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Abstract: Services are delivered promptly and efficiently managed over the Internet using cloud computing. Data 

and storage services are offered to users through cloud computing without regard to the actual physical location of 

the users. The cloud environment includes huge number of tasks and computing resources. Identification of 

appropriate virtual machine (VM) for allocation of resources to complete any submitted task is done through the task 

scheduling algorithms, which play a significant role in the cloud computing process. Task scheduling techniques 

improvise the makespan of the schedule and account for considerable reduction of cost expended. In this paper, an 

efficient hybridized scheduling algorithm that replicates the parasitic behaviour of the cuckoo and food gathering 

habit of the crow bird, named Cuckoo Crow Search Algorithm (CCSA) had been presented for improvising the task 

scheduling process. The crow bird always stares at its neighbours looking for a better food source than the one it 

currently possesses. At some circumstances the crow even goes a step further and steals its neighbour’s food. The 

CCSA had been inspired from such characteristics of these birds and had been designed to be applied in the cloud 

environment for identifying a suitable VM for carrying out the task scheduling process. The proposed CCSA accounts 

for reduction in makespan and cost and its performance had been experimentally verified by comparing it with other 

existing algorithms like Multi objective - Ant Colony Optimization (MO-ACO), ACO, Min-Min and the results had 

been presented. The proposed CCSA technique had produced an improvement of 3.14%, 10.70%, and 21.60% for 

makespan and had reduced the overall cost to the tune of 4.56%, 11.19% and 19.35% when compared with MO-ACO, 

ACO, Min-Min algorithms respectively when used with 10 VMs. The detailed description of results obtained had 

been described in result section. 
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1. Introduction 

 Cloud computing could be rightly regarded as 

the metaphor for the Internet. Cloud provides access 

from anywhere and at any time. Cloud computing 

removes the physical barrier for users while 

providing access to its resources, with users just 

requiring internet connectivity from their end [1, 2]. 

Cloud grants access to its resources to the users over 

the internet as a service. The cloud environment 

mainly adopts the pay-per-use model while offering 

its services to the users. There are several cloud 

service providers who could provide the requested 

services to the cloud users. Users just need to log-in 

with their credentials for accessing the cloud services. 

Cloud users are relieved from storing their data from 

their own personal computers and instead could do so 

virtually in the cloud. They can also submit their 

applications to the cloud and make use of servers 

available at the cloud for getting their application 

manipulated and processed. Such characteristics of 

cloud attract many individuals as well as corporates 

to make use of the cloud services for executing their 
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applications. Infrastructure as a service (IaaS), 

offered by the cloud acts like a foundation for other 

higher level type of cloud services like the Platform 

as a Service (PaaS) and Software as a Service (SaaS) 

[3-7]. Due to its remarkable features like cost 

effectiveness, reliability and scalability, the cloud has 

gained a strong foothold in business as well as 

scientific communities. It relieves the users from 

making any upfront investment to their infrastructure 

for executing their applications. Users need to pay for 

the duration of usage of cloud resources to the cloud 

service providers without worrying much about the 

complex IT cloud infrastructure.   

The performance of the cloud computing 

environment primarily depends upon the task 

scheduling strategy implemented inside it. 

Scheduling in cloud is a process that maps a bunch of 

received workload to a bunch of virtual machines that 

are capable of executing them or alternately, 

allocating the virtual machines with available 

resources to meet the user demands. Optimization of 

resources could be achieved through efficient 

scheduling that would in turn increase the 

performance efficiency of the cloud environment. 

Since there is an enormous increase from the user 

side approaching the cloud to meet their application 

demands, there needs to be efficient scheduling 

algorithms deployed in cloud for efficiently 

allocating the user tasks or jobs to appropriate data 

centres in cloud. 

2. Related work 

In [8] A comprehensive multi-objective 

algorithm for task scheduling had been proposed. The 

authors had considered four objectives that are quite 

conflicting in nature namely cost of task execution, 

task transfer duration, power consumed and task 

queue length in their work. The algorithm considered 

both the costs of execution and power consumption 

and accounted for its reduction from both customer 

and provider perspectives. The performance of the 

proposed algorithm was compared with other multi-

objective algorithms like Multi-Objective Particle 

Swarm Optimization (MOPSO) and Multi-Objective 

Genetic Algorithm (MOGA). Results obtained 

proved the superiority of the proposed algorithm.  

