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Abstract: Artificial bee colony (ABC) is one of the widely used swarm intelligence algorithms in solving 

combinatorial optimization problems. In this study, the existing Modified ABC (MABC) algorithm is revised to solve 

the vehicle routing problem with time windows (VRPTW). The reason is that even though MABC is reported to be 

successful, its exploitation process lacks a selection neighborhood structure during the intensification process. The 

proposed algorithm, termed as enhanced Modified ABC (E-MABC), offers a neighborhood search that exchanges 

neighborhood structure between two different routes in the same solution, rather than one route. To evaluate the 

effectiveness of E-MABC, experiments are performed on 56 instances of VRPTW. The results of E-MABC are 

compared against the ones produced using MABC and other metaheuristic algorithms. Based on the total travel 

distance and number of vehicles, the proposed E-MABC is shown to be a solution for VRPTW. The interchange 

neighborhood search, which is implemented by bees during the exploitation process, improves the solution quality, 

hence producing an optimal outcome. The proposed E-MABC results are better as compared to MABC in terms of the 

total travel distance by 71.42 % and the number of vehicles by 35.71%.  
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1. Introduction 

 Combinatorial optimization problems (COPs) 

are the most important category for optimizing 

problems because of the large diversity of real-life 

problems that can be overcome in the engineering, 

science, and industry fields by studying them. COPs 

aim to determine an ideal solution for a particular 

problem case among all available solutions on 

discrete space. Many categories can be defined for 

the practical problems of COPs, namely, vehicle 

routing problem (VRP), traveling salesman problem, 

and scheduling problem. Among these categories, 

VRP is mostly utilized to verify the performance of 

any proposed algorithms for COPs and related fields 

(i.e., operations research, logistics, and transportation 

management). One of the challenges in transportation 

management is the VRP [1], which was initially 

referred to as the “truck dispatching problem.” VRP 

aims to structure a set of directions to serve numerous 

geographically scattered customers at nominal cost 

(i.e. to minimize travel distance or time) while 

fulfilling different types of constraints [2]. A 

productive transportation management may help 

solve VRP and essentially minimize cost, pollution, 

and heavy traffic jam. To date, various studies 

deploying artificial intelligence and data mining 

methods have been reported to contribute in VRP 

issues [3]. Several extensions of VRP have been 

presented over the years, and the vehicle routing 

problem with time windows (VRPTW) is one of the 

most commonly studied extension. The reason is 

because of the use of time window factor that is 

required in most real-world situations [4]. The 

operational of VRPTW is highly dependent on time 

window, where it restricts the time at which a vehicle 

can serve a customer on the basis of the customer’s 

availability. The timeframe for each customer 

assumes that if a vehicle reaches the customer too 

early, then the vehicle must wait before the service 

can be provided. 
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Several algorithms have been developed to 

address VRPTW, namely, exact and approximate 

(heuristic or meta-heuristic) algorithms. These 

algorithms can ensure the best solutions by searching 

every possible solution in the search space [2]. Thus, 

the exact algorithm is a suitable alternative for 

handling small operations ranging from 25 customers 

to 50 customers [5, 6]. With respect to large 

operations, such as 100 customers and above, the 

incorporation of the entire search space while 

searching for the best solution is impossible because 

it requires an unreasonable amount of time [6]. This 

size incorporates an extraordinary possible solutions 

number; hence, obtaining the ideal solution by using 

exact algorithms can be difficult [7]. Moreover, 

heuristic algorithms are utilized to handle large-sized 

VRPTW. “A heuristic algorithm (or simply heuristic) 

is a method which seeks good (i.e., near-optimal) 

solutions at a reasonable computation cost without 

being able to guarantee optimality and feasibility; 

unfortunately, stating how close to optimality a 

particular solution is may even be impossible” [8]. 

Subsequently, these algorithms are useful 

alternatives that have progress in acquiring outcomes 

at a satisfactory time structure in COPs. Heuristic 

algorithms are developed to address specific issues; 

thus, these algorithms cannot tackle all COPs [9, 10]. 

In addition, meta-heuristic algorithms are 

employed to handle the above-mentioned issue [11, 

12]. Such an algorithm can be characterized by their 

population-based features. These features replicate 

nature and lead emerging behavior through the joint 

action of individual agents in the swarm [13–16] 

Previous studies focused on meta-heuristic 

algorithms in solving problems associated with 

optimization. These algorithms provide efficient 

solutions within nominal time periods [17–19]. One 

of the optimization algorithms that are commonly 

used in the routing problem is Artificial Bee Colony 

(ABC) which is inspired from honey bee swarms’ 

intelligent foraging behavior [20]. ABC has been 

utilized for several problems with great success [21], 

and when it is employed to tackle the capacitated 

vehicle routing problem, the suggested algorithm is 

also competitive to other population-based 

algorithms. Furthermore, A. Alvarado-Iniesta, J. L. 

