
Received: February 15, 2021. Revised: April 4, 2021. 136

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

Fine-Tuning the Ant Colony System Algorithm Through Harris’s Hawk

Optimizer for Travelling Salesman Problem

Shaymah Akram Yasear1* Ku Ruhana Ku-Mahamud1

1School of computing, Universiti Utara Malaysia, Sintok, Changlun, 06010, Malaysia

* Corresponding author’s Email: shayma.akram.yasear@gmail.com

Abstract: The ant colony system (ACS) algorithm is one of the metaheuristics in solving combinatorial optimization

problems. The control parameters namely, pheromone coefficient, heuristic coefficient, decision rule, and evaporation

rate of the pheromone in ACS are important in determining the performance of the algorithm. However, the initialized

values of these parameters stay constant during the search process which leads to performance degradation of the

algorithm. This paper aims to tune the parameters of the ACS algorithm by using Harris’s hawk optimization (HHO)

algorithm in solving the travelling salesman problem (TSP). The proposed hybrid algorithm is called Harris’s hawk

optimizer ant colony system (HHO-ACS). The final process of HHO-ACS will output the path distance. The

performance of the HHO-ACS has been evaluated by using different symmetric TSP instances of various scale size.

The results showed the HHO-ACS provided superior performance compared to other well-known metaheuristics

namely black hole, particle swarm optimization, dragonfly, genetic and ant colony optimization algorithms. Thus, it

can attain a better solution with higher accuracy. The proposed algorithm was able to achieve best known optimal

solution in solving bayg29, att48 and berlin52 instances and near optimal solution in solving bays29, eil51, st70, eil76

and eil101 instances. Compared to other algorithms, the HHO-ACS algorithm showed superior performance in solving

the TSP instances which indicates its effectiveness. This is possible because, in the HHO-ACS algorithm, the main

control parameters of ACS algorithm namely, the pheromone coefficient, heuristic coefficient, evaporation rate of the

pheromone, and decision rule were tuned according to the problem instance at hand. Thus, the HHO-ACS algorithm

can be used to solve problems of travelling salesman nature with minimum customization.

Keywords: Global optimization, Combinatorial optimization, Metaheuristic, Nature-inspired algorithms, Swarm

intelligence.

1. Introduction

The traveling salesman problem (TSP) assumes a

set of cities separated by given distances and a

salesman who must visit all cities, passing through

each city exactly one and only once. The salesman

must begin and end with the same city. It is a well-

known combinatorial optimization problem [1-3] to

find the shortest path that connects all the cities. In

general, the distance notion can be replaced by other

notions, such as time or money. In the same way, the

city notion can be replaced by other notions like the

rent or warehouse. In all cases, the goal is minimizing

the cost. The TSP has applications such as X-ray

crystallography, drilling of printed circuit boards and

vehicle routing. The TSP has attracted researchers to

design a method that is capable to solve most of its

instances in a reasonable time.

The TSP is considered an NP-complete problem

and thus the exact methods for solving TSP such as

linear programming and branch and bound cannot

achieve satisfactory solutions in a reasonable time.

Furthermore, the computational complexity of a

method increases exponentially with the number of

cities [4]. This attracts researchers towards using

metaheuristic methods in which an approximate

solution can be obtained in a reasonable time. Several

metaheuristics have been used to solve TSP [1-3].

The ant colony optimization (ACO) algorithm [5] is

one of the most commonly used metaheuristics for

solving TSP. This algorithm uses artificial ants to

Received: February 15, 2021. Revised: April 4, 2021. 137

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

simulate the foraging behaviour of the real ant. The

ant colony system (ACS) algorithm is one of the most

successful variants of the ACO algorithm proposed

by Dorigo and Gambardella [6]. However, in this

algorithm, the initial values of control parameters

namely, the pheromone coefficient, heuristic

coefficient, evaporation rate of the pheromone, and

decision rule are staying constant during the search

process. If the parameters of the ACS algorithm are

not properly set, the quality of the solution will

become very poor and the ACS algorithm requires a

large amount of computation time [7]. Thus, instead

of using static values, several methods have been

proposed to tune the parameters’ values in the ACS

algorithm.

Pilat and White [8] proposed two approaches to

adjust the heuristic coefficient, initial decision rule,

and the local pheromone volatility coefficient of ACS.

