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Abstract: The ant colony system (ACS) algorithm is one of the metaheuristics in solving combinatorial optimization 

problems. The control parameters namely, pheromone coefficient, heuristic coefficient, decision rule, and evaporation 

rate of the pheromone in ACS are important in determining the performance of the algorithm. However, the initialized 

values of these parameters stay constant during the search process which leads to performance degradation of the 

algorithm. This paper aims to tune the parameters of the ACS algorithm by using Harris’s hawk optimization (HHO) 

algorithm in solving the travelling salesman problem (TSP). The proposed hybrid algorithm is called Harris’s hawk 

optimizer ant colony system (HHO-ACS). The final process of HHO-ACS will output the path distance. The 

performance of the HHO-ACS has been evaluated by using different symmetric TSP instances of various scale size. 

The results showed the HHO-ACS provided superior performance compared to other well-known metaheuristics 

namely black hole, particle swarm optimization, dragonfly, genetic and ant colony optimization algorithms. Thus, it 

can attain a better solution with higher accuracy. The proposed algorithm was able to achieve best known optimal 

solution in solving bayg29, att48 and berlin52 instances and near optimal solution in solving bays29, eil51, st70, eil76 

and eil101 instances. Compared to other algorithms, the HHO-ACS algorithm showed superior performance in solving 

the TSP instances which indicates its effectiveness. This is possible because,  in the HHO-ACS algorithm, the main 

control parameters of ACS algorithm namely, the pheromone coefficient, heuristic coefficient, evaporation rate of the 

pheromone, and decision rule were tuned according to the problem instance at hand. Thus, the HHO-ACS algorithm 

can be used to solve problems of travelling salesman nature with minimum customization. 

Keywords: Global optimization, Combinatorial optimization, Metaheuristic, Nature-inspired algorithms, Swarm 

intelligence. 

 

 

1. Introduction 

The traveling salesman problem (TSP) assumes a 

set of cities separated by given distances and a 

salesman who must visit all cities, passing through 

each city exactly one and only once. The salesman 

must begin and end with the same city. It is a well-

known combinatorial optimization problem [1-3] to 

find the shortest path that connects all the cities. In 

general, the distance notion can be replaced by other 

notions, such as time or money. In the same way, the 

city notion can be replaced by other notions like the 

rent or warehouse. In all cases, the goal is minimizing 

the cost. The TSP has applications such as X-ray 

crystallography, drilling of printed circuit boards and 

vehicle routing. The TSP has attracted researchers to 

design a method that is capable to solve most of its 

instances in a reasonable time. 

The TSP is considered an NP-complete problem 

and thus the exact methods for solving TSP such as 

linear programming and branch and bound cannot 

achieve satisfactory solutions in a reasonable time. 

Furthermore, the computational complexity of a 

method increases exponentially with the number of 

cities [4]. This attracts researchers towards using 

metaheuristic methods in which an approximate 

solution can be obtained in a reasonable time. Several 

metaheuristics have been used to solve TSP [1-3]. 

The ant colony optimization (ACO) algorithm [5] is 

one of the most commonly used metaheuristics for 

solving TSP. This algorithm uses artificial ants to 
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simulate the foraging behaviour of the real ant. The 

ant colony system (ACS) algorithm is one of the most 

successful variants of the ACO algorithm proposed 

by Dorigo and Gambardella [6]. However, in this 

algorithm, the initial values of control parameters 

namely, the pheromone coefficient, heuristic 

coefficient, evaporation rate of the pheromone, and 

decision rule are staying constant during the search 

process. If the parameters of the ACS algorithm are 

not properly set, the quality of the solution will 

become very poor and the ACS algorithm requires a 

large amount of computation time [7]. Thus, instead 

of using static values, several methods have been 

proposed to tune the parameters’ values in the ACS 

algorithm.  

Pilat and White [8] proposed two approaches to 

adjust the heuristic coefficient, initial decision rule, 

and the local pheromone volatility coefficient of ACS. 

