO and MIN-MIN respectively. For 150

tasks, the makespan values obtained are 500.89,

516.45, 542.876 and 560.606 for CCSA, MO-ACO,

ACO and MIN-MIN respectively. For 200 tasks, the

values obtained are 652.78, 674.495, 726.978 and

770.794 for CCSA, MO-ACO, ACO and MIN-MIN

respectively. For 250 tasks, the values obtained are

780.8, 797.702, 850.157 and 981.011 for CCSA,

MO-ACO, ACO and MIN-MIN respectively. For

300 tasks, the values obtained are 970,990.471,

Received: February 19, 2021. Revised: May 5, 2021. 248

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

Figure. 2 Makespan of 10 VMs

Figure. 3 Makespan of 20 VMs

1077.82 and 1217.23 for CCSA, MO-ACO, ACO and

MIN-MIN respectively. On the whole it could be

inferred that the proposed CCSA is superior to other

algorithms while comparing the makespan values

deduced using 10 VMs.

In Fig. 3, the comparison of task execution time

using 20 VMs by applying CCSA, MO-ACO, ACO

and MIN-MIN algorithms had been shown. For 50

number of tasks, the makespan values obtained are

74.4, 80.8, 86.5 and 90.5 for CCSA, MO-ACO, ACO

and MIN-MIN respectively. When the task count is

increased to 100 numbers, the makespan values

obtained are 156.7, 165.4, 178.5, 191.5 and 385.199

for CCSA, MO-ACO, ACO and MIN-MIN

respectively. For 150 tasks, the values obtained are

248.5, 256.4,265 and 270.7for CCSA, MO-ACO,

ACO and MIN-MIN respectively.

For 200 tasks, the values obtained are 320.4,

330.5, 356 and 375 for CCSA, MO-ACO, ACO and

MIN-MIN respectively. For 250 tasks, the values

obtained are 385.1, 395.7, 423.5 and 488.445 for

CCSA, MO-ACO, ACO and MIN-MIN respectively.

For 300 tasks, the values obtained are 482.5, 492.5,

535.4 and 600.8 for CCSA, MO-ACO, ACO and

MIN-MIN respectively. Hence it could be inferred

that the proposed CCSA is superior to other

algorithms while comparing the makespan values

deduced using 20 VMs.

7.2 Comparison of cost

The performance of the proposed CCSA with

respect to the cost parameter had been compared with

MO-ACO, ACO and MIN-MIN algorithms. Figure 4

shows the cost expended for tasks numbered 50, 100,

150, 200, 250 and 300 using 10 VMs by applying the

CCSA, MO-ACO, ACO and MIN-MIN algorithms.

It could be seen that cost values obtained for 50 tasks

are 5400, 5590.28, 5833.3 and 5900.1 for CCSA,

MO-ACO, ACO and MIN-MIN respectively. The

cost values in the case of 100 tasks are 5400, 5590.28,

5833.3 and 5900.1 for CCSA, MO-ACO, ACO and

MIN-MIN respectively. In the case of 150 tasks, the

values obtained are 15000.78, 6284.7, 17986.1 and

19930.6 for MO-ACO, ACO and MIN-MIN

respectively. For 200 number of tasks, the cost values

are 22650.8, 22847.2, 24305.6 and 26250 for MO-

ACO, ACO and MIN-MIN respectively. For 250

number of tasks, the cost values are 27500, 28437.5,

30381.9 and 33541.7 for MO-ACO, ACO and MIN-

MIN respectively. The cost for 300 tasks is 30000,

31500.4, 32513.4 and 33450.7for MO-ACO, ACO

and MIN-MIN respectively. On the whole it could be

inferred that the proposed CCSA is superior to other

algorithms while comparing the cost values deduced

using 10 VMs.