In the first approach, the tournament selection

method has been used to select four genetic

algorithms (GA) ants from the ant population. The

parameter settings of each of the four selected ants

are determined at each iteration and before

constructing solutions by using GA. The second

approach is an offline tuning mechanism based on

GA. Gaertner and Clark [9] followed a similar

approach proposed in [8], wherein in the early stages,

GA is used. In the proposed method, a random

parameter combination is used to initialize each of the

ants. During the search process, the population and

parameter values will change to obtain a better

solution. The parameters that are adjusted are the

heuristic coefficient, pheromone evaporation rate,

and initial decision rule in solving TSP. In Hao et al.

[10] a variant of ACS is proposed by where each ant

has its parameter setting. In each iteration, the particle

swarm optimization (PSO) algorithm [11] was used

to modify the values of heuristic coefficient,

pheromone evaporation rate, and initial decision rule

parameters within a predefined range. Anghinolfi et

al. [12] used a local search to adjust the values of

parameters (heuristic coefficient and initial decision

rule) in the ACS algorithm. The value of parameters

is adjusted during the iteration based on the

neighbourhood of the current values. The value of

parameters is increased or reduced by a fixed amount

to obtain the combinations of parameters setting.

Each combination is assigned to each group of ants.

In each group, the local search is performed to find

the best solution. At the end of the search process, the

best solution among the groups is chosen to be the

best configuration of parameters. In Melo et al. [13]

the same problem is solved simultaneously by several

colonies of ants where different parameter settings

Table 1. Dynamic adjustment methods for the control

parameters in the ACS algorithm

Reference
Parameters

Method
α β q0 ρ

Pilat and White [8] - ✓ ✓ ✓ GA

Gaertner and Clark [9] - ✓ ✓ ✓ GA

Hao et al. [10] - ✓ ✓ ✓ PSO

Anghinolfi et al. [12]
- ✓ ✓ -

Local

search

Melo et al. [13]
✓ ✓ ✓ ✓

Multi-

colony

Gomez-Cabrero and

Ranasinghe [2]
✓ ✓ ✓ ✓ PSO

for the pheromone coefficient, heuristic coefficient,

evaporation rate of the pheromone, and initial

decision rule are used by each colony. The

parameters setting of the worst colony is replaced

with the parameter value from the best colony by

using the mutation operator. In which, the value of

the same parameter in the best colony is modified by

a small, uniformly random value to update the value

of parameters in the worst colony. However, in this

approach, the values of the parameters did not

consider the state of the search process which affects

the convergence of the ACS algorithm. Gomez-

Cabrero and Ranasinghe [2] proposed an algorithm to

adjust the parameters in the modified ACS by using

the PSO algorithm. These parameters are the initial

decision rule, heuristic and pheromone coefficients,

evaporation rate, and the number of ants. A new

parameter was introduced to represent the percentage

of vertices and the parameter that defines the

neighbourhood. Table 1 summarizes the methods that

have been presented in adjusting the main control

parameters of the ACS algorithm namely, the

pheromone coefficient, α, heuristic coefficient, β,

decision rule, q0 and evaporation rate of the

pheromone, ρ.

Most of the proposed methods, adjust the

parameters of ACS based on another optimization

algorithm. However, this approach has a drawback in

which the algorithm (such as PSO and GA) that are

used in adjusting the parameters of ACS needs to also

adjust their parameters. For example, in Gomez-

Cabrero and Ranasinghe [2] and Hao et al. [10] the

PSO algorithm, the values for the inertia weight,

cognitive and social parameters need to be adjusted.

In Pilat and White [8], the value of crossover and

mutation factors play an important role in

determining the performance of GA. Furthermore,

most of these methods adjust some of the parameters

and used constant values for the others. For example,

in Anghinolfi et al. [12], the values of β and q0 [12] are

adjusted during the search process, while α is set as a

Received: February 15, 2021. Revised: April 4, 2021. 138

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

fixed value. Similarly, in other studies [8-10], only

the values of β, q0 and ρ are adjusted. However, the

value of a parameter that provides good performance

in solving a particular TSP instance, may not be able

to achieve good solutions in solving other instances.

In Melo et al. [13], although the four control

parameters of ACS have been adjusted, the proposed

approach overlooked the state of search space and

type of an optimization problem. This can affect the

convergence of ACS algorithm. Generally, in solving

an optimization problem, the optimal combination of

the parameter of an algorithm is different, even for

the same type of optimization problem, because the

scale of the problem is not the same. Thus, these

parameters should be adjusted according to the

problem being solved. In previous studies, the most

adjusted parameters are β and q0. However, other

parameters also have a significant impact on the

performance of ACS algorithm.

