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CALIBRATION AND VALIDATION OF A MACROSCOPIC TRAFFIC 

FLOW MODEL BASED ON PLATOON DISPERSION AND QUEUE 

PROPAGATION 
 

Summary. This paper proposes a preliminary calibration and validation of 

a macroscopic traffic flow model for signalised junctions. In fact, on the network 

signal setting design problem, a reliable modelling approach must be adopted to 

acknowledge the traffic flow effects, considering two phenomena: queue dispersion 

and spillback. The proposed model is an extension of the space-time discrete Cell 

Transmission Model (CTM), which can simulate dispersion and horizontal queue. 

This preliminary calibration and validation use real-world data collected on an 

arterial of the city of Salerno (south of Italy). Results showed that the estimated 

parameters are consistent with the literature. 

Keywords: network signal setting design, cell transmission model, platoon 

dispersion model, calibration, validation 
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1. INTRODUCTION AND MOTIVATION 

 

Several researchers have investigated the signal setting design with regards to single 

junctions [1] and network optimisation [2] by the application of mono-criterion [3], and multi-

criteria optimisation [4]. Depending on the considered layout, whether it is a single junction or 

a network of interacting adjacent junctions, the considered decision variables are either the 

green timings with 0 cycle length or the green timings, the cycle length, and the offsets. When 

the optimisation is a single junction, the usually considered criteria are the capacity factor and 

the total delay. For a network optimisation layout, the considered criteria are commonly the 

delay (that is, the network total delay) and the total time spent. Additionally, these criteria can 

be combined to properly formulate a multi-criteria optimisation by considering the cited 

performance indicators and other impact indicators (or their proxy) such as emissions, fuel 

consumption, etc.  

The focus of this paper is on the network signal setting design. However, a proper estimation 

of the traffic flow performances is required to optimise the decision variables. The most 

common phenomena to consider are queue dispersion with its horizontal propagation to obtain 

a realistic computation of the network Total Delay (objective function of the optimisation 

procedure). Thus, an enhanced traffic flow model able to reproduce these phenomena is 

pertinent.  

Following the literature, the dispersion between successive interacting junctions is usually 

modelled by considering the Platoon Dispersion Model (PDM; [5]), although this model cannot 

simulate the horizontal queue propagation. Thus, the literature has investigated, adopting new 

models to address these features, primarily based on the general Lighthill-Whitham-Richards 

(LWR) theory. Indeed, [6] presents a numerical method for generating different degrees of 

dispersion of vehicle platoons or rarefaction waves using a concave fundamental diagram. 

Author [7] incorporates various fundamental diagrams in CTM, together with several formulas 

of kinematic waves, generating different types of queue dispersion and spill over.  

The proposed CT and PDM model, based on the combination between the PDM and the 

space-time discrete Cell Transmission Model (CTM; [8]), was specified, tested, and compared 

against other benchmark models [9] by the authors, but not calibrated. Therefore, this paper 

focuses on the proper calibration and validation of the model referred to as a phenomena 

reproduction of flow dispersion and queue propagation, using real-world data.  

This paper is organised as follows: Section II summarises the theoretical background; 

Section III describes the considered traffic flow model; Section IV details the case study; 

Section V presents the results of the calibration and validation; finally, Section VI summarises 

conclusions and future works. 

 

 

2. THEORETICAL BACKGROUND 
 

This section provides the theoretical background of the proposed model CT and PDM, 

starting from the description of the Platoon Dispersion Model (PDM) and the Cell Transmission 

Model (CTM). 
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2.1. Platoon dispersion model 

 

Considering an arterial network composed of two successive junctions, if a single (or sub-

multiple) cycle length C is applied, the temporal flow profile repeats itself among consecutive 

cycles, creating a Cyclic Flow Profile (CFP). 

The cyclic flow profile summarises the following relevant phenomena, which occur between 

the two junctions: 

 the confluence of the cyclic flow profiles moving from different approaches towards 

the same exit of the upstream junction; 

 the dispersion related to the speed of vehicles on the connecting link; 

 the distortion of the cyclic flow profile at the downstream junction due to the traffic 

timings effect; 

 the division of flow profiles from the downstream junction towards different 

approaches. 

