
Received: October 11, 2020. Revised: January 4, 2021. 1

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

Fast Local Flow-based Method using Parallel Multi-core CPUs Architecture

Rashed Salem1 Wafaa Abdel-Moneim2* Mohamed Hassan2

1Information Systems Department, Faculty of Computers and Information, Menoufia University, Egypt

2Information Systems Department, Faculty of Computers and Informatics, Zagazig University, Egypt

* Corresponding author’s Email: eng_is_wafaa@yahoo.com

Abstract: Large graphs are available in everywhere such as social networks, web link analysis, and computer networks.

Traditional methods of clustering are not suitable to tackle the problem of clustering large graphs because the

computation is very costly, which is solved by local graph clustering using a given vertex set as input to detect an

accurate cluster. SimpleLocal (SL) algorithm detects a best conductance cuts close to seed vertices set. In this paper,

a new Parallel SimpleLocal (PSL) system is proposed using multicore CPUs. OpenMP parallel library is utilized to

parallelize the first and second stages of 3StageFlow algorithm whereas the SL algorithm is used for enhancing the

runtime. The experiments are performed on various applications from different domains, which are image

segmentation and community detection. From the experiments, the proposed method improves the runtimes with

75.43% using 4-cores and 81.01% when using 8-cores over the sequential single core.

Keywords: Graph mining, Graph clustering, Local graph clustering, Parallel algorithms.

1. Introduction

In recent years, graph mining is one of the most

relevant research topics due to there are many

applications of graphs such as community detection,

image segmentation, web search, and social networks

analysis. The structure G= (N, E) is used to represent

a graph where the nodes are denoted by N and the

edges (links that connect the nodes) are denoted by E.

The process of collecting input datasets into groups

called cluster is the clustering process. Graph

clustering is the procedure of gathering the graph

vertices into clusters taking into account that there are

several edges within each cluster and there are little

edges between the clusters.

Many graph clustering algorithms have been

described in [1, 2]. These algorithms present

definitions of graph clustering and quality measures

of the cluster. There are two types of algorithms

which are global and local graph clustering. The

process of using the entire graph for clustering is

known as global graph clustering. However, the

process of utilizing specific seed vertex for clustering

is known as local graph clustering.

Most conventional algorithms of graph clustering

need to treat with the whole graph. Today, massive

graphs are available, such as graphs from social

media, scientific, and artificial intelligence

applications. It is very expensive to perform

computations using these algorithms, but local graph

clustering algorithms are quicker than conventional

algorithms that cover the whole graph. Currently,

large-scale graph is available, in which local clusters

can be bigger and this may increase running times of

local clustering algorithms. Parallelization is utilized

to promote the performance of these algorithms.

Numerous local graph computations can be run

independently in parallel and certain applications

benefit from this. Since many input parameters of all

local algorithms affect the cluster quality and

computation time, it may be difficult to recognize

before setting the input parameters for the different

independent computations.

The main problem is to find a cluster of the larger

graph using local graph clustering techniques, which

are time-consuming process. The large processing

time problem required to be solved in order to

accelerate the execution time of local graph

clustering methods.

Received: October 11, 2020. Revised: January 4, 2021. 2

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

A parallel version of local clustering algorithm

has been contributed in this paper, i.e., Local Flow-

based algorithm [3], for improving the performance

of the clustering process. This local algorithm is

simple and efficient for solving problems in

community detection on graph, and image

segmentation. Extracting maximum flow

computations is achieved by developing a three-stage

method. Moreover, the proposed algorithm modifies

Dinic’s algorithm to reach the best runtime as well as

realizing the flexibility and ease of implementation.

This algorithm is called SimpleLocal, which based on

constructing and updating the local subgraph of the

modified augmented graph. Localization can be

recognized using an implicit ℓ1-norm penalty term.

In this paper, a parallel local clustering algorithm

has been proposed for improving the quality of the

cluster. The local flow-based algorithm is simple and

strongly for solving problems in community

detection, and image segmentation. The proposed

method is implemented to important applications,

such as image segmentation and community

detection. Multicore CPUs are utilized for applying

parallel local flow-based method on these

applications. The proposed algorithm improves a

local flow-based method to reach the best runtime.

This paper is organized as follows: Section 2

provides related work. Preliminaries of graph

structure and multi-core CPUs are described in

Section 3. While, Section 4 introduces the

SimpleLocal (SL) algorithm, Section 5 introduces the

proposed Parallel SimpleLocal (PSL) algorithm.

Section 6 discusses the experiments and their results.

Finally, Section 7 highlights both the conclusions and

future works.