In the first approach, the tournament selection 

method has been used to select four genetic 

algorithms (GA) ants from the ant population. The 

parameter settings of each of the four selected ants 

are determined at each iteration and before 

constructing solutions by using GA. The second 

approach is an offline tuning mechanism based on 

GA. Gaertner and Clark [9] followed a similar 

approach proposed in [8], wherein in the early stages, 

GA is used. In the proposed method, a random 

parameter combination is used to initialize each of the 

ants. During the search process, the population and 

parameter values will change to obtain a better 

solution. The parameters that are adjusted are the 

heuristic coefficient, pheromone evaporation rate, 

and initial decision rule in solving TSP. In Hao et al. 

[10] a variant of ACS is proposed by where each ant 

has its parameter setting. In each iteration, the particle 

swarm optimization (PSO) algorithm [11] was used 

to modify the values of heuristic coefficient, 

pheromone evaporation rate, and initial decision rule 

parameters within a predefined range. Anghinolfi et 

al. [12] used a local search to adjust the values of 

parameters (heuristic coefficient and initial decision 

rule) in the ACS algorithm. The value of parameters 

is adjusted during the iteration based on the 

neighbourhood of the current values. The value of 

parameters is increased or reduced by a fixed amount 

to obtain the combinations of parameters setting. 

Each combination is assigned to each group of ants. 

In each group, the local search is performed to find 

the best solution. At the end of the search process, the 

best solution among the groups is chosen to be the 

best configuration of parameters. In Melo et al. [13] 

the same problem is solved simultaneously by several 

colonies of ants where different parameter settings 
 

Table 1. Dynamic adjustment methods for the control 

parameters in the ACS algorithm 

Reference 
Parameters 

Method 
α β q0 ρ 

Pilat and White [8] - ✓ ✓ ✓ GA 

Gaertner and Clark [9] - ✓ ✓ ✓ GA 

Hao et al. [10] - ✓ ✓ ✓ PSO 

Anghinolfi et al. [12] 
- ✓ ✓ - 

Local 

search 

Melo et al. [13] 
✓ ✓ ✓ ✓ 

Multi-

colony 

Gomez-Cabrero and 

Ranasinghe [2] 
✓ ✓ ✓ ✓ PSO 

 

for the pheromone coefficient, heuristic coefficient, 

evaporation rate of the pheromone, and initial 

decision rule are used by each colony. The 

parameters setting of the worst colony is replaced 

with the parameter value from the best colony by 

using the mutation operator. In which, the value of 

the same parameter in the best colony is modified by 

a small, uniformly random value to update the value 

of parameters in the worst colony. However, in this 

approach, the values of the parameters did not 

consider the state of the search process which affects 

the convergence of the ACS algorithm. Gomez-

Cabrero and Ranasinghe [2] proposed an algorithm to 

adjust the parameters in the modified ACS by using 

the PSO algorithm. These parameters are the initial 

decision rule, heuristic and pheromone coefficients, 

evaporation rate, and the number of ants. A new 

parameter was introduced to represent the percentage 

of vertices and the parameter that defines the 

neighbourhood. Table 1 summarizes the methods that 

have been presented in adjusting the main control 

parameters of the ACS algorithm namely, the 

pheromone coefficient, α, heuristic coefficient, β, 

decision rule, q0 and evaporation rate of the 

pheromone, ρ. 

Most of the proposed methods, adjust the 

parameters of ACS based on another optimization 

algorithm. However, this approach has a drawback in 

which the algorithm (such as PSO and GA) that are 

used in adjusting the parameters of ACS needs to also 

adjust their parameters. For example, in Gomez-

Cabrero and Ranasinghe [2] and Hao et al. [10] the 

PSO algorithm, the values for the inertia weight, 

cognitive and social parameters need to be adjusted. 

In Pilat and White [8], the value of crossover and 

mutation factors play an important role in 

determining the performance of GA. Furthermore, 

most of these methods adjust some of the parameters 

and used constant values for the others. For example, 

in Anghinolfi et al. [12], the values of β and q0 [12] are 

adjusted during the search process, while α is set as a 
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fixed value. Similarly, in other studies [8-10], only 

the values of β, q0 and ρ are adjusted. However, the 

value of a parameter that provides good performance 

in solving a particular TSP instance, may not be able 

to achieve good solutions in solving other instances.  

In Melo et al. [13], although the four control 

parameters of ACS have been adjusted, the proposed 

approach overlooked the state of search space and 

type of an optimization problem. This can affect the 

convergence of ACS algorithm. Generally, in solving 

an optimization problem, the optimal combination of 

the parameter of an algorithm is different, even for 

the same type of optimization problem, because the 

scale of the problem is not the same. Thus, these 

parameters should be adjusted according to the 

problem being solved. In previous studies, the most 

adjusted parameters are β and q0. However, other 

parameters also have a significant impact on the 

performance of ACS algorithm. 