In this study, a hybrid algorithm between Harris’s

hawk optimization (HHO) algorithm [14] and ACS is

proposed. The HHO has the characteristics of few

control parameters compared to other traditional

algorithms such as PSO, dragonfly algorithm (DA)

[15] and GA [16]. The HHO algorithm has good

searching ability and has been applied to solve

different optimization problems [17, 18]. Therefore,

in this paper, the HHO algorithm will be used as an

adaptive parameter control to adjust the parameters

of the ACS algorithm which will be used to solve TSP.

In this paper, the ACS algorithm is hybridized

with HHO which optimizes the parameters of ACS

based on the TSP instances [19]. The hybridization

between the ACS and HHO is called Harris’s hawk

optimizer ant colony system (HHO-ACS) algorithm.

The proposed algorithm requires fewer parameters to

be adjusted compared to other metaheuristics such as

PSO, DA and GA. In contrast to the other

metaheuristics, the ACS algorithm is mainly

developed to solve combinatorial optimization

problems. Thus, it can be used to solve TSP without

modifications. Tuning the parameters of ACS

algorithm can be considered as a continuous

optimization problem. The HHO algorithm is mainly

developed to solve this type of problem. Thus, this

paper aims to hybridize the HHO and ACS

algorithms to produce an effective method to solve

TSP.

The performance of the HHO-ACS has been

evaluated by using different TSP instances of various

scale size. This paper organized as follow: sections 2

and 3 describe the ACS and HHO algorithms,

respectively. The proposed HHO-ACS algorithms

are introduced in section 4. In Section 5, experimental

design is presented, followed by results and

discussion. Finally, the conclusion is presented in

section 6.

2. Ant colony optimization algorithm

The idea of an ACO algorithm can be visualized

through a graph. In the graph, G = (V, Z), where V is

vertices (nodes), and Z is connections between pairs

of vertices, known as edges. The weight of an edge

represents the distance between its two vertices. The

graph is complete if each pair of vertices is joined by

an edge, that is, it contains all the possible edges, as

shown in Fig. 1.

Generally, a TSP is described as an edge-

weighted complete graph, where the cities are the

vertices, V, and the paths between these cities are the

edges. A tour of the TSP is a Hamiltonian cycle and

the optimal tour is the shortest Hamiltonian cycle. In

other words, the TSP is equivalent to finding a

Hamiltonian cycle that has a minimum sum of

weights, which are assigned to each edge.

Mathematically, TSP is formulated as shown in Eq.

(1) [20].

 𝑇𝑆𝑃(𝜋) = ∑ 𝑑(𝜋(𝑖), 𝜋(𝑖 + 1))

𝑛

𝑖=1

 (1)

where π ∈ Sn of the cities. The aim is to find a feasible

solution π = ⟨ π(1),…,π(n)⟩ that minimizes the total

tour length [20]. d is the assigned distance between

two cities. The ants are distributed through the cities

and then probabilistically choose the next city, based

on the intensity of pheromones. The higher value of

the pheromones for a route, the greater the probability

that the ant will choose that route. After all the

artificial ants completed their routes in the graph, the

length or cost of their routes is measured using a

representative technique for the problem. The update

of the pheromone trail is performed according to the

quality of the route, which is determined according to

a decision rule based on probabilities.

The ACS algorithm is developed based on the ant

system algorithm. However, in the ACS algorithm,

Figure. 1 A Complete graph with seven vertices

Received: February 15, 2021. Revised: April 4, 2021. 139

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

the ants adopt the state transition rules differently

from the AS algorithm. In ACS, the ant k in node i

moves to the next node j based on probability given

by the pseudo-random-proportional rule, which is

controlled by the parameter q0 as shown in Eq. (2)

[21].

𝑗

= {
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑙∈𝑁𝑖
𝑘 ∈ {𝜏𝑖𝑙[𝜂𝑖𝑙]𝛽} , if 𝑞 ≤ 𝑞0

 𝐽 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

The transition between exploitation and

exploration processes is determined according to the

value of the parameter, q0. q is a uniformly

distributed random number in [0,1]. If q > q0, the

next node is selected based on the value of J which is

a random variable selected based on the probability

distribution given by Eq. (3) [21].

 𝑃𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

𝑙∈𝑁𝑖
𝑘

 , if 𝑗 ∈ 𝑁𝑖
𝑘 (3)

where Pij is the probability to choose city j from

city i. 𝜏 is the pheromone trail; 𝜂 = 1/𝑑𝑖𝑗 ; is the

inverse of the distance between the i and j cities,

which represents the heuristic information. 𝛮𝑖
𝑘is the

remaining cities to be visited by ant, k, located on the

city, i. The pheromone on the path of the ant is

updated for solution quality improvement and the

convergence speed of the algorithm. The update

includes local and global pheromone updates.