2. Related work

This section addresses related work of the local

graph clustering algorithms in the literature. Firstly,

Spielman and Teng [4] deal with local graph

clustering to solve sparse linear systems using nearly-

linear time algorithms. Their research presents

Nibble algorithm to partition the graph. Then,

Andersen et al. [5] produce an algorithm for local

partitioning called PageRank-Nibble using

personalized PageRank vectors which improves both

Nibble approximation ratio and running time. This

algorithm computes the approximate PageRank

vectors. Furthermore, Spielman and Teng [6] design

an algorithm for spectral method of sparsification

graph using nearly linear time to detect an

approximate sparsest cut. Finally, Fountoulakis et al.

[7] present new trends for optimizing local graph

clustering of PageRank-Nibble algorithm.

Local clustering algorithms include several

improvements such as new algorithm called

“Improve” [8]. This algorithm presents improvement

of the quality of graph partitioning without affect the

running time by using a subset of vertices as input

and produce a new subset of vertices that has a

smaller quotient cut.

In the past, sparse cuts can be found by algorithms

of local clustering using personalized PageRank and

random walks, but evolving sets are used to design

the EvoCut algorithm [9]. Applications of local graph

clustering algorithms as provided in [10] include

identifying communities in networks by the

algorithm of Spielman and Teng [4]. A small sparse

cut is found using bicriteria approximation algorithm

[11]. This algorithm is simple and uses truncated

random walk to implement an algorithm locally.

In the literature, the algorithms of local graph

clustering are utilized to handle social and web

graphs [12-14]. Many problems of graph-based

learning, including image segmentation [15] and

seeded community detection [5, 16] are addressed,

whereas the target is to find the remaining of the

pixels by using a set of sample pixels or nodes.

Voevodski, et al. [17] as well as Liao et al. [18]

provide algorithms to find communities in protein

networks. Other researchers deal with community

detection by applying local algorithms, e.g., [16, 19-

23]. Chung designs a modified version of PageRank

known as heat kernel PageRank [24] that contains

two input parameters, which are a heat or temperature

and a seed. Clusters can be obtained with better

guarantees by using several PageRank-Nibble

algorithms. These algorithms are internally well-

connected in the cluster [25]. There are other local

clustering algorithms developed with stronger

guarantees [26, 27]. Orecchia and Zhu [28] introduce

the first strong local flow-based method that has a

quick runtime. For maximum flows, this method is

based on a complex diversity of Dinic’s algorithm, so

it is complicated to be used in practice [29]. Veldt et

al. [3] present a new simple algorithm called SL for

locally-biased graph based learning. Strongly local is

the main feature of this algorithm to find a good

conductance cuts without require entire graph.

A lot of local graph clustering algorithms are

paralleled by Shun et al. [30] such as Nibble [4,6],

PageRank-Nibble [5], deterministic heat kernel

PageRank [20], and randomized heat kernel

PageRank [31] using the shared- memory multicore

environment. The parallel complexities of such

algorithms are analyzed. These parallel algorithms

accomplish the best speedups on a shared memory

multicore in the Ligra graph processing framework.

Received: October 11, 2020. Revised: January 4, 2021. 3

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

3. Background

3.1 Graph structure

A graph can be represented by G (V, E), where V
indicates vertices and E indicates edges of an
undirected and unweighted graph. The number of
vertices is represented by n = |V | and the number of
edges is represented by m = |E|. The degree of a vertex
is represented by d(v) which can be defined by the
edges number incident on v. The set of vertices is
denoted by S whose volume is calculated by vol(S)

= Σv∈S d(v). Moreover, the number of edges that

leaves the set is represented by boundary ∂ whose
value is calculated as ∂(S) = {(x, y) ∈ E | x ∈ S, y ∈/
S}. The conductance of cluster S is represented by
Φ(S) = |∂(S)|/min (vol(S), 2m − vol(S)). A clustering
quality is measured by conductance. Low
conductance stands for high quality clustering and
high conductance stands for low quality clustering.

3.2 Multi-core CPUs

A multi-core processor is an Integrated Circuit

(IC). It has multiple processers that are independent,

which called cores to read and carry out the

instructions of the program for improved

performance and decreased energy consumption.

Moreover, multiple tasks are processed in the same

time but more efficiently using a multicore CPU [32].

The computational processes are enhanced by

utilizing multiple cores or during multithreading on

cores that based on the algorithms and their codes

[33]. The parallelism level is based on the program

data partitioning degree where these sections are

handled independently. Even volumes of big data can

be reduced using parallel clustering techniques [34].

Among advantages of multi-core processors is the

diversity of applications they can solve such as

wireless network, biomedical systems, digital signal

processing, and image recognition units.