Garcia-Alcaraz, M. I. Rodriguez-Borbon, and A. 

Maldonado [22] argued that when ABC is employed 

to VRP problems, it yields promising results in 

addition to decreasing computational time. However, 

research on ABC for VRPTW, particularly focusing 

on the measures of total distance and number of 

vehicles, is limited. Therefore, this study investigates 

on how Modified ABC (MABC) can be adapted to 

solve VRPTW. The flaw of MABC local search is 

addressed by introducing an enhanced MABC 

algorithm (E-MABC) that deploys different 

neighborhood operations to enhance the solution. The 

main advantage of the proposed E-MABC algorithm 

is that it’s neighborhood search operations (i.e two 

interchange, cross-exchange, and 2-opt) exchanges 

neighborhood structure between two different routes 

in the same solution, rather than in the same route. 

This helps the algorithm to produce good results that 

can minimize the total travel distance and the number 

of vehicles which are the main objectives of VRPTW. 

The proposed algorithm is then implemented on the 

benchmark datasets of VRPTW. 

The remaining parts of this paper are organized 

as follows: Section 2 start with related research. 

Section 3 explains the description and mathematical 

equations relevant to VRPTW. Section 4 and 5 

provide method and the proposed E-MABC of this 

study. Section 6 present the experimental setup and 

results, respectively. Section 7 concludes the 

discussion and provides recommendations for future 

direction. 

2. Related research 

Numerous population-based algorithms have 

been utilized to tackle VRPTW. For example, B. Yu, 

Z. Z. Yang, and B. Z. Yao [23] integrated Ant Colony 

Optimization (ACO) and Tabu Search (TS) and to 

enhance the ACO performance, a neighborhood 

operation is presented on the basis of TS for 

maintaining the diversity of ACO and exploring new 

solutions. The shortcoming, though, is that the search 

could be trapped in a certain region of the search 

space if there are no changes to the adjacent solutions. 

Thus, generates a longer travel distance and larger 

number of vehicles. 

Z. Ursani, D. Essam, D. Cornforth, and R. 

Stocker [24] provided a localized optimization 

framework that includes two stages: de-optimization 

and optimization. De-optimization is performed on a 

problem as a whole, whereas optimization is 

performed on the parts of the problem. This structure 

takes VRPTW as domain space and Genetic 

Algorithm as the technique for optimization. The 

Localized Genetic Algorithm provides better 

solutions than other heuristics for small-scale 

VRPTW problems [24]. The productivity of swap, 

insertion, inversion, and partially mapped crossover 

shows that all of them can help the evolution of 

solutions to a certain extent. Nonetheless, these 

operators all behave using random searching, which 

cannot fully utilize the existing information of the 

current solution. The well-performed sub-routes in 

the current solution could easily be destroyed by 
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these operators unintentionally and in this case, 

affects total travel distance. Y. J. Shi, F. W. Meng, 

and G. J. Shen [25] proposed ABC-T to deal with 

VRPTW. ABC-T used the ABC algorithm and 

enhanced the global search ability with tournament 

selection. The proposed ABC-T algorithm was 

evaluated on Solomon’s R102 datasets, and the 

outcomes were compared with well-known 

algorithms. The outcomes indicated that the 

suggested method is more effective in solving 

VRPTW than other algorithms in the literature. 

Nonetheless, this method of selection does not 

guarantee the reproduction of best solution. Thus, 

does not minimize the total travel distance and the 

number of vehicles. 

O. E. Nahum, Y. Hadas, and U. Spiegel [26] 

solved the multi-objective VRPTW problem by using 

the ABC algorithm combined with the vector 

evaluated method called VE-ABC and tested it on 

Solomon benchmark problems. The VE-ABC 

showed that in cases with 25 customers or 50 

customers, VE-ABC could find results better than 

well-known algorithms regarding the set of vehicles 

utilized.  VE-ABC revealed a rise in the set of 

iterations and a high limit rate and this makes the 

solution near to the best result algorithms for datasets 

with 100 customers. However, the result is on the 

basis of previous runs. Therefore, it consumes large 

computational time. Also, the results of the VE-ABC 

need to be increased in terms of total travel distance 

and the number of vehicles to clarify the position of 

VE-ABC further. S. Yu, C. Tai, Y. Liu, and L. Gao 

[27] attempted to enhance the efficiency of ABC for 

VRPTW by employing crossover and mutation 

operators with a new adaptive strategy. VRPTW 

benchmark problems were utilized, and the outcomes 

indicated the performance of the proposed method for 

resolving VRPTW. Furthermore, the outcomes of the 

problem of western-style food delivery routing in 

Dalian City showed that the proposed method is a 

viable approach for resolving a problem. B. Yao, Q. 