In this study, a hybrid algorithm between Harris’s 

hawk optimization (HHO) algorithm [14] and ACS is 

proposed. The HHO has the characteristics of few 

control parameters compared to other traditional 

algorithms such as PSO, dragonfly algorithm (DA) 

[15] and GA [16]. The HHO algorithm has good 

searching ability and has been applied to solve 

different optimization problems [17, 18]. Therefore, 

in this paper, the HHO algorithm will be used as an 

adaptive parameter control to adjust the parameters 

of the ACS algorithm which will be used to solve TSP.   

In this paper, the ACS algorithm is hybridized 

with HHO which optimizes the parameters of ACS 

based on the TSP instances [19]. The hybridization 

between the ACS and HHO is called Harris’s hawk 

optimizer ant colony system (HHO-ACS) algorithm. 

The proposed algorithm requires fewer parameters to 

be adjusted compared to other metaheuristics such as 

PSO, DA and GA. In contrast to the other 

metaheuristics, the ACS algorithm is mainly 

developed to solve combinatorial optimization 

problems. Thus, it can be used to solve TSP without 

modifications. Tuning the parameters of ACS 

algorithm can be considered as a continuous 

optimization problem. The HHO algorithm is mainly 

developed to solve this type of problem. Thus, this 

paper aims to hybridize the HHO and ACS 

algorithms to produce an effective method to solve 

TSP. 

The performance of the HHO-ACS has been 

evaluated by using different TSP instances of various 

scale size. This paper organized as follow: sections 2 

and 3 describe the ACS and HHO algorithms, 

respectively. The proposed HHO-ACS algorithms 

are introduced in section 4. In Section 5, experimental 

design is presented, followed by results and 

discussion. Finally, the conclusion is presented in 

section 6. 

2. Ant colony optimization algorithm 

The idea of an ACO algorithm can be visualized 

through a graph. In the graph, G = (V, Z), where V is 

vertices (nodes), and Z is connections between pairs 

of vertices, known as edges. The weight of an edge 

represents the distance between its two vertices. The 

graph is complete if each pair of vertices is joined by 

an edge, that is, it contains all the possible edges, as 

shown in Fig. 1. 

Generally, a TSP is described as an edge-

weighted complete graph, where the cities are the 

vertices, V, and the paths between these cities are the 

edges. A tour of the TSP is a Hamiltonian cycle and 

the optimal tour is the shortest Hamiltonian cycle. In 

other words, the TSP is equivalent to finding a 

Hamiltonian cycle that has a minimum sum of 

weights, which are assigned to each edge. 

Mathematically, TSP is formulated as shown in Eq. 

(1) [20]. 

 

 𝑇𝑆𝑃(𝜋) = ∑ 𝑑(𝜋(𝑖), 𝜋(𝑖 + 1))

𝑛

𝑖=1

 (1) 

 

where π ∈ Sn of the cities. The aim is to find a feasible 

solution π = ⟨ π(1),…,π(n)⟩ that minimizes the total 

tour length [20]. d is the assigned distance between 

two cities. The ants are distributed through the cities 

and then probabilistically choose the next city, based 

on the intensity of pheromones. The higher value of 

the pheromones for a route, the greater the probability 

that the ant will choose that route. After all the 

artificial ants completed their routes in the graph, the 

length or cost of their routes is measured using a 

representative technique for the problem. The update 

of the pheromone trail is performed according to the 

quality of the route, which is determined according to 

a decision rule based on probabilities.  

The ACS algorithm is developed based on the ant 

system algorithm. However, in the ACS algorithm, 

 

 
Figure. 1 A Complete graph with seven vertices 
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the ants adopt the state transition rules differently 

from the AS algorithm. In ACS, the ant k in node i 

moves to the next node j based on probability given 

by the pseudo-random-proportional rule, which is 

controlled by the parameter q0 as shown in Eq. (2) 

[21]. 