In [9] An innovative multi-objective Cuckoo 

Search Optimization (MOCSO) algorithm had been 

proposed to address the resource scheduling issues in 

cloud environment. The proposed algorithm 

minimized the cost incurred by the cloud user and 

increased the performance of the system by 

minimizing the makespan. This technique accounted 

for maximum resource utilization yielding increased 

profit for the cloud service providers. 

In [10] had proposed an algorithm by hybridizing 

the Cuckoo Search and Harmony Search algorithms 

named, CHSA for optimizing the scheduling 

performance in the cloud environment. The Cuckoo 

search and Harmony search algorithms were 

integrated to carry out intelligent process scheduling. 

A multi-objective function comprising of parameters 

namely cost, energy consumption, memory expended, 

and credit gained and penalty accrued had been 

proposed by the authors. The performance of the 

proposed CHSA had been verified by comparing it 

with the hybrid cuckoo gravitational search algorithm, 

Cuckoo search and Harmony search algorithms with 

respect to various multi-objective parameters.   

In [11] had proposed an algorithm by hybridizing 

the Cuckoo Search and Particle Swarm Optimization 

algorithms named, CPSO for improvising the 

scheduling performance in the cloud computing 

environment. QoS parameters namely makespan, 

cost and deadline violation rate were effectively 

reduced by the proposed CPSO algorithm. The 

proposed CPSO algorithm had been evaluated for its 

performance using the Cloudsim toolkit. Simulation 

results obtained had proved the efficiency of the 

proposed CPSO algorithm 

In [12], the authors had allocated the task to a 

virtual machine that accounted for least execution 

cost and had the capability to meet the specified 

deadline constraints. Also, the virtual machine that 

had been allocated the task was placed under the most 

utilized physical host category matching to its 

capability. The authors had evaluated the 

performance of their proposed co-optimization 

technique, joint task scheduling and VM placement 

(JTSVMP), by comparing it with other multi-

optimization algorithms. The results obtained had 

proved that the proposed co-optimization technique 

had effectively reduced the makespan, execution cost, 

degree of imbalance and maximized the physical 

hosts’ resource utilization capability.   

In [13], the authors had integrated the genetic 

algorithm and the electro search algorithm and 

proposed a Hybrid Electro Search with a genetic 

algorithm (HESGA) for improving the task 

scheduling process in the cloud. The authors had 

considered the QoS parameters namely makespan, 

load balancing, resource utilization and cost for fine 

tuning the task scheduling activity. Best local optimal 

solutions were generated using the Genetic 

Algorithm whereas the Electro Search algorithm 

generated the best global optimal solutions. 

Experimental results obtained had shown that the 
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proposed HESGA outperformed a host of other 

existing algorithms. 

  In [14] had integrated the genetic algorithm 

(GA) and the Bacterial Foraging (BF) algorithm by 

combining their most desirable characteristics. This 

had led to the improvement of scheduling 

performance in the cloud environment. The proposed 

hybridized scheduling algorithm successfully 

accounted for the reduction of makespan, energy 

consumption with respect to both economic and 

ecological perspectives. 

The above literature review does not provide near 

optimal solution for QoS parameters makespan and 

cost when considered together. The proposed Cuckoo 

Crow Search Algorithm (CCSA) considers the 

makespan and cost parameters for optimizing the task 

scheduling and resource utilization activity amongst 

the virtual machines in the cloud environment [15, 

16]. 

The remaining of this article had been structured 

as follows: The proposed CCSA algorithm for 

optimizing the task scheduling process had been 

described in the Section 6.1. Results obtained and 

their subsequent analysis had been presented in 

Section 7. Conclusion and future work had been 

presented in the Section 8. 

3. Problem with solution framework 

The cloud service providers set up an 

environment in cloud comprising of the physical 

machine (PM) and the virtual machine (VM) for 

providing a public interface. The cloud consumers 

submit their tasks through the interface. All of such 

received task requests are aggregated and effectively 

managed by the Request Manager. The Resource 

Monitor keeps an update of the availability record of 

the cloud resource pool that includes CPU, memory 

and storage. The Scheduler component effectively 

schedules the tasks in the cloud environment such 

that the formulated fitness function is minimized. The 

constrained tasks are assigned to virtual machines in 

accordance to the latter’s performance in the 

scheduling process. The Scheduler, after obtaining 

the needed information from both the Request 

Manager and Resource Monitor, begins to schedule 

the tasks. Once the needed information is obtained, a 

decision regarding the allocation of tasks to 

appropriate virtual machines is made.  