Yan, M. Zhang, and Y. Yang [28] improved ABC 

beads on crossover operation copied from the GA and 

used a scanning approach for solving VRPTW 

problems. In the standard VRPTW test, the contrast 

with well-known algorithms confirms the ability of 

the proposed IABC algorithm. The comparison of the 

results of ABC-S, ABC-C, and IABC revealed that 

ABC efficiency for VRPTW can be enhanced by the 

integration of crossover operation and scanning 

strategy. With the aim of improving the accuracy of 

ABC on VRPTW. Nevertheless, the crossover 

operation may increase the computation time and 

leads to a slow convergence as it requires more time 

to search the crossover nodes [27] [28]. Furthermore, 

both studies were on small instances and cannot 

ensure its validity in large instances. 

M. Alzaqebah, S. Jawarneh, H. M. Sarim, and S. 

Abdullah [32] investigated the use of bees algorithm 

(BA) for VRPTW. BA was applied to resolve 

Solomon’s VRPTW benchmark problems. The 

outcomes showed that BA produced quality solutions 

and accomplished comparable results when 

compared with best-known results from the literature. 

The main drawback of the BA is that it is parameter 

dependent, so each dataset may need various values 

of parameters. In addition, using random 

neighborhood searching method, which cannot 

completely utilize existing experience of the current 

solution, influences the total travel distance and the 

number of vehicles. K. C. Tan, L. H. Lee, and K. Ou 

[33] explore the hybridizations of Genetic Algorithm 

and local search improvement termed as (HGA) for 

better performance in VRPTW. HGA is used to 

resolve Solomon’s benchmark problems. Results 

achieved are encouraging and demonstrate the 

performance of the HGA. However, as can be shown, 

because of its large population size and its 

incremental evolutionary style, HGA takes the 

longest time to operate as anticipated and HGA 

cannot show optimality in terms of both total travel 

distance and  number of vehicles. 

M. Alzaqebah, S. Abdullah, and S. Jawarneh [30] 

introduced MABC to address the VRPTW. They 

enhanced the traditional ABC algorithm to improve 

the solution quality. The high exploration capability 

of ABC affects and slows-down full convergence 

velocity, which may be attributed to the scout bees 

replacing exhausted solutions with generated ones, 

randomly. In the MABC algorithm, an archive 

solutions list is utilized by the scout bees (SB) to 

memorize the exhausted sources from the 

exploitation process. Then, the SB selects a source 

from the archive list on the basis of the roulette wheel 

method and replaces it with a new source by using 

random routes selected from the best solution found. 

MABC was tested and compared with the standard 

ABC and best-known results on a traditional set of 56 

VRPTW benchmark dataset. The simulated 

outcomes demonstrated that MABC provides better 

results than the standard ABC. However, the 

deployed neighborhood operations cannot exploit the 

search space intensely, due to neighborhood search 

that exchanges neighborhood structure between 

customers on the same route in the solution. In this 

case, it affects the final vehicle routing results by 

generating longer travel distance with larger number 

of vehicles for operation. 

The proposed E-MABC algorithm is 

implemented to solve the above-stated shortcomings 
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hence leading to an optimized outcome of minimal 

travel distance and less number of vehicle to be 

utilized. 

3. Description and mathematical 

formulation of VRPTW 

VRPTW could be drawn as an undirected graph; 

G = (V, E). Assume V represents the number of 

vertices V= {0, 1, 2… n}, where vertex 0 denotes the 

depot, and vertices 1, 2… n denotes the customers. 

Assume E is the number of links, where  𝐸 =
{(i, j)}: i ≠ j and i, j ∈ 𝑉}. Each link is related to a 

travel distance, which can be denoted as 𝑐𝑖𝑗 =
𝑐𝑗𝑖 𝑎𝑛𝑑 𝑐𝑗𝑖 > 0. Except for the depot, each customer 

has a particular service time and demand that must be 

known earlier before starting. A static set of required 

vehicles (v) exists in VRPTW. Given that the 

capacity of each vehicle is identified in advanced, if 

the vehicle reaches the customer too early, then the 

vehicle must wait for the service to be served. 

Otherwise, the vehicle fails in serving the customer 

when it reaches after the customer’s time window is 

finished. Consider the given variables: 

 
n number of customers;  
v number of vehicles; 
𝑞𝑖 demand of costumer 𝑐𝑖; 
𝑄𝑘 capacity of k vehicle; 
𝑠𝑖 service duration of costumer 𝑐𝑖; 
𝑡𝑖 arrival time at customer 𝑐𝑖; 
𝑡𝑖 travel time between customer 𝑐𝑖 and 𝑐𝑗; 
𝑊𝑖 waiting time of customer 𝑐𝑗; 
𝑒𝑖 start of the time of customer 𝑐𝑖; 
𝑙𝑖 end of the time of customer 𝑐𝑖. 