Figure. 4 Cost of 10 VMs

Figure. 5 Cost of 20 VMs

Received: February 19, 2021. Revised: May 5, 2021. 249

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

Fig. 5 shows the cost expended for tasks

numbered 50, 100, 150, 200, 250 and 300 using 20

VMs by applying the CCSA, MO-ACO, ACO and

MIN-MIN algorithms. It could be seen that cost

values obtained for 50 tasks are 2705.2, 2793.34,

2925.32 and 2840.67 for CCSA, MO-ACO, ACO and

MIN-MIN respectively. The cost values in the case

of 100 tasks are 4855.7,5468.75,5987.4 and 6452.89

for CCSA, MO-ACO, ACO and MIN-MIN

respectively. In the case of 150 tasks, the values

obtained are 7489.8, 8142.35, 8993.05 and 9978.2 for

MO-ACO, ACO and MIN-MIN respectively. For

200 number of tasks, the cost values are 11358.78,

11420.8, 12158.9 and 13128 for MO-ACO, ACO and

MIN-MIN respectively. For 250 number of tasks, the

cost values are 13580, 14325.9, 15296 and 16770.85

for MO-ACO, ACO and MIN-MIN respectively. The

cost for 300 tasks is 14890.4, 15688, 16300.78 and

16749.25 for MO-ACO, ACO and MIN-MIN

respectively. Hence it could be inferred that the

proposed CCSA is superior to other algorithms while

comparing the cost values deduced using 20 VMs.

8. Conclusion and future work

The hybrid CCSA had been proposed to address

the task scheduling issue in cloud computing. The

hybrid CCSA takes into consideration the QoS

parameters makespan and cost for increasing the

performance of the task scheduling activity.

Experimental results obtained using hybrid CCSA

had been compared with MO-ACO, ACO and Min-

Min algorithms. Results obtained had shown that the

proposed hybrid CCSA had produced better output

with respect to makespan and cost parameters

compared to other algorithms. For experimental

analysis, the task count was varied from 50 to 300

number and 10 and 20 numbers of Virtual Machines

were considered. By analysing the results obtained,

it had been found that the proposed CCSA technique

had produced an improvement of 3.14%, 10.70%,

and 21.60% for makespan and had reduced the

overall cost to the tune of 4.56%, 11.19% and 19.35%

when compared with MO-ACO, ACO, Min-Min

algorithms respectively when used with 10 VMs. By

integrating the Cuckoo Search and Crow Search

algorithms, a highly efficient solution for task

scheduling issue in cloud computing had been

devised. As a future activity, more QoS parameters

could be taken into consideration for testing the

efficiency of the proposed hybrid CCSA and the same

could be evaluated under real time scenarios.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

“Conceptualization, Pradeep Krishnadoss;

methodology, Javid Ali ; software, Javid Ali;

validation, Gobalakrishnan Natesan; formal analysis,

Gobalakrishnan Natesan; investigation, Manikandan

Nanjappan; resources, Manikandan Nanjappan; data

curation, Manikandan Nanjappan; writing— Pradeep

Krishnadoss; writing—review and editing, Pradeep

Krishnadoss; visualization, Parkavi Krishnamoorthy;

supervision, Vijayakumar Kedalu Poornachary”.

References

[1] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive

learning PSO-based deadline constrained task

scheduling for hybrid IaaS cloud”, IEEE

Transactions on Automation Science and

Engineering, Vol. 11, No. 2, pp.564-573, 2013.

[2] T. S. Somasundaram and K. Govindarajan,

“CLOUDRB: A framework for scheduling and

managing High-Performance Computing (HPC)

applications in science cloud”, Future

Generation Computer Systems, Vol. 34, pp. 47-

65, 2014.

[3] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy,

and A. E. Reyad, “An extended Intelligent Water

Drops algorithm for workflow scheduling in

cloud computing environment”, Egyptian

Informatics Journal, Vol. 19, No. 1, pp.33-55,

2018.

[4] C. W. Tsai, W. C Huang, M. H. Chiang, M. C.

Chiang, and C. S. Yang, “A hyper-heuristic

scheduling algorithm for cloud”, IEEE

Transactions on Cloud Computing, Vol. 2, No.

2, pp. 236-250, 2014.

[5] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “A

self-adaptive scheduling algorithm for reduce

start time”, Future Generation Computer

Systems, Vol. 43, pp. 51-60, 2015.

[6] B. Tripathy, S. Dash, and S. K. Padhy,

“Dynamic task scheduling using a directed

neural network”, Journal of Parallel and

Distributed Computing, Vol. 75, pp. 101-106,

2015.