2.1 Local pheromone update rule

As each ant left a certain node i to the next node j,

the pheromone trail on the edge arc (i, j) is updated

according to Eq. (4) [21]. This pheromone update

method makes the ants more inclined in the path

construction process and chooses a path different

from the last one.

 𝜏𝑖𝑗 = (1 − 𝜉)𝜏𝑖𝑗 + 𝜉𝜏0 (4)

where ξ = 0.1 is the local pheromone volatility

coefficient, ξ ∈ (0, 1); τ0=1/nCnn is the initial

pheromone trails on each path; n is the number of

cities and Cnn is the length of a nearest-neighbour tour.

2.2 Global pheromone update rule

In ACS, the global pheromone update is

performed after all ant cycles are completed and only

the pheromone on the current optimal path is updated.

Figure. 2 Flowchart of the ACS algorithm

Using this update method will make ant's path search

more targeted. The optimal path is found at the end

of iterations. Eq. (5) and Eq. (6) show the formula of

the global update rule [21].

 𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗 + 𝜌Δ𝜏𝑖𝑗
𝑏𝑠, ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠 (5)

 ∆𝜏𝑖𝑗
𝑏𝑠 =

1

𝐶𝑏𝑠
 (6)

where 1 − 𝜌 is the residual factor pheromone. Tbs

is the best-so-far tour and Cbs is its length. Fig. 2

shows the flowchart of the ACS algorithm.

The algorithm starts by initializing parameters values.

At the initial phase, m ants were randomly placed on

n cities, and the ants used the state transition rules

multiple times to establish a path (that is, a feasible

solution for TSP). In the process of establishing paths,

ants are guided by pheromone information (edges

with high pheromone intensity are more attractive to

ants) and heuristic information (tend to choose the

shortest path). At the same time, the pheromone ants

on the paths that have been visited are modified by

applying local update rules. When all ants have

established a complete path, the global update rule is

applied to modify the amount of information on the

path again. This is until the end of the entire search

process.

It
er

at
io

n

Local pheromone update

Start

Initialize ACS algorithm

 Calculate the heuristic

Calculate the pheromone

 Construct the solution

Global pheromone update

Return shortest path

Terminate?

Yes

No

Received: February 15, 2021. Revised: April 4, 2021. 140

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

Figure. 3 Harris’s hawk optimization algorithm

3. Harris’s hawk optimization

Harris’s hawk optimization algorithm is

developed imitating the hunting behaviour of

Harris’s hawks in nature. Fig. 3 shows the steps of the

HHO algorithm. Each hawk’s position represents a

candidate solution in solving the optimization

problem. The prey position represents the best

solution found so far.

The optimization processes of HHO include three

phases, namely, exploring the search space, surprise

pounce (exploitation), and different attacking

strategies of Harris’s hawks [14].

3.1 Exploration phase

The exploration process of the HHO algorithm

includes two strategies to update the position of

hawks with probability q, as shown in Eq. (7) [14].

𝑋(𝑡 + 1)

= {

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|; 𝑞 ≥ 0.5

𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡) −

 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)); 𝑞 < 0.5

 (7)

where X(t+1) is the new position of a hawk. Xrabbit,

X(t), Xrand and Xm represent the positions of prey, the

hawk’s position at iteration t, randomly selected

hawk, and the average position of hawks in the

population, respectively. The coefficients r1, r2, r3, r4

and q LB and UB, represent the lower and upper

bounds of the decision variables. The random values

are used to increase the diversification ability of the

HHO to explore different regions of the search space.

The average position of hawks is calculated as shown

in Eq. (8) [14].

 𝑋𝑚(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)

𝑁

𝑖=1

 (8)

where N is the total number of hawks in the

population. In the HHO, the transition between

exploration and exploitation is performed based on

the escape energy of a prey, E. This value of escape

energy linearly decreases from 2 to 0 with the

iteration, as shown in Eq. (9) [14].

 𝐸 = 2𝐸0(1 −
𝑡

𝑇
) (9)

where T represents the maximum number of

iterations. E0 is the initial value of the energy in (−1;

1)]. When |E|≥1, the HHO algorithm will perform the

exploration process which indicates that the prey

escape in the entire solution space. Otherwise, it

performs the exploitation process by searching the

neighbourhood of the solutions.

3.2 Exploitation phase

The HHO algorithm describes whether the prey

escaped successfully by the factor r ∈ [0; 1]. When r

<0.5, it indicates that the prey escaped successfully,

otherwise, it failed. Whether the prey escaped or not,

the hawks will perform a hard or soft besiege

according to the relative amount of the escape energy

with a probability of 0.5. The soft besiege occurs

when |E| ≥ 0.5, otherwise, the hard besiege will occur.