Each task needs to be allocated to appropriate 

virtual machine. The allocation process can be fine-

tuned after gathering the location information of the 

VMs. This information helps in decreasing a host of 

parameters including the migration cost, total time, 

load utilization and energy consumption.  

Table 1. Notation used in CCSA algorithm 

 

Let Ta   represent the task submitted by the user. 

Each of such received task needs to be assigned to 

appropriate virtual machines (VMi). Notations used 

in the CCSA algorithm are depicted in Table 1 above. 

4. Problem statement 

A task set T, could be defined as T = {t1, t2...tm}, 

where m indicates the total number of tasks. The 

Virtual Machine (VM) set could be defined as VM = 

{vm1, vm2...vmn}, where n represents the total number 

of virtual machines. The mapping of a task to any 

specific virtual machine could be represented in a 

matrix (M) form as depicted below: 

 

         M =[

𝑚11 𝑚12 𝑚1𝑛

𝑚21 𝑚22 𝑚2𝑛

𝑚𝑚1 𝑚𝑚2 𝑚𝑚𝑛

]                      (1) 

 

Where mij represents the assignment association 

between the ith task on the jth virtual machine. The 

time expected to execute a task on any specific virtual 

machine could be represented in a matrix (ET) form 

as shown below:  

 

       ET=[

𝑒𝑡11 𝑒𝑡12 𝑒𝑡1𝑛

𝑒𝑡21 𝑒𝑡22 𝑒𝑡2𝑛

𝑒𝑡𝑚1 𝑒𝑡𝑚2 𝑒𝑡𝑚𝑛

]                        (2) 

Here 

𝑒𝑡𝑖𝑗 =
𝑡𝑙𝑒𝑛𝑔𝑡ℎ_𝑖

𝑉𝑀𝑐𝑜𝑚𝑝_𝑗
                                                 (3) 

 

Where 𝑒𝑡𝑖𝑗  is the execution time of task i on 

virtual machine j, tlength_i denotes the length of each 

taski, which is actually the number of instructions that 

are present in a task that is being executed, 

VMcomp_j is the processing power of the virtual 

machine j and the same could be obtained from the 

below eqn: 

 

VMcomp_j=VMmips_j × VMpenum_j                            (4) 

 

Notations Description 

PMi Physical machine i, ni 1  

VMi Virtual machine i, Ii 1  

Ti Task i, mi 1  

Ci Cost 

            ET Execution time 

BW Bandwidth 

𝑤1,𝑤2 Control Parameters 

Mips Million instruction per second 
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 Where VMmips_j is the computing power of the 

virtual machine j and VMpenum_j denotes the 

number of CPUs that are utilized in virtual machine j. 

The time taken for transmitting the task can be 

represented in a matrix (ER) form as depicted below:  

 

                     𝐸𝑅 = [

𝑒𝑟11 𝑒𝑟12 𝑒𝑟1𝑛

𝑒𝑟21 𝑒𝑟22 𝑒𝑟2𝑛

𝑒𝑟𝑚1 𝑒𝑟𝑚2 𝑒𝑟𝑚𝑛

]                (5) 

 

Here 

 

𝑒𝑟𝑖𝑗 =
𝑡𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒_𝑖

𝑉𝑀𝑏𝑤_𝑗
                                           (6) 

 

Where 𝑒𝑟𝑖𝑗 represents the time at which the taski is 

assigned to jth virtual machine, 𝑡𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒_𝑖   

indicates the size of datai for taski and 𝑉𝑀𝑏𝑤_𝑗 is the 

available bandwidth at the jth virtual machine.  