 

 

𝑗

= {
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑙∈𝑁𝑖
𝑘 ∈ {𝜏𝑖𝑙[𝜂𝑖𝑙]𝛽}  , if 𝑞 ≤ 𝑞0

  𝐽                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2) 

The transition between exploitation and 

exploration processes is determined according to the 

value of the parameter, q0.  q is a uniformly 

distributed random number in [0,1]. If q > q0, the 

next node is selected based on the value of J which is 

a random variable selected based on the probability 

distribution given by Eq. (3) [21]. 

 

 𝑃𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

𝑙∈𝑁𝑖
𝑘

   ,    if 𝑗 ∈ 𝑁𝑖
𝑘 (3) 

 

where Pij is the probability to choose city j from 

city i. 𝜏 is the pheromone trail; 𝜂 = 1/𝑑𝑖𝑗 ; is the 

inverse of the distance between the i and j cities, 

which represents the heuristic information. 𝛮𝑖
𝑘is the 

remaining cities to be visited by ant, k, located on the 

city, i. The pheromone on the path of the ant is 

updated for solution quality improvement and the 

convergence speed of the algorithm. The update 

includes local and global pheromone updates. 

2.1 Local pheromone update rule 

As each ant left a certain node i to the next node j, 

the pheromone trail on the edge arc (i, j) is updated 

according to Eq. (4) [21]. This pheromone update 

method makes the ants more inclined in the path 

construction process and chooses a path different 

from the last one.  

 

 𝜏𝑖𝑗 = (1 − 𝜉)𝜏𝑖𝑗 + 𝜉𝜏0 (4) 

 

where ξ = 0.1 is the local pheromone volatility 

coefficient, ξ ∈ (0, 1); τ0=1/nCnn is the initial 

pheromone trails on each path; n is the number of 

cities and Cnn is the length of a nearest-neighbour tour. 

2.2 Global pheromone update rule 

In ACS, the global pheromone update is 

performed after all ant cycles are completed and only 

the pheromone on the current optimal path is updated. 

 

 
Figure. 2 Flowchart of the ACS algorithm 

 

 

Using this update method will make ant's path search 

more targeted. The optimal path is found at the end 

of iterations. Eq. (5) and Eq. (6) show the formula of 

the global update rule [21]. 

 

 𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗 + 𝜌Δ𝜏𝑖𝑗
𝑏𝑠, ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠 (5) 

 

 ∆𝜏𝑖𝑗
𝑏𝑠 =

1

𝐶𝑏𝑠
 (6) 

 

where 1 − 𝜌 is the residual factor pheromone. Tbs 

is the best-so-far tour and Cbs is its length. Fig. 2 

shows the flowchart of the ACS algorithm.  

The algorithm starts by initializing parameters values. 

At the initial phase, m ants were randomly placed on 

n cities, and the ants used the state transition rules 

multiple times to establish a path (that is, a feasible 

solution for TSP). In the process of establishing paths, 

ants are guided by pheromone information (edges 

with high pheromone intensity are more attractive to 

ants) and heuristic information (tend to choose the 

shortest path). At the same time, the pheromone ants 

on the paths that have been visited are modified by 

applying local update rules. When all ants have 

established a complete path, the global update rule is 

applied to modify the amount of information on the 

path again. This is until the end of the entire search 

process. 
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Figure. 3 Harris’s hawk optimization algorithm 

3. Harris’s hawk optimization  

Harris’s hawk optimization algorithm is 

developed imitating the hunting behaviour of 

Harris’s hawks in nature. Fig. 3 shows the steps of the 

HHO algorithm. Each hawk’s position represents a 

candidate solution in solving the optimization 

problem. The prey position represents the best 

solution found so far. 

The optimization processes of HHO include three 

phases, namely, exploring the search space, surprise 

pounce (exploitation), and different attacking 

strategies of Harris’s hawks [14].  

3.1 Exploration phase 

The exploration process of the HHO algorithm 

includes two strategies to update the position of 

hawks with probability q, as shown in Eq. (7) [14]. 

 

 

𝑋(𝑡 + 1)

= {

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|; 𝑞 ≥ 0.5

𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡) −                                          

 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵));     𝑞 < 0.5

 
 

  (7) 

 

where X(t+1) is the new position of a hawk. Xrabbit, 

X(t), Xrand and Xm represent the positions of prey, the 

hawk’s position at iteration t, randomly selected 

hawk, and the average position of hawks in the 

population, respectively. The coefficients r1, r2, r3, r4 

and q LB and UB, represent the lower and upper 

bounds of the decision variables. The random values 

are used to increase the diversification ability of the 

HHO to explore different regions of the search space. 