Based on that, four cases were proposed to model the

exploitation phase.

Case1: Soft besiege

Start

Initialization

Evaluate each hawk using f(X)

Set the position of rabbit, Xrabbit
(best location)

Update the E0, E and J

Update the position of hawks

|E| 1

Return the optimal solution

Terminate?

It
er

at
io

n

Yes

No

r 0.5 & |E| 0.5

r 0.5 & |E| < 0.5

r < 0.5 & |E| 0.5

r < 0.5 & |E| < 0.5

Hard besiege

Soft besiege with
progressive rapid dive

Hard besiege with
progressive rapid dive

Soft besiege

Exploitation phase

Yes

No

Yes

Yes

Yes

Yes

No

No

No

E
xp

lo
ra

ti
o

n
 p

h
as

e

Received: February 15, 2021. Revised: April 4, 2021. 141

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

When r ≥ 0.5 and | E | ≥ 0.5, it means that the

energy of the prey is abundant. In this case, the prey

tries to escape by performing random jumping, but

eventually fails and is captured by the hawks by

performing the surprise pounce. This modelled as

shown in Eq (10) and Eq. (11) [14].

 𝑋(𝑡 + 1) = ∆𝑋(𝑡) −

 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)| (10)

 ∆𝑋(𝑡) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡) (11)

where ΔX(t) refers to the difference between the

rabbit and the hawk’s current position. J = 2(1 - r5)

and r5 are random numbers in the intervals (0,2) and

(0,1), respectively.

Case2: Hard besiege

when r ≥ 0.5 and | E | < 0.5, indicates that the

energy of the prey is low and it is directly captured

by the hawks, which perform the surprise pounce.

This behaviour modelled as shown in Eq. (12) [14].

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|∆𝑋(𝑡)| (12)

Case3: Soft besiege with progressive rapid dives

When r < 0.5 and | E | ≥ 0.5, it means that the prey

energy is enough to ensure successful escape, but the

hawks still perform a soft besiege before the surprise

pounce. This formulated as shown in Eqs (13 -15)).

𝑋(𝑡 + 1) = {
𝑌, if 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍, if 𝐹(𝑍) < 𝐹(𝑋(𝑡))
 (13)

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)
− 𝑋(𝑡)|

(14)

𝑍 = 𝑌 − 𝑆 × 𝐿𝐹(𝐷) (15)

where S is a random vector D is the dimension of

the problem and LF is the levy flight function [14].

Case4: Hard besiege with progressive rapid dives

When r < 0.5 and | E | < 0.5, it means that the prey

energy, E, is low. In this case, the hawk dives, and

hard besieges are performed to reduce the average

distance from the prey and its average position. This

update is performed by Equation (13) where Z and Y

are calculated using Eq. (15) and Eq. (16),

respectively. The best hawk in the population is taken

as the optimal solution of the current generation.

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)| (16)

Figure. 4 Flowcharts of the HHO-ACS algorithm

4. Hybridizing the HHO with the ACS

algorithm

The basic idea of HHO-ACS depends on the

strengths of the two algorithms. In other words, the

algorithms complement each other. The algorithm

uses HHO to optimize the four control parameters (α,

β, ρ, q0) in the ACS algorithm and uses the ACS

algorithm to improve the path-finding behaviour of

the traditional ACS algorithm. In the proposed HHO-

ACS algorithm, the tour length obtained by the ACS

algorithm represents the objective function, f(X), of

the HHO algorithm and the position of each hawk, X,

represents the values of the parameters of the ACS.

This is to guide each hawk to move in a better

direction which will produce a better combination of

parameters. Thus, the hawks with the shortest tour

length represent the best solution in the current

iteration. In other words, the best combination of

parameters X= [α, β, ρ, q0)] will enable the function

f(α, β, ρ, q0) in getting the optimal path. Fig. 4 shows

the flowcharts of the HHO-ACS algorithm.

In Fig. 4, the doted box includes the operations of the

HHO algorithm (refer to Fig. 3), while the others

represent the operations of the ACS algorithm (refer

to Fig. 2). The HHO-ACS algorithm starts by

randomly distributing the ants to the cities. All ants

It
er

at
io

n

Return the best parameters value

Local pheromone update

Start

Initialization

 Calculate the heuristic

Calculate the pheromone

For each ant, complete the first tour only

HHO algorithm optimizes

, , q0,

Global pheromone update

Return shortest path

 Construct the solution

Maximum iteration?

Yes

No

H
H

O
 o

p
er

at
io

n
s

Received: February 15, 2021. Revised: April 4, 2021. 142

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

will complete only their first tour with respect to the

inter-city distances. Then, the values of α, β, ρ, q0

parameters are obtained by using the HHO algorithm.