The time at which an individual task gets completed 

can be obtained from the equation given below: 

 

            𝑇𝑎𝑠𝑘𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑖𝑗 = 𝑒𝑡𝑖𝑗 + 𝑒𝑟𝑖𝑗              (7) 

 

Therefore the time taken for completing the tasks 

that were assigned to jth virtual machine could be 

obtained by summing up the time taken to complete 

all the tasks that were allocated to the jth virtual 

machine as shown below: 

 

𝑉𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 _𝑗 = ∑ 𝑇𝑎𝑠𝑘𝑅𝑢𝑛𝑇𝑖𝑚𝑒𝑖𝑗

𝑘

𝑖=1

              (8) 

 

Since the virtual machines are subjected to 

simultaneous execution, the task completion time 

could then be deduced by appropriating the time 

taken by the last virtual machine to complete the 

assigned task [10]. This has been represented as 

shown below: 

 

𝐶𝑇𝑖𝑚𝑒(𝐼) = max(𝑉𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑡𝑖𝑚𝑒_𝑗) 𝑗 ∈ [1, 𝑛]  (9) 

 

Let the unit cost for completing a task at the jth 

virtual machine be Ucostj, then the total cost for 

executing all subtasks could be represented as 

shown below: 

 

𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡(𝐼) = ∑ 𝑉𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑡𝑖𝑚𝑒_𝑗 ∗𝑛
𝑗=1

𝑈𝑐𝑜𝑠𝑡𝑗                                                                  (10) 

 

The time constraint function for task scheduling 

activity could be defined as shown below: 

𝑇𝑖𝑚𝑒𝑐𝑓(𝐼) =
𝐶𝑇𝑖𝑚𝑒(𝐼)−𝐶_𝑇𝑖𝑚𝑒𝑚𝑖𝑛

𝐶𝑇𝑖𝑚𝑒𝑚𝑎𝑥−𝐶_𝑇𝑖𝑚𝑒𝑚𝑖𝑛
                   (11) 

 

Where C_Timemin   is the time consumed by the task 

while getting executed at the best virtual machine, 

C_Timemax is time consumed by the task while 

executed at the worst machine. The values of 

C_Timemin and C_Timemax could be deduced as shown 

below: 

 

      𝐶𝑇𝑖𝑚𝑒𝑚𝑖𝑛
=

∑ 𝑡𝑙𝑒𝑛𝑔𝑡ℎ_𝑖
𝑚
𝑖=1

𝑛 × max (𝑉𝑀𝑐𝑜𝑚𝑝_𝑗)
+  

∑ 𝑡𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒_𝑖
𝑚
𝑖=1

𝑛×𝑉𝑀𝑏𝑤_𝑗
  

(12) 

 

𝐶𝑇𝑖𝑚𝑒𝑚𝑎𝑥
=

∑ 𝑡𝑙𝑒𝑛𝑔𝑡ℎ_𝑖
𝑚
𝑖=1

𝑛×max (𝑣𝑚𝑐𝑜𝑚𝑝_𝑗)
+  

∑ 𝑡𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑧𝑒_𝑖
𝑚
𝑖=1

𝑛×𝑉𝑀𝑏𝑤_𝑗
  

(13) 

 

In a similar fashion the cost constraint function for 

task scheduling activity could be defined as shown 

below: 

 

𝐶𝐶𝑜𝑠𝑡(𝐼) =
𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝐼) − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑖𝑛

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑎𝑥 −  𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑖𝑛
    (14) 

 

Where TotalCostmin indicates the cost expended by 

the user task while getting executed on a least cost 

virtual machine in parallel and TotalCostmax 

indicates the cost expended by the user task while 

getting executed on an expensive virtual machine in 

parallel. The values of TotalCostmin and TotalCostmax 

could be deduced as given below: 

 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑖𝑛 = 𝐶𝑇𝑖𝑚𝑒𝑚𝑖𝑛

× 𝑀𝐼𝑁(𝑈𝐶𝑜𝑠𝑡𝑗)                        (15) 

 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑎𝑥 = 𝐶𝑇𝑖𝑚𝑒𝑚𝑎𝑥

× 𝑀𝐼𝑁(𝑈𝐶𝑜𝑠𝑡𝑗)                        (16) 

 

Finally the fitness function for the proposed approach 

could be formulated as given below: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑤1𝑇𝑖𝑚 + 𝑤2𝐶𝐶𝑜𝑠𝑡             (17) 

 

In the function, w1+w2=1, w1 is the weight factor 

of time and w2 is the weight factor of the cost. 