The average position of hawks is calculated as shown 

in Eq. (8) [14]. 

 

 𝑋𝑚(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)

𝑁

𝑖=1

 (8) 

 

where N is the total number of hawks in the 

population. In the HHO, the transition between 

exploration and exploitation is performed based on 

the escape energy of a prey, E. This value of escape 

energy linearly decreases from 2 to 0 with the 

iteration, as shown in Eq. (9) [14]. 

 

 𝐸 = 2𝐸0(1 −
𝑡

𝑇
) (9) 

 

where T represents the maximum number of 

iterations. E0 is the initial value of the energy in (−1; 

1)]. When |E|≥1, the HHO algorithm will perform the 

exploration process which indicates that the prey 

escape in the entire solution space. Otherwise, it 

performs the exploitation process by searching the 

neighbourhood of the solutions. 

3.2 Exploitation phase 

The HHO algorithm describes whether the prey 

escaped successfully by the factor r ∈ [0; 1]. When r 

<0.5, it indicates that the prey escaped successfully, 

otherwise, it failed. Whether the prey escaped or not, 

the hawks will perform a hard or soft besiege 

according to the relative amount of the escape energy 

with a probability of 0.5. The soft besiege occurs 

when |E| ≥ 0.5, otherwise, the hard besiege will occur. 

Based on that, four cases were proposed to model the 

exploitation phase. 
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When r ≥ 0.5 and | E | ≥ 0.5, it means that the 

energy of the prey is abundant. In this case, the prey 

tries to escape by performing random jumping, but 

eventually fails and is captured by the hawks by 

performing the surprise pounce. This modelled as 

shown in Eq (10) and Eq. (11) [14]. 

 

 𝑋(𝑡 + 1) = ∆𝑋(𝑡) −  

 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)| (10) 

 

 ∆𝑋(𝑡) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡) (11) 

 

where ΔX(t) refers to the difference between the 

rabbit and the hawk’s current position. J = 2(1 - r5) 

and r5 are random numbers in the intervals (0,2) and 

(0,1), respectively.  

 

Case2: Hard besiege 

when r ≥ 0.5 and | E | < 0.5, indicates that the 

energy of the prey is low and it is directly captured 

by the hawks, which perform the surprise pounce. 

This behaviour modelled as shown in Eq. (12) [14].  

 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|∆𝑋(𝑡)| (12) 

 

Case3: Soft besiege with progressive rapid dives  

When r < 0.5 and | E | ≥ 0.5, it means that the prey 

energy is enough to ensure successful escape, but the 

hawks still perform a soft besiege before the surprise 

pounce. This formulated as shown in Eqs (13 -15)). 

 

𝑋(𝑡 + 1) = {
𝑌, if 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍, if 𝐹(𝑍) < 𝐹(𝑋(𝑡))
 (13) 

 

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)
− 𝑋(𝑡)| 

(14) 

 

𝑍 = 𝑌 − 𝑆 × 𝐿𝐹(𝐷) (15) 

 

where S is a random vector D is the dimension of 

the problem and LF is the levy flight function [14]. 

 

Case4: Hard besiege with progressive rapid dives 

When r < 0.5 and | E | < 0.5, it means that the prey 

energy, E, is low. In this case, the hawk dives, and 

hard besieges are performed to reduce the average 

distance from the prey and its average position. This 

update is performed by Equation (13) where Z and Y 

are calculated using Eq. (15) and Eq. (16), 

respectively. The best hawk in the population is taken 

as the optimal solution of the current generation.  

 

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)| (16) 

 

 
Figure. 4 Flowcharts of the HHO-ACS algorithm 

4. Hybridizing the HHO with the ACS 

algorithm 

The basic idea of HHO-ACS depends on the 

strengths of the two algorithms. In other words, the 

algorithms complement each other. The algorithm 

uses HHO to optimize the four control parameters (α, 

β, ρ, q0) in the ACS algorithm and uses the ACS 

algorithm to improve the path-finding behaviour of 

the traditional ACS algorithm. In the proposed HHO-

ACS algorithm, the tour length obtained by the ACS 

algorithm represents the objective function, f(X), of 

the HHO algorithm and the position of each hawk, X, 

represents the values of the parameters of the ACS. 