Each hawk is evaluated by using the objective

function which represents the tour length. The rabbit

location represents the best parameters value, which

is used to calculate the pheromone of all ants. The

HHO-ACS is terminated when the maximum number

of iterations designated for the ACS algorithm is

reached. The best solution obtained represents the

shortest path.

5. Results and discussion

Symmetric TSP instances [19] namely bays29,

bayg29, att48, eil51, berlin52, st70, eil76 and eil101

have been used to evaluate the performance of the

HHO-ACS algorithm. The dimension of the

problems has ranged from 29 to 101 cities. For

example, bays29 is a 29-city problem; eil76 is a 76-

city problem, and so forth. The instances are

categorized according to the number of cities i.e.

small scale (<20), medium scale (20<cities<100), and

large scale (>100) [22]. The performance of the

HHO-ACS algorithm has been compared with the

GA [16], PSO [11], DA [3], black hole (BH) [1], and

ACO algorithms. The parameters settings of these

algorithms are the same as the recommended settings

in [1, 3]. For each algorithm, the maximum number

of iterations is set to 200, and 100 is the population

size. For the HHO algorithm, 10 decision variables

are used to perform the search process and the

maximum number of iterations is set to two. The

mean, standard deviation (SD), and best and worst

distances over five independent runs are recorded for

comparison purposes. Table 2 shows the mean,

standard deviation (SD), the best and worst distance

for the eight instances over five independent runs

obtained by HHO-ACS and other algorithms [1, 3]

used for comparison. The best results are highlighted.

The HHO-ACS algorithm showed competitive

performance compared to other algorithms, namely,

GA, ACO, BH and PSO on all instances. The mean

and the SD values obtained by HHO-ACS algorithm

for all eight datasets are better than other algorithms,

indicating that the HHO-ACS algorithm has better

search ability and convergence than other algorithms.

Fig. 5 shows the best path (the shortest path) obtained

by HHO-ACS compared to the optimal path of each

problem. Red (thick line) and blue (thin line) colours

represent the optimal path and obtained path by

HHO-ACS respectively in solving a TSP.

Optimal solutions in solving the bayg29, att48

and berlin52 instances were obtained by the HHO-

ACS algorithm. In solving other instances, namely,

Table 2. Experimental results of algorithms on the test

data sets

Problem

(number

of cities)

Algorithm Best Worst Mean SD

bays29

(29)

HHO-ACS 9073.0 9094.00 9079.60 8.2341

ACO 9239.2 11014.5 9823.20 722.415

PSO 9120.3 9498.17 9195.91 168.972

GA 9751.4 10513.9 10015.2 319.879

BH 9396.5 9507.17 9463.25 60.9588

DA 9387.03 9611.78 9480.29 64.37

bayg29

(29)

HHO-ACS 9074.0 9094.00 9077.20 9.3915

ACO 9447.5 11033.6 9882.22 675.833

PSO 9329.2 11332.7 9947.03 799.407

GA 9579.12 10411.2 9771.95 127.113

BH 9375.44 9375.44 9375.44 0.000

DA 9464.41 9704.98 9547.75 64.75

att48

(48)

HHO-ACS 33522.0 33606.0 33580.2 33.5365

ACO 35230.9 46204.2 39436.2 4874.3

PSO 36996.4 61421.9 47018.4 9685.89

GA 35312.5 50671.5 43620.6 2004.00

BH 34200.9 35528.5 34473.8 589.802

DA 37225.9 38683.2 37759.7 425.69

eil51

(51)

HHO-ACS 428.000 431.000 429.600 1.5166

ACO 454.39 469.053 461.018 6.2974

PSO 469.155 737.526 574.802 107.237

GA 448.84 462.114 453.477 9.4157

BH 437.893 526.898 458.925 38.6365

DA 471.58 491.65 475.16 4.51

berlin52

(52)

HHO-ACS 7542.00 7657.00 7589.00 62.1088

ACO 7757.03 10541.1 8522.90 1152.20

PSO 9218.47 14279.4 11089.5 2067.93

GA 8779.76 9565.37 9288.45 1301.21

BH 8188.07 9356.75 8455.83 508.987

DA 9400.75 9610.15 9486.70 72.54

st70

(70)

HHO-ACS 678.000 692.000 685.200 5.1672

ACO 711.652 855.203 757.754 59.6079

PSO 1030.85 1756.12 1321.81 269.279

GA 1112.31 1242.20 1158.85 52.1734

BH 723.269 1081.11 797.575 125.227

DA 797.47 887.08 839.01 24.28

eil76

(76)