 

The platoon dispersion model calculates a downstream traffic flow from an upstream value, 

in discrete time steps. Let: 

n be the length of the time step (or clock tick); 

l be the upstream junction; 

h be the downstream junction; 

i be the index of the time step (sub-interval of the time discretisation); 

i be the number of time steps in which the incoming flow is dispersed; 

qI.l(i) be the entering flow on the upstream junction l, at time step i; 

qS.h(i + 

i) 

be the outflow on the downstream junction h, at time step i+i; 

tlh be the travelling time, depending on the length of the connecting link, lh, and the 

given cruise speed; 

qI.l(i) be the entering flow at the upstream junction l; 

α be the platoon dispersion factor, which can vary between 0.2 and 0.5 depending 

on the site-specific geometric (the identified roadway conditions are 

low/moderate/high friction), and traffic conditions; 

β be the travel time factor; 

F be the smoothing factor, 

 

The model can be rewritten and the downstream traffic flow can be computed using the 

Robertson platoon dispersion following a shifted geometric series. Then, the platoon dispersion 

effect is calculated as: 

 

 𝑞𝑆,ℎ(i + ∆i) = F ⋅ 𝑞𝐼,1(i) + (1 − F) ⋅ 𝑞𝑆,ℎ(i + ∆i − 1)  (1) 

 

with: 

 

 ∆i = int (0.5 + 0.8 ⋅
𝑡𝑙ℎ

𝑛
)  (2) 

 

 F =
1

1 + α·β·𝑡𝑙ℎ
  (3) 
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It is worth noting that if the distance between the junctions increases, the travelling time tlh 

increases, then F approaches zero, and the cyclic flow profile becomes more uniformly 

distributed. 

Following the literature regarding the platoon dispersion factor α and the travel time factor 

β, it is necessary to adopt different values. It has been demonstrated [10, 11]) that the travel 

time factor β is dependent on the platoon dispersion factor α. Finally, these authors developed 

a specific procedure to calibrate the platoon dispersion factor α starting from the experienced 

travel times of each vehicle, while the typical procedure is to select the one that minimises the 

sum of squares error between the field-observed and the estimated downstream flow profiles 

for a given upstream flow profile. However, further studies by other authors [12, 13] pointed 

out that the procedure proposed by [11] was myopic to the effect of the time step size, and it 

was suitable when the time step is equal to 1 second. In particular, the alternative formulation 

proposed by them highlights that the three factors (αn, βn, Fn) formulated as in the following, 

are explicitly dependent on the size of the time interval (n). 

Let: 

T’ be the expected travel time 

σ’2 be the travel time variance 

 

Then, the following expressions can be specified:  

 

 𝛽𝑛  =
1

1+𝛼𝑛
 (4) 

 

 𝛽𝑛 =  2𝑇’ +  𝑛 –
(𝑛2 + 4 · 𝜎’2)

1
2

2𝑇’
 (5) 

 

 𝐹𝑛 =  𝑛 ·
[(𝑛2 + 4 · 𝜎’2)

1
2 – 𝑛]

2𝜎’2
  (6) 

 

Finally, two essential findings were pointed out by [13]:  

1. to provide an effective design of the signal settings of the traffic lights, proper 

calibration of the traffic flow model parameters is required;  

2. the objective function is more sensitive to the travel time factor than the platoon 

dispersion factor. Therefore, the calibration procedure must focus on the travel time 

factor while fixing the platoon dispersion factor following the literature [14]. 

 

2.2. Macroscopic traffic flow modelling 

 

The macroscopic traffic flow models can be classified in: 

 space discrete models, 

 space continuous models. 

 

Space discrete models describe the propagation of flows through a link by the relationships 

between whole link variables, such as link travel time, link inflows, outflows, or link volume 

(that is, the number of vehicles on the link) at each point in time. These models do not require 

any space discretisation, and thus, are also named link-based [15-17].  
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The continuous space models derive from the analogy between vehicular flow and flow of 

continuous media (for example, fluids or gases), yielding flow models with a limited number 

of partial differential equations that allow the description of the dynamics of variables as the 

following: 

 density (𝑘): Typical variable from physics adopted by traffic science to express the 

number of vehicles per kilometre of road, 

 flow rate (𝑞): Represents the number of vehicles that passes a cross-section per time 

unit, 

 mean speed (𝑢): Defined as the quotient of the flow rate and the density.  