This is to guide each hawk to move in a better 

direction which will produce a better combination of 

parameters. Thus, the hawks with the shortest tour 

length represent the best solution in the current 

iteration. In other words, the best combination of 

parameters X= [α, β, ρ, q0)] will enable the function 

f(α, β, ρ, q0) in getting the optimal path. Fig. 4 shows 

the flowcharts of the HHO-ACS algorithm. 

In Fig. 4, the doted box includes the operations of the 

HHO algorithm (refer to Fig. 3), while the others 

represent the operations of the ACS algorithm (refer 

to Fig. 2). The HHO-ACS algorithm starts by 

randomly distributing the ants to the cities. All ants 
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will complete only their first tour with respect to the 

inter-city distances. Then, the values of α, β, ρ, q0   

parameters are obtained by using the HHO algorithm. 

Each hawk is evaluated by using the objective 

function which represents the tour length. The rabbit 

location represents the best parameters value, which 

is used to calculate the pheromone of all ants. The 

HHO-ACS is terminated when the maximum number 

of iterations designated for the ACS algorithm is 

reached. The best solution obtained represents the 

shortest path. 

5. Results and discussion 

Symmetric TSP instances [19] namely bays29, 

bayg29, att48, eil51, berlin52, st70, eil76 and eil101 

have been used to evaluate the performance of the 

HHO-ACS algorithm. The dimension of the 

problems has ranged from 29 to 101 cities. For 

example, bays29 is a 29-city problem; eil76 is a 76-

city problem, and so forth. The instances are 

categorized according to the number of cities i.e. 

small scale (<20), medium scale (20<cities<100), and 

large scale (>100) [22]. The performance of the 

HHO-ACS algorithm has been compared with the 

GA [16], PSO [11], DA [3], black hole (BH) [1], and 

ACO algorithms. The parameters settings of these 

algorithms are the same as the recommended settings 

in [1, 3]. For each algorithm, the maximum number 

of iterations is set to 200, and 100 is the population 

size. For the HHO algorithm, 10 decision variables 

are used to perform the search process and the 

maximum number of iterations is set to two. The 

mean, standard deviation (SD), and best and worst 

distances over five independent runs are recorded for 

comparison purposes. Table 2 shows the mean, 

standard deviation (SD), the best and worst distance 

for the eight instances over five independent runs 

obtained by HHO-ACS and other algorithms [1, 3] 

used for comparison. The best results are highlighted. 

The HHO-ACS algorithm showed competitive 

performance compared to other algorithms, namely, 

GA, ACO, BH and PSO on all instances. The mean 

and the SD values obtained by HHO-ACS algorithm 

for all eight datasets are better than other algorithms, 

indicating that the HHO-ACS algorithm has better 

search ability and convergence than other algorithms. 

Fig. 5 shows the best path (the shortest path) obtained 

by HHO-ACS compared to the optimal path of each 

problem. Red (thick line) and blue (thin line) colours 

represent the optimal path and obtained path by 

HHO-ACS respectively in solving a TSP. 

Optimal solutions in solving the bayg29, att48 

and berlin52 instances were obtained by the HHO-

ACS algorithm. In solving other instances, namely, 

Table 2. Experimental results of algorithms on the test 

data sets 

Problem 

(number 

of cities) 

Algorithm Best Worst Mean SD 

bays29 

(29) 

HHO-ACS 9073.0 9094.00 9079.60 8.2341 

ACO 9239.2 11014.5 9823.20 722.415 

PSO 9120.3 9498.17 9195.91 168.972 

GA 9751.4 10513.9 10015.2 319.879 

BH 9396.5 9507.17 9463.25 60.9588 

DA 9387.03 9611.78 9480.29 64.37 

bayg29 

(29) 

HHO-ACS 9074.0 9094.00 9077.20 9.3915 

ACO 9447.5 11033.6 9882.22 675.833 

PSO 9329.2 11332.7 9947.03 799.407 

GA 9579.12 10411.2 9771.95 127.113 

BH 9375.44 9375.44 9375.44 0.000 

DA 9464.41 9704.98 9547.75 64.75 

att48 

(48) 