 

The formulation of VRPTW can be presented as 

shown below: 

 

𝑋𝑖𝑗
𝑘 = {

1     if vehicle 𝑘 travels from 𝑐𝑖 to 𝑐𝑗   

 0     otherwise                                            
 

 

 

𝑦𝑖
𝑘 = {

𝑣    if customer 𝑐𝑖 is served by vehicle 𝑘
𝑛   otherwise                                                   

  

 

The primary problem feature is shown in Eq. (1), 

 

(1) 

𝑓(𝑆) = 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑖𝑗 × 𝑋𝑖𝑗
𝑘

𝑣

𝑘=1

𝑛

𝑗=0

𝑛

𝑖=0

     

 

subject to 

∑ 𝑋𝑖𝑗
𝑘𝑛

𝑖=0 = 𝑦𝑗
𝑘 , ∀𝑘 = 1, . . . , 𝑣 , ∀𝑗 = 1, . . , 𝑛     (2) 

∑ 𝑋𝑖𝑗
𝑘𝑛

𝑗=0 = 𝑦𝑖
𝑘 , ∀𝑘 = 1, . . . , 𝑣 , ∀𝑖 = 1, . . , 𝑛    (3) 

∑ 𝑦𝑖
𝑘𝑛

𝑖=0 × 𝑞𝑖 ≤ 𝑄𝑘 , ∀𝑘 = 1, . . . , 𝑣                   (4) 

∑ 𝑦𝑖
𝑘𝑣

𝑘=1 = 1, ∀𝑖 = 1, . . . , 𝑛                                (5) 

∑ 𝑦0
𝑘𝑣

𝑘=1 = 𝑣                                                         (6) 

𝑡𝑖 + 𝑊𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 = 𝑡𝑗, ∀𝑖, 𝑗 = 0,1,2. . . . 𝑛, 𝑖 ≠ 𝑗   

(7) 

𝑒𝑖 ≤ 𝑡𝑖 ≤ 𝐼𝑖, ∀𝑖= 0,1,2. . . . 𝑛                              (8) 

𝑊𝑖 = 𝑚𝑎𝑥 {𝑒𝑖 − 𝑡𝑖, 0}, ∀𝑖= 0,1,2. . . . 𝑛          (9) 

 

Eq. (2) and (3) confirm that each vehicle can start 

and end from any customer once it completes serving 

the specific customer. Equation 4 checks that the 

capacity of vehicle is unviolated. Eq. (5) ensures that 

the service for each customer is fulfilled only once. 

Eq. (6) confirms that the beginning point of each 

vehicle is from the depot. Eq. (7), (8), and (9) verify 

the time limitations to validate that no time window 

is exceeded. 

4. Method 

In this section, the modification is on the 

intensification process of the MABC algorithm 

presented by M. Alzaqebah, S. Abdullah, and S. 

Jawarneh [30]. To improve the algorithm 

performance, this study increases the intensification 

in a promising region for fully exploring the search 

space with the hope to find the best solutions by using 

three neighborhood operations. These operations 

iteratively change the current solution by performing 

neighborhood operations for improved neighboring 

solutions. Basically, a neighborhood comprises a set 

of solutions that can be achieved from the present one 

by swapping a subset of routes between solutions. 

The neighborhood operations are described below: 

Two interchange: customers are interchanged 

between routes by following the local search 

procedure. The structure for customer search can be 

identified by combining routes either randomly or 

systematically. That is, a maximum of two customer 

vertices can be interchanged between routes. For 

example, eight operators are defined: (0,1), (1,0), 

(1,1), (0,2), (2,0), (2,1), (1,2), and (2,2); operator 

(1,2) indicates that on a route combination (R1, R2), 

one customer moves from R1 to R2, and two 

customers move from R2 to R1. Therefore, a new 
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solution is produced by changing some links 

connecting customers in the current solution. 

Subsequently, the new solution is assessed on the 

basis of the objective function (distance). If the new 

solution is better, then it replaces the previous 

solution. 

 Cross-exchange: local search procedure 

eliminates one link from two different routes and 

reconnects the included vertices by cross-linking the 

heads and tails. If two arcs (R1, R2) and (R1*, R2*) 

from two distinguished routes are chosen, the cross-

exchange neighborhood reconnects the vertices as 

(R1*, R2) and (R1, R2*) where two distinguished 

routes are formed. The improved solutions are be 

selected. 

2-opt: the local search procedure chooses two 

random customers and cuts the route into two 

segments. Afterward, the two are reconnected to form 

a new route. Only improved solutions are accepted 

during the 2-opt. 

5. Proposed E-MABC algorithm for 

VRPTW 

E-MABC starts with initial population solutions 

and iteratively improvises solutions for a given 

problem instance. In each iteration, E-MABC 

improvises the solutions by using employed bees, 

onlooker bees, and scout bees. The E-MABC 

algorithm has five phases as follows: 

Initialization phase: the initial population 

solutions of the algorithm are randomly created by 

verifying the constraints of VRPTW. Subsequently, 

the fitness value of each solution is computed, and the 

best solution is identified. 