HHO-ACS 543.000 555.000 548.600 4.6152

ACO 574.240 665.999 594.144 40.2152

PSO 804.267 1195.90 975.64 152.406

GA 619.226 679.786 652.059 122.097

BH 566.243 925.842 659.102 152.175

DA 624.92 674.48 644.89 13.02

eil101

(101)

HHO-ACS 640.000 661.000 654.200 8.3187

ACO 725.099 868.205 763.921 59.9684

PSO 1158.71 1973.82 1499.99 319.749

GA 828.881 854.438 838.831 9.9642

BH 720.384 1249.87 897.381 210.145

Received: February 15, 2021. Revised: April 4, 2021. 143

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

DA 812.80 997.60 898.52 47.90

bays29, eil51, st70, eil76 and eil101, the HHO-ACS

was able to achieve lengths near to the optimal

solutions. In the HHO-ACS, the parameters

adjustment of the ACS algorithm is based on the

characteristics of the TSP instance being solved [23].

The optimal combination of parameters obtained by

the HHO-ACS algorithm in solving each instance of

the TSP is presented in Table 3.

Table 3. Values of parameters obtained by HHO-ACS

algorithm in solving TSPs

Problem Best Parameters value

 ρ q0

bays29 1.0687 1.9995 0.0993 0.8970

bayg29 1.0327 1.9957 0.0994 0.8957

att48 0.9822 1.9926 0.0999 0.8942

eil51 0.8929 1.9912 0.0997 0.8909

berlin52 1.1919 1.9904 0.0999 0.8907

st70 0.9419 1.9942 0.0995 0.8944

eil76 0.8848 1.9914 0.0995 0.8938

eil101 1.1288 1.9983 0.0994 0.8941

Figure 5. The TSP solutions found by the HHO-ACS algorithm on the test data

Received: February 15, 2021. Revised: April 4, 2021. 144

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

6. Conclusion

The control parameters namely, pheromone

coefficient, heuristic coefficient, decision rule, and

evaporation rate of the pheromone have a significant

effect on the performance of the ACS algorithm. The

random combination of parameters makes the

algorithm fall into local optima which resulted in

stagnation. To overcome this limitation, the HHO-

ACS algorithm is proposed to tune the parameters

according to the TSP instances. The proposed

algorithm requires fewer parameters to be adjusted

compared to other metaheuristics. It was able to

achieve the best known optimal solution in solving

bayg29, att48 and berlin52 instances and near optimal

solution in solving other instances, namely, bays29,

eil51, st70, eil76 and eil101. The obtained results

indicate that the HHO-ACS worked well across

different instances compared to other metaheuristics.

For future work, it is possible to test the performance

of the HHO-ACS algorithm in solving other

combinatorial optimization problems of TSP nature.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Shaymah Akram Yasear;

methodology, software, formal analysis, resources,

data curation, writing—original draft preparation and

visualization, Ku Ruhana Ku-Mahamud; writing-

review, editing, and supervision.

Acknowledgments

The Higher Education Ministry of Malaysia has

funded this work under the Fundamental Research

Grant Scheme, FRGS/1/2017/ICT02/UUM/02/1

(S/O code 13794).

References

[1] A. Hatamlou, “Solving Travelling Salesman

Problem Using Black Hole Algorithm”, Soft

Computing, Vol. 22, No. 24, pp. 8167-8175,

2018.

[2] D. Gomez-Cabrero and D. Ranasinghe, “Fine-

tuning the Ant Colony System Algorithm

Through Particle Swarm Optimization”, In:

Proc. of the International Conference on

Information and Automation, 2005.

[3] A. I. Hammouri, E. T. A. Samra, M. A. Al-Betar,

R. M. Khalil, Z. Alasmer, and M. Kanan, “A

dragonfly algorithm for solving traveling

salesman problem”, In: Proc. of 8th IEEE

International Conference on Control System,

Computing and Engineering (ICCSCE), Penang,

Malaysia, pp. 136-141, 2018.

[4] D. Karaboga and B. Gorkemli, “Solving

Traveling Salesman Problem by Using

Combinatorial Artificial Bee Colony

Algorithms”, International Journal on Artificial

Intelligence Tools, Vol. 28, No. 1, pp. 1950004,

2019.

[5] M. Dorigo and G. Di Caro, “Ant Colony

Optimization: A New Meta-Heuristic”, In: Proc.

of the 1999 congress on evolutionary

computation-CEC99 (Cat. No. 99TH8406),

Washington, DC, USA, pp. 1470-1477, 1999.