5. Cuckoo search algorithm 

 The cuckoo species that hatch their eggs in other 

host birds’ nest had been the inspiration for the 

Cuckoo Search algorithm. [10] The cuckoo bird 

generally hatches their fertilized eggs in other 

cuckoos’ nest with the intention of raising their baby 

birds by other proxy parent cuckoos. Every egg 
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present in the cuckoo nest denotes a solution, with the 

cuckoo egg denoting an innovative solution. Once the 

host birds identify that the eggs are not their own, 

they either abandon them by throwing them off their 

nest or just leave their nest once for all and build a 

new nest for them. The Cuckoo Search optimization 

algorithm adheres to three basic rules listed below: 

 

1. Every cuckoo hatches a single egg at a time and 

drops it in a randomly selected nest. 

2. The nests containing high quality eggs 

(solutions) will be carried over to succeeding 

generations. 

3. The available host nests are fixed and at any 

point of time a host cuckoo bird can very well 

identify the presence of a foreign egg with the 

probability p ϵ [0, 1]. In such case, the host 

cuckoo can either just throw the egg off the nest 

or leaves its nest once for all and builds its own 

nest at a new location.  

 

The rule 3 presented above could be tweaked by 

swapping a fraction (represented as pa) of the total 

available n host nests with new nests (infusing new 

random solutions). The chosen solution is deemed to 

be qualified or fit when it is proportional to the value 

of identified objective function. Implementation-wise, 

the principle adopted is that every egg in a nest 

represents a solution and a cuckoo can hatch only one 

egg at a time (which represents a new solution). The 

intention is to select the new and hypothetically better 

solution (cuckoo egg) by swapping it with an inferior 

solution (cuckoo egg) from the nest.    

Since the Cuckoo Search algorithm balances the 

local random walk and global random walk more 

effectively, it is normally best suited for providing 

solutions to global optimization problems. Control 

and balance between the local and global random 

walks are achieved through the switching parameter 

pa ∊ [0, 1]. The local and global random walks can be 

represented using Eqs. (18) and (19) respectively, as 

shown below: 

 

X𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼𝑠   𝐻(𝑃𝑎 − ) (𝑋𝑗
𝑡 − 𝑋𝑘

𝑡 )  (18) 

 

X𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼𝐿(𝑠, λ)                        (19) 

 

Where  X𝑖
𝑡+1indicates the Next position, 𝑋𝑖

𝑡represents 

the  current positions selected by applying the random 

permutation,  𝛼 represents the  positive step size 

scaling factor, s indicates the step 

size,   indicates the   entry-wise product of two 

vectors,  𝐻  indicates heavy-side 

function, the 𝑃𝑎 value is used to adjust between local 

and global random walks,   is the random number 

obtained from uniform distribution, L(𝑠, λ)indicates 

the  Levy distribution that is applied for defining the 

step size of random walk. 

6. Crow search algorithm 

Crows (crow species) are noted for their 

intelligence [17]. Their brain is as large as their body 

size when the brain-to-body ratio is taken into 

consideration, the crow’s brain slightly lags behind 

the human brain. The intelligence characteristics of 

crow have been strongly established with many a 

proof. Despite the fact that they lag behind humans in 

intelligence, they build tools and have the possess the 

capability of identifying themselves in mirrors. They 

can recollect faces and alert each other when a foe 

approaches them. They have the most sophisticated 

form of communication and can recollect where they 

had hidden their food even after several months.     

Crows keep an eye on other bird species, look for 

where these birds are hiding their food and eventually 

steal their food once they find a chance. Whenever a 

crow commits a theft, it starts moving away to newer 

locations so that it itself doesn’t become a victim of 

theft in future. Since they themselves had enacted a 

theft, they clearly read the intention of other thieves 

and make themselves secured from being robbed.  

 This population-based behaviour of crows, like 

storing their extra food in hidden locations and 

recovering it during their needy times had been 

incorporated in this article. The principles of Crow 

Search algorithm are herewith enlisted: 

 

1. Crows live in groups. 

2. Crows are capable enough to recollect where they 

had dumped their food. 

3. Crows trail each other and whenever they find a 

chance, steal other’s food. 

4. Crows safeguard their location from adversaries 

with a probability in the interval [0, 1]. 