Employed bees (EB) phase: each EB is 

randomly assigned with a solution from the 

population. Then, every EB seeks to improve its 

solution by applying random neighborhood operation 

for the selected solution in its memory. The current 

solution is modified on the basis of the amount of 

nectar (i.e., fitness value distance) of the new solution. 

The neighborhood operation is performed on each 

solution to explore the local neighborhood and to 

improve the current solution. 

Onlooker bees (OB) phase: each OB is 

responsible for choosing promising food sources on 

the basis of the information provided by the EB. The 

food sources are selected according to a probability, 

which is computed as shown in Eq. (10), below: 

 

𝑝 =  
𝑓𝑖

∑ 𝑓𝑗𝑁
𝑖=1

                                                      (10) 

 

Where 𝑓𝑖 is the fitness value of the 𝑖 solution and 

N is the number of food sources in the colony. The 

better solution is the one with a higher probability (𝑝) 

of the 𝑖 food source. Each OB chooses to adjust the 

food source by applying the random neighborhood 

operation of the current solution in its memory on the 

basis of the amount of nectar (i.e., fitness value 

distance). The neighborhood operation is performed 

on the selected solution to explore the local 

neighborhood and to enhance the current solution. If 

a current solution is unimproved in a predefined 

number of iterations called limit, then the solution is 

supposed to be abandoned and OB is converted into 

an SB. 

Scout bees (SB) phase: the SB phase is 

implemented to replace abandoned solutions. If the 

number of trials for a food source is greater than a 

predefined value limit, an SB generates a new 

solution by choosing a random route from the best 

solution and replacing it with a random route in the 

newly discovered solution. In this manner, the SB 

learns from the best solution as the best solution 

because such a solution contains some beneficial 

information. 

Termination process: termination criterion of E-

MABC. If the termination criterion is satisfied, then 

E-MABC stops and utilizes the best solution found so 

far. Otherwise, EB, OB, and SB phases are repeated. 

Flowchart of the E-MABC algorithm is shown in Fig. 

1. 

6. Experimental setup 

The proposed E-MABC algorithm has been 

tested on VRPTW datasets [31]. This benchmark has 

56 problem instances that are distributed into six 

groups: R1, R2, C1, C2, RC1, and RC2, as 

demonstrated in Table 1. The instances in the C1 and 

C2 categories have clustered customers. The 

instances in the RC2 and RC2 categories have 

partially clustered customers and are partially have 

random. The instances in the R1 and R2 category 

randomly distributed customers. 

Furthermore, instances specified with C1, R1, 

and RC1 have a tight time window width (short 

scheduling horizon), whereas instances specified 

with C2, R2, and RC2 have a large time window 

width (a long scheduling horizon allowing more than 

one customer to be fulfilled by the same vehicle). 

Each test conducts 31 runs independently. The exact 

parameter settings, as utilized by MABC [30], are 

deployed in this work and are demonstrated in Table 

2.  
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Figure 1. Flowchart of the E-MABC algorithm for VRPTW 

Table 1. Features of Solomon’s VRPTW benchmark 

problems 

Problem 

instance 

No. of 

customers 

Vehicle 

capacity 

Customers 

distribution 

Width of 

TW 

R1 100 200 Random Small 

R2 100 1000 Random Large 

C1 100 200 Cluster Small 

C2 100 700 Cluster Large 

RC1 100 200 Random-

Cluster 

Small 

RC2 100 1000 Random-

Cluster 

Large 

 

Table 2. Parameter settings for E-MABC 

algorithm 

Parameter Value 

Number of iterations 1000 

Population size = 

EB=OB 

50 

Limit 100 
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6.1 Experimental results 

This sub-section discusses the experimental 

results obtained by the proposed E-MABC algorithm. 

Two sets of experiments are constructed to 

investigate the performance of the proposed E-

MABC algorithm for VRPTW. The first experiment 

is to evaluate the effect of neighborhood operations 

on ABC where a comparison between MABC and E-

MAABC is made. The second experiment involves 

four well-known optimization algorithms in the 

literature, namely, ACO-T, VE-ABC, BA, and HGA. 

The results of the nonparametric Friedman test with 

Holm’s post-hoc test is used for statistical analysis. 

This statistical test aims to determine if the proposed 

algorithm is significantly better than other 

optimization algorithms for the average distance and 

number of vehicles. 

6.1.1.  Compaction between E-MABC and MABC 

Table 3 provides the best traveled distance, 

average, and gap from the best-known solutions for 

E-MABC over 31 runs. Table 3 presents that for the 

traveled distance, E-MABC is better for 40 instances 

(out of 56) than MABC. E-MABC is also at the same 

par with MABC on 14 instances. In terms of the 

number of vehicles (N.V), E-MABC obtains better 

results in 20 instances (out of 56) and utilizes the 

similar number of vehicles as MABC for 36 instances. 