[6] M. Dorigo and L. M. Gambardella, “A Study of

Some Properties of Ant-Q”, In: Proc. of

International Conference on Parallel Problem

Solving from Nature, Nature Berlin, Germany,

pp. 656-665, 1996.

[7] S. K. Sahana, “An Automated Parameter Tuning

Method for Ant Colony Optimization for

Scheduling Jobs in Grid Environment”,

International Journal of Intelligent Systems and

Applications, Vol. 11, No. 3, pp. 11, 2019.

[8] M. L. Pilat and T. White, “Using Genetic

Algorithms to Optimize ACS-TSP”, In: Proc. of

International workshop on ant algorithms,

Brussels, Belgium, pp. 282-287, 2002.

[9] D. Gaertner and K. L. Clark, “On Optimal

Parameters for Ant Colony Optimization

Algorithms”, In: Proc. of the 2005 International

Conference on Artificial Intelligence (IC-AI),

Las Vegas, Nevada, USA, pp. 83-89, 2005.

[10] Z.-F. Hao, R.-C. Cai, and H. Huang, “An

Adaptive Parameter Control Strategy for ACO”,

In Proc. of 2006 International Conference on

Machine Learning and Cybernetics, Dalian,

China, pp. 203-206, 2006.

[11] J. Kennedy and R. Eberhart, “Particle swarm

optimization”, In: Proc. of ICNN'95 -

International Conference on Neural Networks,

Perth, WA, Australia, pp. 1942-1948, 1995.

[12] D. Anghinolfi, A. Boccalatte, M. Paolucci, and

C. Vecchiola, “Performance Evaluation of an

Adaptive Ant Colony Optimization Applied to

Single Machine Scheduling”, In Proc. of Asia-

Pacific Conference on Simulated Evolution and

Learning, pp. 411-420, 2008.

[13] L. Melo, F. Pereira, and E. Costa, “MC-ANT: A

Multi-Colony Ant Algorithm”, In: Proc. of

International Conference on Artificial

Evolution (Evolution Artificielle), Strasbourg,

France, pp. 25-36, 2009.

Received: February 15, 2021. Revised: April 4, 2021. 145

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.13

[14] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah,

M. Mafarja, and H. Chen, “Harris Hawks

Optimization: Algorithm and Applications”,

Future Generation Computer Systems, Vol. 97,

pp. 849-872, 2019.

[15] S. Mirjalili, “Dragonfly algorithm: a new meta-

heuristic optimization technique for solving

single-objective, discrete, and multi-objective

problems”, Neural Computing and Applications,

Vol. 27, No. 4, pp. 1053-1073, 2016.

[16] R. Leardi, “Genetic algorithms”,

Comprehensive Chemometrics, Vol. 1, pp. 631-

653, 2009.

[17] I. M. Diaaeldin, S. H. A. Aleem, A. El-Rafei, A.

Y. Abdelaziz, and M. Ćalasan, “Optimal

Network Reconfiguration and Distributed

Generation Allocation Using Harris Hawks

Optimization”, In: Proc. of 2020 24th

International Conference on Information

Technology (IT), Zabljak, Montenegro, pp. 1-6,

2020.

[18] B. P. Sahoo and S. Panda, “Load Frequency

Control of Solar

Photovoltaic/Wind/Biogas/Biodiesel Generator

Based Isolated Microgrid Using Harris Hawks

Optimization”, In: Proc. of the 2020 First

International Conference on Power, Control

and Computing Technologies (ICPC2T), Raipur,

India, pp. 188-193, 2020.

[19] G. Reinelt, “TSPLIB—A Traveling Salesman

Problem Library”, ORSA journal on computing,

Vol. 3, No. 4, pp. 376-384, 1991.

[20] E. Çela, V. G. Deineko, and G. J. Woeginger,

“The Multi-Stripe Travelling Salesman

Problem”, Annals of Operations Research, Vol.

259, No. 1-2, pp. 21-34, 2017.

[21] M. Dorigo and T. Stutzle, Ant Colony

Optimization, Cambridge: ed: MIT Press,

London, England, 2004.

[22] C. Liu and A. Kroll, “On Designing Genetic

Algorithms for Solving Small-and Medium-

Scale Traveling Salesman Problems”, In: Proc.

of International Symposium on Evolutionary

Computation, Zakopane, Poland, pp. 283-291,

2012

[23] T. Stützle, M. López-Ibáñez, P. Pellegrini, M.

Maur, M. Montes de Oca, M. Birattari, M.

Dorigo, Parameter Adaptation in Ant Colony

Optimization, Springer, Berlin, Heidelberg,

2011