Open Multi-Processing (OpenMP) starts with one

thread, which titled with the master thread that works

out for the program time. A variable set is ready

to any thread, which called the context of the

thread’s execution. Through execution, the master

thread may face the areas of parallel, where novel

threads are branched by the master thread. In the

finish area of parallel, the branched threads will be

closed, and the execution is continued by the master

thread. Many advantages of OpenMP are including

easier implementation, and lower communication

time required in comparison to Message Passing

Interface (MPI). Unlike MPI, OpenMP preserves the

sequential code and making good use of present-day

multicore processors.

Multiple Instruction Multiple Data stream

(MIMD) is a basic structure of multicore processor.

The whole of threads can be carried out at various

cores on the same stream with same shared memory.

Therefore, such cores are executed on the same

computer rather than utilizing one processor with one

core shared with memory, as described in Fig. 1 [35].

4. Local flow-based method

SL [3] is a simple algorithm that is used to

calculate the LocalImprove objective function. It

starts with a graph G = (V, E), and an initial seed set

R ⊂ V satisfying vol(R) ≤ vol(R̄). This algorithm

depends on building local augmented subgraph 𝐺𝑅
ʹ (α,

δ). To compute the accurate maximum flow

calculations on 𝐺𝑅
ʹ (α, δ), a new three-stage method

is followed instead of computing approximate

maximum flows using Dinic’s algorithm.

The local graph is firstly constructed, then passed

to the three-phase process and frequented until

convergence to maximum flow. The local graph is

developed in each iteration, calculating the maximum

s − t flow, i.e., flow from the source (s) to sink (t), then

the local graph is updated depend on this flow.

4.1 3Stage local max-flow

The 3Stage algorithm computes the maximum

s−t flow of an altered augmented graph 𝐺𝑅
ʹ (α, δ). The

algorithm starts a three-phase process that is

frequented until convergence to maximum flow. Fig.

2 describes the 3Stage-Flow flowchart.

To initialize the method, let Gr refers to an

altered augmented graph 𝐺𝑅
ʹ (α, δ). It starts by

constructing the local graph L = (VL, EL). A Gʹ

subgraph contains: union of nodes s, t, R, neigh(R),

edges start from s to R, edges among distinct nodes

in R, edges start from R to neigh(R), and edges start

from t to neigh(R). The vector of flow is

represented by F and the overall flow value that

transmitted from s to t is indicated by flow (F).

Core

1

Individual

Memory

Core

2

Individual

Memory

Core

n

...

...

Shared Memory

Bus Interface

Off-chip Components

Individual

Memory

Figure. 1 Multicore processor with shared memory

Received: October 11, 2020. Revised: January 4, 2021. 4

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

Start

Input: Graph G,

Parameters α, δ,

Seed Set R

Initialize: NL , EL ,

F=0; X = ɸ

While

X ɸ or

F=0 do

Expand W

MaxFlow

Update L

End

No

Yes

4.1.1. Stage 1. Expansion

For permitting large flow transmitted from s to t,

local graph is expanded in the starting of each

iteration. The set of nodes is represented by X to

extend on at the starting of the repetition. For each

vertex x ∈ X, whole x neighbors are added which now

are not a portion of L, and it contains whole edges

begin from x to whole its neighbors. For any novel

vertex included to L, the edge it shares with the sink

t is contained. Initially, starting with set X = φ because

there is no necessary to extend the local graph now.

4.1.2. Stage 2. Max-flow computation

After expanding the local graph L correctly, the

maximum flow f is calculated by utilizing any

existence max-flow subroutine. Then, the vector

of the flow is redeveloped F = F + f . The residual

graph of the flow is represented by Lf , which is

constructed by changing the capacity cij of an

edge in EL by cij − fij, where fij denotes the flow

on (i, j) edge, and the edge (j, i) capacity is

changed with fij .

4.1.3. Stage 3. Updates

The flow influences are resolved and defined if

the local graph must be widened after calculating a

maximum value. Then, the local graph is developed

to become a residual graph of f and detects the

nodes group that are linked to s by an unsaturated

edges string. This stands for the source set S, which

is returned when max flow is converged.

4.2 SimpleLocal (SL) algorithm

The SL algorithm uses 3StageFlow method. The

SL algorithm takes a graph G and a reference set R

as inputs. A best conductance cut of simple local is

detected by rendering 3StageFlow frequently to

discover α that has a smallest value where the 𝐺𝑅
ʹ (α,

δ) maximum s − t flow is smaller than α vol(R). Fig.

3 illustrates the SL flowchart.

5. The proposed parallel local flow-based

methodology

This section shows how to parallelize sequential

local clustering algorithms, i.e., 3StageLocal Max-

Flow algorithm and SL algorithm. Clustering

algorithms are dependent on processing repeatedly

sets of vertices and their edges in parallel, where the

seed set includes multiple vertices.