The results of the total traveled distance and number 

of required vehicles are listed in Table 3. The E-

MABC algorithm produces solutions with the lowest 

distance for eight instances (out of 56). In comparison 

to best-known solutions, the E-MABC algorithm 

produces competitive results for 22 instances with the 

same set of vehicles. These results have proven that 

neighborhood operations van be used to exploit the 

local search in the searching process for attaining 

significant results. 

6.1.2. Comparison between E-MABC and other 

optimization algorithms 

In this experiment, the best results of E-MABC 

are compared with those of well-known optimization 

algorithms, as shown in Table 4. Several algorithms 

[23], VE-ABC [26], BA [32], and HGA [33]. 

 Table 4 depicts data showing that E-MABC 

achieves the best results in 23 instances and is equally 

good in six instances when compared with ACO-T. 

E-MABC outperforms VE-ABC as it is better in 45 

instances and obtains equal results in three instances. 

E-MABC also achieves better outcomes in 41 

instances and equal results in 14 instances than BA. 

The comparison with HGA reveals that E-MABC is 

better in 41 instances. The proposed E-MABC 

algorithm can accomplish the solutions close to the 

best-known for groups C1 and C2. In addition, the E-

MABC algorithm can obtain comparable results for 

groups R1, R2, RC1, and RC2 upon comparison with 

other algorithms. 

Table 5 demonstrates the results averaged over 

all problem instances in VRPTW. Data in this table 

include the average of the total traveled distance and 

average number of required vehicles. The proposed 

E-MABC exhibits the best distance among other 

optimization algorithms. ACO-T obtains the best 

result for a number of required vehicles. E-MABC 

achieves the second-best in the average number of 

required vehicles in the overall instances of VRPTW. 

The average distance ranking is assigned against 

the average number of vehicles ranked over the 56 

instances. A low average rank indicates a better 

algorithm performance. Fig. 2 proves that the results 

obtained by E-MABC dominate other optimization 

algorithms when seeing the distance and number of 

required vehicles. E-MABC only performs slightly 

worse than ACO-T in terms of the number of required 

vehicles, but it is significantly better than ACO-T and 

other optimization algorithms in terms of distance. 

7. Conclusion 

In this study, a new variant of MABC termed as 

the E-MABC algorithm is introduced for VRPTW. 

The experimental results proved that the process of 

interchanging neighborhood structure (two 

interchange, cross-exchange, and 2-opt) between two 

different routes in the same solution improves the 

local search operations of the swarm bees. This leads 

to an optimized outcome of minimal total travel 

distance and number of vehicles.  For the first 

measure, the E-MABC algorithm outperformed 

MABC by 71.42 %. The algorithm also achieves the 

best results among other optimization algorithms by 

reducing the total distance travelled by 41.07% 

compared to ACO-T, by 80.35% compared to VE-

ABC, by 72.21% compared to BA and HGA. Unlike 

the popular development of a problem-particular 

algorithm, the suggested algorithm also has the 

benefit of being competent to resolve a wide variety 

of problems. To further investigate the effectiveness 

of the proposed E-MABC, it will be applied on 

VRPTW applications such as postal delivery and 

school bus routing. 
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Table 3. Comparison of E-MABC with the MABC algorithm 