 
Let us assume an environment with d-dimension 

that includes a number of crows. Let N be their flock 

size and the location of the crowi at time (iteration) 

iter, in the search space is represented by a vector 

denoted by  𝑋𝑖𝑡𝑒𝑟, and i=1, 2..., N. 

Where 𝑖𝑡𝑒𝑟 = 1,2, . . 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , 𝑋𝑖𝑡𝑒𝑟 =

[𝑋1
𝑖𝑡𝑒𝑟 , 𝑋2

𝑖𝑡𝑒𝑟, … 𝑋𝑑
𝑖𝑡𝑒𝑟 ] and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  indicates the 

maximum number of iterations. 

Each crow recollects the location of its hiding 

place from its memory. At iteration iter, the location 

of hiding of crowi could be given by miter. This 

location is the best one which the crowi had obtained 
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Figure. 1 Architecture of the proposed hybrid cuckoo crow search algorithm 

 

till now. In fact, each crow memorizes the location 

that it considers to be the best one. Crows roam 

around the environment in search of better food 

sources. 

Let us consider that at iteration iter, crowj visits 

its hiding location miter
. Also, in the same iteration, 

crowi follows crowj to identify its hiding location. At 

this juncture two scenarios are possible: 

Scenario 1: Crowj is unaware of it being followed by 

crowi. Subsequently the hidden location of crowj is 

revealed to crowi.  

Scenario 2: Crowj is aware of it being followed by 

crowi. Usually in such case, crows fly to a different 

place far much far away from the place where they 

had hidden their food, just to fool their followers.  

Now both scenario 1 and 2 could be together 

represented as given below: 

 

X𝑖𝑡𝑒𝑟+1 =

{
𝑋𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙𝑖𝑡𝑒𝑟 × (𝑚𝑖𝑡𝑒𝑟 − 𝑋𝑖𝑡𝑒𝑟)   if 𝑟𝑖 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟  

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
     

                                                                              (20) 

 

Where 𝑟𝑖  is a random number that is randomly 

distribution between 0 and 1 and 𝑓𝑙𝑖𝑡𝑒𝑟 represents 

distance the crow  flies, APj,iter indicates the 

awareness probability of crowj, at iteration iter. 

6.1 Task Scheduling using Hybrid CCSA 

The main objective of the proposed approach is 

to optimize the task scheduling process by applying 
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the hybridized Cuckoo Crow Search Algorithm 

(CCSA).  

 

Pseudo code of CCSA 

Let the position of crow population be initialized 

to xi = (xi1,xi2,…xin) 

Consider an n dimensional search space.  

Let crowi denotes the crow population where i = 1,2, 

…, N.   

Initialize the initial memory location (mi) of each 

crow to mi = mi1, mi2,… min 

Each crow is evaluated by considering the quality of 

its position by applying in the fitness function that 

had been formulated. 

Iteration, iter begins at 1 

New location for each crow, inside the search space 

could be generated as follows: 

 

Let any crowi select randomly any other crowj from 

the crow family. 

The crowi follows crowj to find the location where it 

has hidden its food. 

AS long as iter remains lesser than max number of 

iterations,  

Then, for each crow 

Update its new location in accordance and also 

Update the new location inside its memory according 

to Eq. (20) 

Update using CS according to Eq. (19) 

iter = iter + 1 

End. 

 

The overall architecture of proposed Hybrid 

Cuckoo Crow Search algorithm for efficient task 

scheduling had been depicted in Figure 1. The tasks 

submitted by the users are handed over to the Task 

Manager. The Task Manager relays these tasks to the 

Scheduler component that schedules them based on 

their fitness function. The Resource component 

tracks the utilization of virtual machines with respect 

to the QoS parameters memory, energy and CPU. The 

proposed Hybrid Cuckoo Crow Search Algorithm 

optimizes the task scheduling process by reducing the 

cost and execution time[18-22]. 

7. Results and discussion 

Experiments were conducted in a simulated 

environment using Java (jdk 1.6) with Cloudsim tool. 