5.1 Par3StageFlow

In order to tackle the problem of computation

time in SL methodology, it has been necessary to

think in parallel solutions to accelerate the process of

3StageFlow. Multi-core CPU is a powerful

processing parallel architecture. A new parallel

3StageFlow (Par3StageFlow) algorithm is proposed.

As shown in Fig. 4, the Par3StageFlow algorithm can

be broken into three steps: expansion, max-flow

computation, and updates.

Start

Input: Graph G, R,

δ 0

While

F < α vol(R)

do

α = ɸ(S)

S* = S

3StageFlow

G՜R (α, δ)

Return S*

End

No

Yes

α = ɸ(R)

3StageFlow

G՜R (α, δ)

Figure. 2 The 3StageFlow flowchart

Figure. 3 The SL flowchart

Received: October 11, 2020. Revised: January 4, 2021. 5

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

Stage 1

...

Stage 3

Update

Expansion

Core CPU

Expansion

Core CPU

Expansion

Core CPU

Max-Flow

Computation

Core CPU

Max-Flow

Computation

Core CPU

Max-Flow

Computation

Core CPU

Stage 2

...

5.1.1. Step 1. Parallel expansion

In each iteration there is a need for expansion of

local graph which starts with a seed set. Starting with

a set of vertices of expanded set, each vertex x is

added to the local graph and all neighbors that are not

contained in L are added in addition to their edges

with x. Moreover, each modern vertex added to the

local graph L is linked with sink t. Because of

consuming execution time, this step is parallelized.

5.1.2. Step 2. Parallel Max-Flow Computation

Maximum flow is calculated by using Ford-

Fulkerson algorithm [36]. The Ford-Fulkerson

algorithm solves the maxflow min-cut problem. The

Ford-Fulkerson method is iterative, which starts with

f (u, v) for (u, v) 𝜖 V, and initial flow of value equal 0.

The method is based on the augmenting path.

Algorithm 1 describes the Ford-Fulkerson algorithm.

The execution of this phase takes more time to solve

this problem, so it needs to use a multi-core processor

to obtain high processing speed.

5.1.3. Step 3. Updates

This phase is used to study the flow effects to take

a decision if the local graph required to be expanded.

Then, updating the local graph is utilized to get the

residual graph for discovering a set of vertices

(source set S) that stay linked to s by an unsaturated

edges chain. Furthermore, the algorithm of

Par3StageFlow is given in Algorithm 2.

5.2 ParSimpleLocal (PSL) algorithm

PSL algorithm uses Par3StageFlow method to

speed up the runtime. PSL algorithm determines a

best conductance cut by requesting a Par3StageFlow

frequently to detect α with the smallest value. Fig. 5

shows the flowchart of PSL algorithm. Moreover, an

outline for PSL is presented in Algorithm 3.

While

flow(F) < α vol(R)

do

Cut Set S*

Yes

Input: Graph G,

Seed Set R

Par3StageFlow

No

Start

End
Figure. 5 Flowchart of PSL algorithm

Figure. 4 Speedup steps of the Par3StageFlow algorithm

Algorithm 3: PSL

Input: G, s, t, G = (V, E)

For each edge (u, v) in E

 f (u, v) = f (v, u) = 0
While ∃ path p from s to t in residual network Gf Do

cf (p) = min {cf (u, v): (u, v) is in p}

For each edge (u, v) on p

f (u, v) = f (u, v) + cf (p)
f (v, u) = -f (u, v)

End For

End While

End For

 Algorithm 1: Ford-Fulkerson

 Input: G, R, locality parameter δ ≥ 0

 α := ϕ(R)

 [F; S]:= Par3StageFlow G՜R (α, δ)

 While flow (F) < α vol(R) Do

 α ← ϕ(S); S* ← S

 [F, S]:= Par3StageFlow G՜R (α, δ)

 End While

 Return: S*

Algorithm 2: Par3StageFlow

Input: graph G, parameters α, δ, seed set R

Initialize: local graph L = (VL, EL), F = 0; X = ϕ

While X ≠ ϕ; or F = 0 Do

/* Step 1. Parallel Expand W */

For x ∈ X do in parallel

 VL ← VL ∪ neigh(x)

 EL ← EL ∪ {(x, v): v ∈ VL}∪{(y, t) : y ∈ neigh(x)}

 End For

/* Step 2. Parallel MaxFlow */

f ← ParMaxSTflow(L);