Problem 

instance 

Best Known MABC E-MABC 

N.V Distance N.V Distance Average N.V Distance Average Gap 

R101 18 1607.70 20 1643.18 1647.91 20 1642.41 1644.66 2.16 

R102 17 1434 18 1480.73 1490.66 18 1476.11 1483.30 2.94 

R103 13 1175.67 14 1240.87 1258.50 14 1228.66 1240.77 4.51 

R104 10 982.01 12 1047.06 1070.27 11 1035.41 1075.47 5.44 

R105 15 1346.12 16 1369.52 1382.35 15 1367.3 1373.94 1.57 

R106 13 1234.6 13 1271.13 1285.81 13 1264.5 1269.28 2.42 

R107 11 1051.84 12 1129.99 1142.23 11 1122.15 1244.41 6.68 

R108 9 960.88 11 1004.11 1026.11 11 987.88 1005.15 2.81 

R109 12 1013.2 13 1170.50 1211.12 13 1168.91 1173.43 15.37 

R110 12 1068 12 1123.36 1145.30 12 1117.01 1128.80 4.59 

R111 12 1048.70 12 1101.59 1129.55 12 1099.26 1106.60 4.82 

R112 10 935.63 11 1019.84 1026.25 11 1009.68 1024.74 7.91 

R201 4 1252.37 8 1185.57 1192.87 7 1179.83 1184.35 -5.79 

R202 3 1158.98 7 1103.15 1114.87 6 1092.22 1105.04 -5.76 

R203 3 939.50 6 958.94 984.34 6 947.81 961.55 0.88 

R204 2 825.52 4 818.44 836.49 4 814.68  821.86 -1.31 

R205 3 994.42 6 1020.53 1023.79 5 999.54 1037.20 0.51 

R206 3 833 5 960.29 976.45 4 959.98 974.14 15.24 

R207 3 814.78 5 905.70 930.46 4 903.59 910.77 10.9 

R208 2 726.75 4 764.90 789.02 3 747.15 759.98 2.81 

R209 3 855 6 943.16 952.73 5 935.57 947 9.42 

R210 3 939.34 6 1003.91 1015.11 5 994.29 999.35 5.85 

R211 2 877.55 5 837.66 855.79 4 837.72 847.05 -4.54 

C101 10 827.30 10 828.94 828.94 10 828.93 828.93 0.2 

C102 10 827.30 10 828.94 828.94 10 828.93 828.93 0.2 

C103 10 826.90 10 828.94 840.66 10 828.93 828.93 0.25 

C104 10 822.90 10 858.90 889.10 10 843.22 849.86 2.47 

C105 10 827.30 10 828.94 828.94 10 828.93 828.93 0.2 

C106 10 827.30 10 828.94 828.94 10 828.93 828.93 0.2 

C107 10 827.30 10 828.94 828.94 10 828.93 828.93 0.2 

C108 10 827.30 10 828.94 830.85 10 828.93 828.93 0.2 

C109 10 827.30 10 828.94 836.47 10 828.93 828.93 0.2 

C201 3 589.10 3 591.56 591.56  3 591.56 603.43 0.42 

C202 3 589.10 3 591.56 601.78  3 591.56 603.96 0.42 

C203 3 591.17 3 600.54 616.39  3 600.54 608.26 1.58 

C204 3 590.60 3 610.01 648.57  3 606.9 612.07 2.76 

C205 3 588.88 3 588.88 596.10  3 588.88 591 0 

C206 3 588.49 3 588.88 601.49  3 588.88 596.08 0.07 

C207 3 588.29 3 589.58 601.60  3 589.58 597.16 0.22 

C208 3 588.32 3 591.65 613.47  3 593.15 603.13 0.82 

RC101 15 1619.8 16 1634.52 1668.07 16 1633.28 1654.82 0.83 

RC102 13 1530.86 15 1492.89 1505.94 14 1486.85 1497.90 -2.87 

RC103 11 1261.67 13 1334.57 1360.15 12 1307.59 1316.33 3.64 

RC104 10 1135.48 11 1215.62 1245.35 11 1195.48 1211.94 5.28 

RC105 13 1589.91 15 1546.43 1575.46 15 1539.48 1543.41 -3.17 

RC106 12 1371.69 14 1423.10 1443.77 13 1413.07 1426.80 3.02 

RC107 11 1222.16 12 1300.00 1324.00 12 1281.14 1303.99 4.83 

RC108 10 1133.90 12 1193.68 1213.67 11 1180.05 1198.51 4.07 

RC201 4 1134.91 8 1308.76 1320.24 8 1302.93 1315.82 14.8 

RC202 4 1130.53 8 1167.00 1180.48 6 1165.97 1180.31 3.13 

RC203 3 1026.61 6 1014.79 1032.77 5 1010.56 1061.52 -1.56 

RC204 3 798.41 4 881.88 894.76 4 864.6 875.582 9.29 

RC205 4 1297.19 7 1210.68 1232.84 7 1011.96 1091.90 -21.9 

RC206 3 1112.20 6 1112.38 1133.99 6 1099.21 1128.11 -1.17 
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RC207 3 1040.67 7 1059.62 1076.47 5 1042.65 1066.97 0.19 

RC208 3 828.14 5 882.06 898.45 4 878.87 885.12 6.13 

 