The implementation setup comprised of a PC with 

Windows 7 OS @ 2 GHz dual core, a RAM of 4 GB 

and a 64-bit windows 2007 OS. The experiments 

were conducted by varying the input task from 50 to 

300 numbers. The performance of the proposed 

 

Table 2. Parameter setting for Cloud Simulator 

Entity Type Parameters Values 

 

Task 

(Cloudlet) 

Task Length  5000-100000 

Total tasks 50-250 

File size 300-5000 

 

 

 

Virtual 

Machine 

(VM) 

MIPS 512-1024 

Number of VM 10 

Bandwidth 500-1200 

Memory 512-2048 

Storage 100000-800000 

Unit cost of VM 1-10 

 

Hybrid CCSA had been evaluated by comparing its 

results with respect to cost and execution time 

(makespan) parameters against MO-ACO, ACO and 

MIN-MIN algorithms [23]. Both ACO and Min-Min 

algorithms aim to provide optimized solutions for 

task scheduling activity in cloud by continuously 

iterating the candidate solutions. In a similar manner, 

the MO-ACO algorithm generates optimized solution 

for task scheduling activity by taking into 

consideration of makespan and cost parameters. 

Since the proposed CCSA also strives to provide a 

near optimal solution to task scheduling activity, it 

has been compared with the MO-ACO, ACO, Min-

Min algorithms. The Table 2 lists out the types of 

entity, parameters and their corresponding values that 

are considered in the experiment. 

7.1 Comparison of makespan 

The proposed CCSA increases the efficiency of 

the task scheduling process by minimizing the 

makespan and cost parameters. The performance of 

the proposed CCSA with respect to the makespan 

parameter had been compared with MO-ACO, ACO 

and MIN-MIN algorithms. In Figure 2, the 

comparison of task execution time using 10 VMs by 

applying CCSA, MO-ACO, ACO and MIN-MIN 

algorithms had been shown. For 50 number of tasks, 

the makespan values obtained are 150.52,165, 174.69 

and 183.706 for CCSA, MO-ACO, ACO and MIN-

MIN respectively. When the task count is increased 

to 100 numbers, the makespan values obtained are 

315.4, 332.347, 358.802 and385.199 for CCSA, MO-

ACO, ACO and MIN-MIN respectively. For 150 

tasks, the makespan values obtained are 500.89, 

516.45, 542.876 and 560.606 for CCSA, MO-ACO, 

ACO and MIN-MIN respectively. For 200 tasks, the 

values obtained are 652.78, 674.495, 726.978 and 

770.794 for CCSA, MO-ACO, ACO and MIN-MIN 

respectively. For 250 tasks, the values obtained are 

780.8, 797.702, 850.157 and 981.011 for CCSA, 

MO-ACO, ACO and MIN-MIN respectively. For 

300 tasks, the values obtained are 970,990.471, 
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Figure. 2 Makespan of 10 VMs 

 

Figure. 3 Makespan of 20 VMs 

 

1077.82 and 1217.23 for CCSA, MO-ACO, ACO and 

MIN-MIN respectively. On the whole it could be 

inferred that the proposed CCSA is superior to other 

algorithms while comparing the makespan values 

deduced using 10 VMs.   

In Fig. 3, the comparison of task execution time 

using 20 VMs by applying CCSA, MO-ACO, ACO 

and MIN-MIN algorithms had been shown. For 50 

number of tasks, the makespan values obtained are 

74.4, 80.8, 86.5 and 90.5 for CCSA, MO-ACO, ACO 

and MIN-MIN respectively. When the task count is 

increased to 100 numbers, the makespan values 

obtained are 156.7, 165.4, 178.5, 191.5 and 385.199 

for CCSA, MO-ACO, ACO and MIN-MIN 

respectively. For 150 tasks, the values obtained are 

248.5, 256.4,265 and 270.7for CCSA, MO-ACO, 

ACO and MIN-MIN respectively. 

For 200 tasks, the values obtained are 320.4, 

330.5, 356 and 375 for CCSA, MO-ACO, ACO and 

MIN-MIN respectively. For 250 tasks, the values 

obtained are 385.1, 395.7, 423.5 and 488.445 for 

CCSA, MO-ACO, ACO and MIN-MIN respectively. 

For 300 tasks, the values obtained are 482.5, 492.5, 

535.4 and 600.8 for CCSA, MO-ACO, ACO and 

MIN-MIN respectively. Hence it could be inferred 

that the proposed CCSA is superior to other 

algorithms while comparing the makespan values 

deduced using 20 VMs. 