F ← F + f

/* Step 3. Update */

Update L

 End While

Received: October 11, 2020. Revised: January 4, 2021. 6

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

6. Experiments and discussion

The experiments were performed on undirected

graphs of the SL algorithm [3] and PSL algorithm,

which are described in Section 5. The first and second

stages of 3StageFlow are the most time-consuming

steps, with almost 81.09% of the SL algorithm

running time. Thus, the most productive steps of the

SL algorithm to be parallelized are expansion and

max-flow computation stages. OpenMP is a popular

parallel programming interface (API) that provides

with multicore and shared memory multiprocessing

[37]. OpenMP library is utilized to parallelize the first

and second stages of 3StageFlow algorithm. Loop

parallelism method is used instead of “for loop” that

is popular type of parallelism. OpenMP parallel loops

are distributed throw threads group by the compiler

that is leaded by OpenMP-For.

OpenMP supports C, C++, and Fortran on

multiple platforms that involve Microsoft Windows

and Unix platforms. It contains compiler directives

set, library routines, and the variables of environment

that effect on the run-time behavior. OpenMP

removes the load of making and managing threads

from the shoulder of the programmer. The

programmer on each core/thread, while managing

various data partitions must place a partition of code.

Shared memory communicates different threads. As

well, OpenMP supplies techniques to coincide the

working threads and organize the tasks.

6.1 Image segmentation experiment

6.1.1. Dataset

MRI scan contains the 3D images. The 3D MRI

scan region is identified to prove the scalability of the

SL algorithm. Challenge of Medical Image

Computing and Computer-Assisted Intervention

(MICCAI 2012) is used to get a labeled MRI scan

with 256 × 287 × 256(≈ 18 million) voxels [38]. A

weighted graph based on adjacent voxel similarity is

formed. This graph included about 18 million

voxels and 467 million edges. PSL algorithm runs by

taking a portion from this data. Fig. 6 shows an

example of the brain MRI segmentation.

We begin with a small example from MRI scans

to explain how the SL solves the large graph

problems. MATLAB performs the execution of SL

and 3StageFlow by utilizing Gurobi for solving the

problems of max-flow. SL and 3StageFlow are

implemented also with C language, using Ford–

Fulkerson algorithm for solving the max-flow

problems to enhance the runtime of the SL algorithm

[3]. These experiments are implemented on a system

with 2.3GHz Intel i5-core CPUs processor, 8GB of

memory, and Windows 10 64-bit operating system.

These experiments are implemented on different

sizes of graph as shown in Table 1. Table 2 shows the

runtimes of the SL implementation using MATLAB

and C language.

Table 2 shows that the obtained results from C

implementation of SL algorithm achieves an

extremely improvement in the execution runtime

compared with the MATLAB, because C is a lower

level language and it provides low-level access to

memory compared with MATLAB.

6.1.2. Experimental setup of multi-core system

The experiments were run on a different

environment featured with 2.3GHz Intel 8-core CPU,

100 GB of RAM, and 64-bit Linux operating system.

The programming language C is used to write the

algorithm coding. For parallel implementation, the

OpenMP thread library [33] is used. The parallel code

Datasets Vertices |V| Edges |E|

Ex(200) 200 1576

Ex(300 300 2458

Ex(400) 400 3334

Ex(500) 500 4212

Ex(600) 600 5090

Ex(750) 750 6398

(a) (b)

Datasets MATLAB C

Ex(200) 5.309589 0.312487

Ex(300) 8.616222 0.312489

Ex(400) 17.290749 0.406235

Ex(500) 14.579523 0.39061

Ex(600) 22.19735 0.499981

Ex(750) 33.893649 0.593726

Figure. 6 Brain MRI (a) original MR image, and (b)

segmented image with three labels: WM, GM, and CSF

Table 2. Runtime of MATLAB and C of SL algorithm (in

seconds)

Table 1. Dataset with different graph sizes

Received: October 11, 2020. Revised: January 4, 2021. 7

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

is run in 2-core, 4-core, 8-core and 16-core CPU.

OpenMP library is utilized for enhancing the runtime

of the SL algorithm. Fig. 7 shows the runtime of SL

[3] and PSL that runs in 2-core, 4-core, and 8-core on

dataset of 800 nodes.

The optimal ratios of speedup for many cores are

50% for 2 cores, 75% for 4 cores, and 87.5% for 8

cores. The proposed algorithm has the speedup ratios

of 41.49% for 2 cores, 63.75% for 4 cores, and

81.01% for 8 cores. Fig. 8 clearly displays that the

total attitude of the proposed PSL implementation of

image segmentation calculations is coordinated with

the best speedup.