Table 4. Comparison of E-MABC with optimization algorithms 

Problem 

instance 

ACO-T VE-ABC BA HGA E-MABC 

N.V Distance N.V Distance N.V Distance N.V Distance N.V Distance 

R101 19 1655.03 22 1674.2 20 1642.67 19 1660.33 20 1642.41 

R102 18 1491.18 19 1492.1 18 1480.73 18 1486.82 18 1476.11 

R103 14 1243.22 15 1264.5 16 1240.87 13 1272.14 14 1228.66 

R104 10 982.01 12 1042.6 11 1047.06 11 1073.63 11 1035.41 

R105 16 1380.44 17 1433.6 16 1369.52 16 1380.44 15 1367.3 

R106 13 1265.36 15 1291 14 1271.13 13 1283.06 13 1264.5 

R107 11 1100.25 13 1130 12 1129.99 12 1117.81 11 1122.15 

R108 9 958.66 11 998.7 11 1004.11 10 995.36 11 987.88 

R109 12 1101.99 14 1222.4 14 1170.5 14 1101.37 13 1168.91 

R110 12 1119.53 14 1142.3 13 1123.36 11 1162.19 12 1117.01 

R111 12 1091.11 12 1117.4 13 1101.59 12 1093.76 12 1099.26 

R112 10 974.73 11 1015.1 11 1019.84 10 1012.85 11 1009.68 

R201 7 1214.22 11 1227.2 8 1185.57 6 1243.18 7 1179.83 

R202 5 1105.2 8 1100.3 8 1103.15 6 1188.91 6 1092.22 

R203 4 960.14 7 939.9 7 958.94 5 1050.03 6 947.81 

R204 4 771..47 6 803.5 6 818.44 4 800.36 4 814.68 

R205 4 1050.26 7 1034 7 1020.53 5 1056.54 5 999.54 

R206 4 954.85 7 963.9 6 960.29 5 984.64 4 959.98 

R207 3 870.33 5 881.1 4 905.7 3 920.26 4 903.59 

R208 3 777.72 4 775.2 5 764.9 3 770.69 3 747.15 

R209 3 934.21 6 932.9 6 943.16 3 902.67 5 935.57 

R210 5 949.02 8 966.7 7 1003.91 5 1037.58 5 994.29 

R211 4 877.55 5 825.4 5 837.99 4 887.47 4 837.72 

C101 10 828.93 10 828.9 10 828.94 10 828.93 10 828.93 

C102 10 828.93 10 829.9 11 828.94 10 832.67 10 828.93 

C103 10 826.06 10 841.2 10 828.94 10 859.77 10 828.93 

C104 10 828.2 10 869.6 10 858.9 10 893.22 10 843.22 

C105 10 828.9 10 828.9 11 828.94 10 828.93 10 828.93 

C106 10 828.93 10 828.9 10 828.94 10 836.65 10 828.93 

C107 10 828.93 11 859.1 11 828.94 10 828.93 10 828.93 

C108 10 830.93 10 846.2 10 828.94 10 861.99 10 828.93 

C109 10 829.22 11 861.3 10 828.94 10 890.92 10 828.93 

C201 3 591.58 4 618.6 3 591.56 3 591.55 3 591.56 

C202 3 591.56 4 642.6 3 591.56 3 613.47 3 591.56 

C203 3 593.25 4 618.2 3 600.54 3 646.77 3 600.54 

C204 3 595.55 4 657.9 4 610.01 4 605.34 3 606.9 

C205 3 588.88 3 601.2 3 588.88 4 631.21 3 588.88 

C206 3 588.49 4 614.7 3 588.88 3 648.91 3 588.88 

C207 3 588.88 3 607.9 3 589.58 3 609.15 3 589.58 

C208 3 588.03 4 611.2 3 591.65 3 614.95 3 593.15 

RC101 14 1650.14 18 1698 16 1634.52 15 1658.96 16 1633.28 

RC102 13 1514.85 15 1517.1 15 1492.89 15 1514.85 14 1486.85 

RC103 11 1277.11 13 1371.1 12 1334.57 13 1149.86 12 1307.59 

RC104 10 1159.37 12 1211.7 11 1215.62 10 1173.47 11 1195.48 

RC105 15 1617.88 15 1604.9 17 1546.43 16 1585.34 15 1539.48 

RC106 13 1387.63 15 1467.6 13 1423.1 15 1403.1 13 1413.07 

RC107 11 1280.01 13 1315.9 12 1300 13 1290.76 12 1281.14 

RC108 11 1157.44 12 1190.9 12 1193.68 10 1157.20 11 1180.05 

RC201 5 1279.65 10 1331.1 9 1308.76 5 1354.96 8 1302.93 

RC202 5 1157.02 9 1168.6 8 1167 5 1257.48 6 1165.97 
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RC203 6 1046.33 5 1035.8 6 1014.79 5 1063.77 5 1010.56 

RC204 4 847.33 4 837.6 4 881.88 4 899.34 4 864.6 

RC205 5 1334.55 9 1221.6 8 1210.68 8 1236.18 7 1011.96 

RC206 5 1112.2 7 1137.4 6 1112.38 5 1133.86 6 1099.21 

RC207 5 1087.52 7 1043.9 6 1059.62 5 1068.73 5 1042.65 

RC208 3 911.15 5 841.1 7 882.06 5 854.74 4 878.87 

 
Table 5. Overall results based on the average performance 

 Algorithm 

MABC ACO-T VE-ABC BA HGA E-MABC 

Distance 3.68 2.71 4.35 3.70 4.44 2.13 

Number of vehicles  3.68 2.25 4.98 4.31 2.91 2.87 

 

Figure 2. Average rank test of the E-MABC compared with other optimization algorithms 
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