7.2 Comparison of cost 

The performance of the proposed CCSA with 

respect to the cost parameter had been compared with 

MO-ACO, ACO and MIN-MIN algorithms. Figure 4 

shows the cost expended for tasks numbered 50, 100, 

150, 200, 250 and 300 using 10 VMs by applying the 

CCSA, MO-ACO, ACO and MIN-MIN algorithms. 

It could be seen that cost values obtained for 50 tasks 

are 5400, 5590.28, 5833.3 and 5900.1 for CCSA, 

MO-ACO, ACO and MIN-MIN respectively. The 

cost values in the case of 100 tasks are 5400, 5590.28, 

5833.3 and 5900.1 for CCSA, MO-ACO, ACO and 

MIN-MIN respectively. In the case of 150 tasks, the 

values obtained are 15000.78, 6284.7, 17986.1 and 

19930.6 for MO-ACO, ACO and MIN-MIN 

respectively. For 200 number of tasks, the cost values 

are 22650.8, 22847.2, 24305.6 and 26250 for MO-

ACO, ACO and MIN-MIN respectively. For 250 

number of tasks, the cost values are 27500, 28437.5, 

30381.9 and 33541.7 for MO-ACO, ACO and MIN-

MIN respectively. The cost for 300 tasks is 30000, 

31500.4, 32513.4 and 33450.7for MO-ACO, ACO 

and MIN-MIN respectively. On the whole it could be 

inferred that the proposed CCSA is superior to other 

algorithms while comparing the cost values deduced 

using 10 VMs. 

 

Figure. 4 Cost of 10 VMs 

 

Figure. 5 Cost of 20 VMs 
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Fig. 5 shows the cost expended for tasks 

numbered 50, 100, 150, 200, 250 and 300 using 20 

VMs by applying the CCSA, MO-ACO, ACO and 

MIN-MIN algorithms. It could be seen that cost 

values obtained for 50 tasks are 2705.2, 2793.34, 

2925.32 and 2840.67 for CCSA, MO-ACO, ACO and 

MIN-MIN respectively. The cost values in the case 

of 100 tasks are 4855.7,5468.75,5987.4 and 6452.89 

for CCSA, MO-ACO, ACO and MIN-MIN 

respectively. In the case of 150 tasks, the values 

obtained are 7489.8, 8142.35, 8993.05 and 9978.2 for 

MO-ACO, ACO and MIN-MIN respectively. For 

200 number of tasks, the cost values are 11358.78, 

11420.8, 12158.9 and 13128 for MO-ACO, ACO and 

MIN-MIN respectively. For 250 number of tasks, the 

cost values are 13580, 14325.9, 15296 and 16770.85 

for MO-ACO, ACO and MIN-MIN respectively. The 

cost for 300 tasks is 14890.4, 15688, 16300.78 and 

16749.25 for MO-ACO, ACO and MIN-MIN 

respectively. Hence it could be inferred that the 

proposed CCSA is superior to other algorithms while 

comparing the cost values deduced using 20 VMs. 

8. Conclusion and future work 

The hybrid CCSA had been proposed to address 

the task scheduling issue in cloud computing. The 

hybrid CCSA takes into consideration the QoS 

parameters makespan and cost for increasing the 

performance of the task scheduling activity. 

Experimental results obtained using hybrid CCSA 

had been compared with MO-ACO, ACO and Min-

Min algorithms. Results obtained had shown that the 

proposed hybrid CCSA had produced better output 

with respect to makespan and cost parameters 

compared to other algorithms. For experimental 

analysis, the task count was varied from 50 to 300 

number and 10 and 20 numbers of Virtual Machines 

were considered.  By analysing the results obtained, 

it had been found that the proposed CCSA technique 

had produced an improvement of 3.14%, 10.70%, 

and 21.60% for makespan and had reduced the 

overall cost to the tune of 4.56%, 11.19% and 19.35% 

when compared with MO-ACO, ACO, Min-Min 

algorithms respectively when used with 10 VMs. By 

integrating the Cuckoo Search and Crow Search 

algorithms, a highly efficient solution for task 

scheduling issue in cloud computing had been 

devised. As a future activity, more QoS parameters 

could be taken into consideration for testing the 

efficiency of the proposed hybrid CCSA and the same 

could be evaluated under real time scenarios.   
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