Implementation is expanded by running the

parallel code in 2, 4, 8, and 16-core. Fig. 9 displays

an obvious comparison between the execution times

of SL [3] and PSL algorithm using multicore CPUs

for six datasets given in Table 1. Fig. 10 displays the

average of time improvement percentage of PSL

algorithm using multicore CPUs of these datasets.

The results confirm that the gained scores are near

to the optimal ratios of parallelization. A quick

overview of the scores displays highly refinement

result in the running time when using 16-core over

the sequential single core. Naturally, a delay is caused

by increasing the number of the cores. This brings the

enormous interconnect lateness (wire lateness) when

datum has to be shifted through the multi-core chip

from memories in specific [39].

6.2 Community detection experiment

A set of individuals like the frequency of

interactions through the group is larger than that of

the interactions among the groups, this called a

community. In a network, discovering group where

individuals set memberships are not explicitly given,

this process called community detection. Many real-

world graphs are available in biological networks,

web graphs, and large social networks so that the

community detection problem in these graphs has

taken a great interest recently. This part shows the

effects of applying our PSL algorithm on community

detection application using multicore CPUs.

Figure. 8 Time improvement average of PSL using

multicore CPUs on a graph of size 800 nodes

0

10

20

30

40

50

60

70

80

90

PSL (2-Cores) PSL (4-Cores) PSL (8-Cores)

T
im

e
im

p
ro

v
em

en
t

(%
)

Figure. 7 Runtime of SL and PSL algorithm on a graph

of size 800 nodes

Figure. 9 Runtime of SL and PSL algorithm.

Figure. 10 Time improvement average of PSL algorithm

using multicore CPUs.

Received: October 11, 2020. Revised: January 4, 2021. 8

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

6.2.1. Dataset

Social network datasets are downloaded from the

large network dataset collection SNAP (Stanford

Network Analysis Platform) [40]. These datasets are

undirected graph collected from the communities.

YouTube is a website for video sharing which

includes a social network. Table 3 presents the

YouTube datasets with different sizes.

6.2.2. Experimental setup of multi-core system

The experiments were run on a different

environment featured with Intel(R) Core(TM) i7-

4790CPU (3.60 GHz), 4- core CPU, 8 GB of RAM,

and 32-bit Linux operating system. The C language

is used for coding the algorithm. OpenMP thread

library is used for parallel implementation. The

parallel code is run on 2-core and 4-core CPUs.

Table 4 displays the experimental results of

applying SL [3] on community detection datasets

using different languages. These experiments are

implemented on different sizes of YouTube datasets.

From the results, the C language improves the

running time than MATLAB.

Fig. 11 displays an obvious comparison between

the execution times of SL and PSL using multicore

CPUs for eight datasets of community detection. Fig.

12 displays the time improvement percentage of PSL

algorithm using multicore CPUs of these datasets.

Figure. 11 Runtime of the SL and PSL using multicore

CPUs on community detection datasets

Figure. 12 Time improvement of PSL algorithm using

multicore CPUs on community detection datasets

The proposed algorithm has the speedup ratios

of 50.34% for 2 cores, and 72.75% for 4 cores. Fig.

13 displays the average of time improvement

percentage of PSL algorithm using multicore CPUs

of these datasets. The results of the community

detection datasets are relative to the ratios of the

optimal parallelization, where the trend of the

proposed parallel implementation of community

detection is coordinated with the best speedup. A

quick review of the results presents a highly

advanced difference in the execution time when

using 4-core over the sequential single core.

Figure. 13 Time improvement average of PSL algorithm

using multicore CPUs of community detection datasets

0

10

20

30

40

50

60

70

80

PSL (2-cores) PSL (4-cores)

T
im

e
im

p
ro

v
em

en
t

(%
)

Datasets Vertices |V| Edges |E|

G(200) 200 872

G(300) 300 1626

G(400) 400 3050

G(500) 500 4600

G(600) 600 5692

G(700) 700 6556

G(800) 800 8476

G(900) 900 12232

Datasets MATLAB C language

G(200) 6.727062 0.265614

G(300) 21.257542 0.609352

G(400) 280.316656 1.884063

G(500) 148.340843 1.755795

G(600) 219.561633 4.842398

G(700) 155.596251 3.088185

G(800) 455.229502 5.810315

G(900) 493.980067 7.015495

Table 3. Youtube datasets with different sizes

Table 4. Runtime of SL on community detection datasets

using MATLAB and C (in seconds)

Received: October 11, 2020. Revised: January 4, 2021. 9

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

7. Conclusions

SL algorithm has time-consuming in computation.

A novel parallel algorithm is proposed and

successfully implemented for computing image

segmentation, and community detection. The

proposed algorithm is evaluated on parallel

architecture multicore CPUs. OMP parallel library is

utilized to parallelize the first and second stages of

the 3StageFlow algorithm where the PSL is used for

enhancing the runtime.