[7] H. Topcuoglu, S. Hariri, and M. Y. Wu,

“Performance-effective and low-complexity

task scheduling for heterogeneous

computing”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 13, No. 3, pp. 260-274,

2002.

[8] F. Ramezani, J. Lu, J. Taheri, and F. K. Hussain,

“Evolutionary algorithm-based multi-objective

task scheduling optimization model in cloud

environments”, World Wide Web, Vol. 18, No. 6,

pp. 1737-1757, 2015.

Received: February 19, 2021. Revised: May 5, 2021. 250

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.22

[9] S. H. H. Madni, M. S. Abd Latiff, and J. Ali,

“Multi-objective-oriented cuckoo search

optimization-based resource scheduling

algorithm for clouds”, Arabian Journal for

Science and Engineering, Vol. 44, No. 4, pp.

3585-3602, 2019.

[10] K. Pradeep and T. P. Jacob, “A Hybrid

Approach for Task Scheduling Using the

Cuckoo and Harmony Search in Cloud

Computing Environment”, Wireless Personal

Communications, Vol. 101, No. 4, pp 2287–

2311, 2018.

[11] K. Pradeep and T. P. Jacob, “A multi-objective

optimal task scheduling in cloud environment

using cuckoo particle swarm optimization”,

Wireless Personal Communications, Vol. 109,

No. 1, pp. 315-331, 2019.

[12] A. Dabiah, H. Tianfield, Y. Zhang, and B.

Pranggono, “A metaheuristic method for joint

task scheduling and virtual machine placement

in cloud data centers”, Future Generation

Computer Systems, Vol. 115, pp. 201-212, 2021.

[13] S. Velliangiri, P. Karthikeyan, V. A. Xavier, and

D. Baswaraj, “Hybrid electro search with

genetic algorithm for task scheduling in cloud

computing”, Ain Shams Engineering

Journal, Vol. 12, No. 1, pp. 631-639, 2021.

[14] S. Srichandan, T. A. Kumar, and S. Bibhudatta,

“Task scheduling for cloud computing using

multi-objective hybrid bacteria foraging

algorithm”, Future Computing and Informatics

Journal, Vol. 3, No. 2, pp. 210-230, 2018.

[15] P. Krishnadoss and P. Jacob, “OCSA: Task

Scheduling Algorithm in Cloud Computing

Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 11,

No. 3, pp. 271-279, 2018.

[16] K. Pradeep and T. P. Jacob, “CGSA scheduler:

A multi-objective-based hybrid approach for

task scheduling in cloud environment”,

Information Security Journal: A Global

Perspective, Vol. 27, No. 2, pp. 77-91, 2018.

[17] A. Askarzadeh, “A novel metaheuristic method

for solving constrained engineering optimization

problems”, Crow Search Algorithm Computers

& Structures, Vol. 169, pp. 1-12, 2016.

[18] N. Gobalakrishnan and C. Arun, “A New Multi-

Objective Optimal Programming Model for

Task Scheduling using Genetic Gray Wolf

Optimization in Cloud Computing”, The

Computer Journal, Vol. 61, No. 10, pp. 1523-

1536, 2018.

[19] G. Natesan and A. Chokkalingam, “Opposition

Learning-Based Grey Wolf Optimizer

Algorithm for Parallel Machine Scheduling in

Cloud Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 10,

No. 1, pp.186-195, 2017.

[20] K. Pradeep and T. P. Jacob, “Comparative

analysis of scheduling and load balancing

algorithms in cloud environment”, In: Proc. of

International Conf. on Control, Instrumentation,

Communication and Computational

Technologies, pp. 526-531, 2016.

[21] G Natesan and A Chokkalingam, “Multi-

Objective Task Scheduling Using Hybrid Whale

Genetic Optimization Algorithm in

Heterogeneous Computing

Environment”, Wireless Personal

Communications, Vol. 110, pp. 1887-1913,

2020.

[22] G. Natesan and A. Chokkalingam, “Task

scheduling in heterogeneous cloud environment

using mean grey wolf optimization algorithm”,

ICT Express, Vol. 5, No. 2, pp. 110-114, 2019.

[23] Q. Guo, “Task scheduling based on ant colony

optimization in cloud environment”, In: Proc. of

AIP Conf proceedings, pp. 040039, 2017.