HHO-ACS 33522.0 33606.0 33580.2 33.5365 

ACO 35230.9 46204.2 39436.2 4874.3 

PSO 36996.4 61421.9 47018.4 9685.89 

GA 35312.5 50671.5 43620.6 2004.00 

BH 34200.9 35528.5 34473.8 589.802 

DA 37225.9 38683.2 37759.7 425.69 

eil51 

(51) 

HHO-ACS 428.000 431.000 429.600 1.5166 

ACO 454.39 469.053 461.018 6.2974 

PSO 469.155 737.526 574.802 107.237 

GA 448.84 462.114 453.477 9.4157 

BH 437.893 526.898 458.925 38.6365 

DA 471.58 491.65 475.16 4.51 

berlin52 

(52) 

HHO-ACS 7542.00 7657.00 7589.00 62.1088 

ACO 7757.03 10541.1 8522.90 1152.20 

PSO 9218.47 14279.4 11089.5 2067.93 

GA 8779.76 9565.37 9288.45 1301.21 

BH 8188.07 9356.75 8455.83 508.987 

DA 9400.75 9610.15 9486.70 72.54 

st70 

(70) 

HHO-ACS 678.000 692.000 685.200 5.1672 

ACO 711.652 855.203 757.754 59.6079 

PSO 1030.85 1756.12 1321.81 269.279 

GA 1112.31 1242.20 1158.85 52.1734 

BH 723.269 1081.11 797.575 125.227 

DA 797.47 887.08 839.01 24.28 

eil76 

(76) 

HHO-ACS 543.000 555.000 548.600 4.6152 

ACO 574.240 665.999 594.144 40.2152 

PSO 804.267 1195.90 975.64 152.406 

GA 619.226 679.786 652.059 122.097 

BH 566.243 925.842 659.102 152.175 

DA 624.92 674.48 644.89 13.02 

eil101 

(101) 

HHO-ACS 640.000 661.000 654.200 8.3187 

ACO 725.099 868.205 763.921 59.9684 

PSO 1158.71 1973.82 1499.99 319.749 

GA 828.881 854.438 838.831 9.9642 

BH 720.384 1249.87 897.381 210.145 
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DA 812.80 997.60 898.52 47.90 

 

bays29, eil51, st70, eil76 and eil101, the HHO-ACS 

was able to achieve lengths near to the optimal 

solutions. In the HHO-ACS, the parameters 

adjustment of the ACS algorithm is based on the 

characteristics of the TSP instance being solved [23]. 

The optimal combination of parameters obtained by 

the HHO-ACS algorithm in solving each instance of 

the TSP is presented in Table 3.  

 
 

 

Table 3. Values of parameters obtained by HHO-ACS 

algorithm in solving TSPs 

Problem Best Parameters value 

  ρ q0 

bays29 1.0687 1.9995 0.0993 0.8970 

bayg29 1.0327 1.9957 0.0994 0.8957 

att48 0.9822 1.9926 0.0999 0.8942 

eil51 0.8929 1.9912 0.0997 0.8909 

berlin52 1.1919 1.9904 0.0999 0.8907 

st70 0.9419 1.9942 0.0995 0.8944 

eil76 0.8848 1.9914 0.0995 0.8938 

eil101 1.1288 1.9983 0.0994 0.8941 

 

 

 

  

 

 

 

 

 

 

Figure 5. The TSP solutions found by the HHO-ACS algorithm on the test data 
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6. Conclusion 

The control parameters namely, pheromone 

coefficient, heuristic coefficient, decision rule, and 

evaporation rate of the pheromone have a significant 

effect on the performance of the ACS algorithm. The 

random combination of parameters makes the 

algorithm fall into local optima which resulted in 

stagnation. To overcome this limitation, the HHO-

ACS algorithm is proposed to tune the parameters 

according to the TSP instances. The proposed 

algorithm requires fewer parameters to be adjusted 

compared to other metaheuristics. It was able to 

achieve the best known optimal solution in solving 

bayg29, att48 and berlin52 instances and near optimal 

solution in solving other instances, namely, bays29, 

eil51, st70, eil76 and eil101. The obtained results 

indicate that the HHO-ACS worked well across 

different instances compared to other metaheuristics. 

For future work, it is possible to test the performance 

of the HHO-ACS algorithm in solving other 

combinatorial optimization problems of TSP nature. 
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