A new parallel algorithm is suggested and

executed successfully for graph clustering problem.

The proposed algorithm of local flow-based method

is implemented on parallel architecture multicore

CPUs. The proposed method is implemented on

different applications, which represent different

domains including image segmentation and

community detection. From the experiments, the

proposed method improves the runtimes by 75.43%

using 4-cores and 81.01% when using 8-cores over

the sequential single core. The scores of the executed

experiments are very near to the optimal ratios of

parallelization for the multi-core CPUs. When

comparing the results with sequential, the proposed

parallel technique is very speed.

This area of graph clustering study is open where

numerous opinions for future work could be

presented to assist researchers. We organize to

expand our contribution to approximate maximum-

flow solutions by using the modern invention, e.g.,

approximate maximum-flows in nearly-linear time.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The entire work of conceptualization, formal

analysis, validation, implementation, writing, editing

and modification of manuscript were done by Rashed

Salem and Wafaa Abdel-Moneim under the

supervision of Mohamed Hassan.

References

[1] S. Schaeffer, “Graph clustering”, Computer

Science Review, Vol. 1, No. 1, pp. 27–64, 2007.

[2] C. Aggarwal and H. Wang, “A survey of

clustering algorithms for graph data”, Managing

and Mining Graph Data. Springer, pp. 275–301,

2010.

[3] N. Veldt, D. Gleich, and M. Mahoney, “A

simple and strongly-local flow-based method

for cut improvement”, In: Proc. of International

Conference on Machine Learning, pp. 1938–

1947, 2016.

[4] D. Spielman and S.-H. Teng, “Nearly-linear

time algorithms for graph partitioning, graph

sparsification, and solving linear systems”, In:

Proc. of the 36th Annual ACM Symposium on

Theory of Computing, pp. 81-90, 2004.

[5] R. Andersen, F. Chung, and K. Lang, “Local

graph partitioning using PageRank vectors”, In:

Proc. of 47th Annual IEEE Symposium on

Foundations of Computer Science, pp. 475-486,

2006.

[6] D. A. Spielman and S.-H. Teng, “A local

clustering algorithm for massive graphs and its

application to nearly-linear time graph

partitioning”, SIAM Journal on Computing, Vol.

42, No. 1, pp. 1–26, 2013.

[7] K. Fountoulakis, X. Cheng, J. Shun, F. Roosta-

Khorasani, and M. W. Mahoney, “Exploiting

optimization for local graph clustering”, arXiv

preprint arXiv:1602.01886, 2016.

[8] R. Andersen and K. J. Lang, “An algorithm for

improving graph partitions”, In: Proc. of the

19th Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 651–660, 2008.

[9] R. Andersen and Y. Peres, “Finding sparse cuts

locally using evolving sets”, In: Proc. of the 41st

Annual ACM Symposium on Theory of

Computing, pp. 235–244, 2009.

[10] R. Andersen and K. J. Lang, “Communities

from seed sets”, In: Proc. of the 15th

International Conference on World Wide Web,

pp. 223–232, 2006.

[11] T. C. Kwok and L. C. Lau, “Finding small

sparse cuts by random walk”, Approximation,

Randomization, and Combinatorial

Optimization. Algorithms and Techniques.

Springer, pp. 615–626, 2012.

[12] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.

Mahoney, “Community structure in large

networks: Natural cluster sizes and the absence

of large well-defined clusters”, Internet

Mathematics, Vol. 6, No. 1, pp. 29–123, 2009.

[13] J. Leskovec, K. J. Lang, and M. Mahoney,

“Empirical comparison of algorithms for

network community detection”, In: Proc. of the

19th International Conference on World Wide

Web, pp. 631–640, 2010.

[14] L. G. Jeub, P. Balachandran, M. A. Porter, P. J.

Mucha, and M. W. Mahoney, “Think locally, act

locally: Detection of small, mediumsized, and

large communities in large networks”, Physical

Review E, Vol. 91, No. 1, p. 012821, 2015.

[15] M. W. Mahoney, L. Orecchia, and N. K.

Vishnoi, “A local spectral method for graphs:

Received: October 11, 2020. Revised: January 4, 2021. 10

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.01

With applications to improving graph partitions

and exploring data graphs locally”, Journal of

Machine Learning Research, Vol. 13, No. 1, pp.

2339–2365, 2012.

[16] I. M. Kloumann and J. M. Kleinberg,

“Community membership identification from

small seed sets”, In: Proc. of the 20th ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp.

1366–1375, 2014.

[17] K. Voevodski, S.-H. Teng, and Y. Xia, “Finding

local communities in protein networks”, BMC

Bioinformatics, Vol. 10, No. 1, p. 297, 2009.

[18] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B.

Berger, “IsoRankN: spectral methods for global

alignment of multiple protein networks”,

Bioinformatics, Vol. 25, No. 12, 2009.

[19] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local

community detection: on free rider effect and its

elimination”, In: Proc. of the VLDB Endowment,

Vol. 8, No. 7, pp. 798–809, 2015.

[20] K. Kloster and D. F. Gleich, “Heat kernel based

community detection”, In: Proc. of the 20th

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2014.

[21] J. Whang, D. Gleich, and I. Dhillon,

“Overlapping community detection using seed

set expansion”, In: Proc. of the 22nd ACM

International Conference on Information &

Knowledge Management, pp. 2099–2108, 2013.

[22] J. Yang and J. Leskovec, “Defining and

evaluating network communities based on

ground-truth”, Knowledge and Information

Systems, Vol. 42, No. 1, pp. 181–213, 2015.

[23] D. Gleich and C. Seshadhri, “Vertex

neighborhoods, low conductance cuts, and good

seeds for local community methods”, In: Proc.

of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, pp. 597–605, 2012.

[24] F. Chung, “A local graph partitioning algorithm

using heat kernel PageRank”, Internet

Mathematics, Vol. 6, No. 3, pp. 315–330, 2009.

[25] Z. A. Zhu, S. Lattanzi, and V. S. Mirrokni, “A

local algorithm for finding well-connected

clusters.” In: Proc. of International Conference

on Machine Learning, pp. 396–404, 2013.

[26] S. O. Gharan and L. Trevisan, “Approximating

the expansion profile and almost optimal local

graph clustering”, In: Proc. of IEEE 53rd

Annual Symposium on Foundations of

Computer Science, pp.187–196, 2012.

[27] T. C. Kwok, L. C. Lau, and Y. T. Lee,

“Improved Cheeger’s inequality and analysis of

local graph partitioning using vertex expansion

and expansion profile”, SIAM Journal on

Computing, Vol. 46, No. 3, pp. 890–910, 2017.

[28] L. Orecchia and Z. A. Zhu, “Flow-based

algorithms for local graph clustering”, In: Proc.

of the 25th Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 1267–1286, 2014.

[29] C. Qi and J. Diao, “A bio-inspired algorithm for

maximum matching in bipartite graphs”,

IAENG International Journal of Computer

Science, Vol. 47, No. 1, 2020.

[30] J. Shun, F. Roosta-Khorasani, K. Fountoulakis,

and M. W. Mahoney, “Parallel local graph

clustering”, arXiv preprint: 1604.07515, 2016.

[31] F. Chung and O. Simpson, “Computing heat

kernel PageRank and a local clustering

algorithm”, European Journal of

Combinatorics, Vol. 68, pp. 96–119, 2018.

[32] A. Sethi and H. Kushwah, “Multicore processor

technology advantages and challenges”,

International Journal of Research in

Engineering and Technology, Vol. 4, No. 9, pp.

87–89, 2015.

[33] A. Vajda, “Multi-core and many-core processor

architectures”, Programming Many-Core Chips.

Springer, pp. 9–43, 2011.

[34] V. S. Moertini, G. W. Suarjana, L. Venica, and

G. Karya, “Big data reduction technique using

parallel hierarchical agglomerative clustering”,

IAENG International Journal of Computer

Science, Vol. 45, No. 1, 2018.

[35] R. Chhibber and R. Garg, “Multicore processor,

parallelism and their performance analysis”,

IJARCST, Vol. 2, pp. 31–37, 2014.

[36] L. R. Ford and D. R. Fulkerson, “Maximal flow

through a network”, Canadian Journal of

Mathematics, Vol. 8, pp. 399–404, 1956.

[37] L. Dagum and R. Menon, “OpenMP: an industry

standard API for shared-memory programming”,

IEEE Computational Science and Engineering,

Vol. 5, No. 1, pp. 46–55, 1998.

[38] D. S. Marcus, T. H. Wang, J. Parker, J. G.

Csernansky, J. C. Morris, and R. L. Buckner,

“Open Access Series of Imaging Studies

(OASIS): cross-sectional mri data in young,

middle aged, nondemented, and demented older

adults”, Journal of Cognitive Neuroscience, Vol.

19, No. 9, pp. 1498–1507, 2007.

[39] B. Venu, “Multi-core processors-an overview”,

arXiv preprint arXiv:1110.3535, 2011.

[40] J. Leskovec, “Stanford Large Network Dataset

Collection”, https://snap.stanford.edu/data/,

2020, [Online; accessed 01 Aug. 2020].