 

By describing the propagation of the flow states in every space-time point of the link, these 

models require a dense space discretisation, and thus, are also named point-based models. The 

most straightforward continuous traffic flow model is the first-order model developed 

concurrently by Lighthill et al. [18, 19], based on the assumption that the number of vehicles is 

conserved between any two points if there are no entrances (sources) or exits (sinks). The result 

is a continuous model known as the Lighthill-Whitham-Richards (LWR) model, given as: 

 

 
𝜕𝑘(𝑠,𝑡)

𝜕𝑡
 +

𝜕𝑞(𝑠,𝑡)

𝜕𝑠
 =  0 (7) 

 

The flow q is further related to the density K and the mean speed u from the relation: 

 

 𝑞(𝑠, 𝑡) =  𝐾(𝑠, 𝑡) ⋅ 𝑢(𝑠, 𝑡) (8) 

 

The mean stream speed can be expressed as a decreasing function of the density 𝑘 (traffic 

fundamental diagram), and according to the above equation, a relationship between flow 𝑞 and 

density 𝑘 is given from: 

 

 𝑞(𝑠, 𝑡) =  𝑞(𝑘(𝑠, 𝑡), 𝑠) (9) 

 

So that the LWR model may be expressed as: 

 

 
𝜕𝑘(𝑠,𝑡)

𝜕𝑡
 +  𝑞’(𝑘) ⋅

𝜕𝑘(𝑠,𝑡)

𝜕𝑠
  =  0 (10) 

 

where: 

 

 𝑞’(𝑘) =
𝜕𝑞

𝜕𝑘
 (11) 

 

When vehicles are not impeded by other traffic, they travel at a maximum speed of 𝑢𝑓 (free-

flow speed). On saturated roads, flow rate and speed are down to zero. The vehicles are queuing 

and there is a maximum density of 𝑘𝑗 (jam density). The capacity of a road is equal to the 

maximum flow rate 𝑞𝑐. The maximum flow rate of 𝑞𝑐 has an associated capacity speed of 𝑢𝑐 

and a capacity density of 𝑘𝑐.  

As the differential equations used in LWR models are difficult to solve accurately, especially 

for high-density variations as bottlenecking (in this case, the LWR calls for a shock wave), 

different approximative techniques were proposed to solve the equations. Newell [20] 

introduced a simplified theory of kinematic waves to predict the state of flow at an extreme 
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depending on the traffic conditions of another one, without considering the traffic condition at 

the intermediate sections, by using cumulative inflow and outflow curves. This theory relates 

traffic flow 𝑞 with density 𝑘, following a triangular-shaped fundamental diagram. In this way, 

the author proposed a space-discrete model (link-based), which provides link travel times 

complying with the simplified kinematic wave theory. In this equilibrium relation, the mean 

speed equals the maximum speed for all traffic states with densities smaller than the critical 

capacity density. The side of the triangle that describes the saturated capacity state has a 

negative constant slope w (that is, the wave speed).  

Another way of solving the LWR space-continuous problem was introduced by Daganzo [8] 

through the “Cell Transmission Model”, developed as a discrete analogue of the LWR 

differential equations in the form of finite-difference equations. In a cell-transmission scheme, 

a road is divided into small sections (cells), and the model tracks the content of each cell 

(number of vehicles or density) as time passes. This value is updated at closely spaced instants 

(time steps or clock ticks) by calculating the number of vehicles that cross the boundary 

separating each pair of adjoining cells at each time step. It should be pointed out that the relation 

between the cell length and the time step has to comply with the Courant-Friedrich-Lewy 

condition (𝑢𝑓 ⋅ ∆𝑡 ≤ ∆𝑥) for the stability of explicit solution methods. 

Let: 

∆𝑥  be the cell length; 

∆𝑡  be the time step; 

𝑢𝑓  be the free-flow speed; 

𝜔  be the shock wave speed in congested traffic; 

𝑘𝑗  be the jam density; 

𝑄𝑖  be the maximum flow rate in cell 𝑖; 
𝑘𝑖(𝑡)  be the density in cell 𝑖 at time 𝑡; 

𝑛𝑖(𝑡)  be the number of vehicles in cell 𝑖 at time 𝑡, equal to 𝑘𝑖(𝑡) ⋅ ∆𝑥; 
𝑁𝑖  be the maximum number of vehicles in cell 𝑖, equal to 𝑘𝑗 ⋅ ∆𝑥; 

𝑌𝑖(𝑡)  be the average flow exiting the boundary of cell 𝑖 at time 𝑡. 

 

The average flow exiting the boundary of cell 𝑖 from time step 𝑡 to time step 𝑡 + 1 is given 

by: 

 

 𝑌𝑖(𝑡) = min (𝑢𝑓 ⋅ 𝑘𝑖(𝑡), min(𝑄𝑖, 𝑄𝑖+1) , 𝜔 ⋅ (𝑘𝑗 − 𝑘𝑖+1(𝑡))) (12) 

 

Or, if the cell has a length equal to the free-flow speed times the time step (∆𝑥 = 𝑢𝑓 ⋅ ∆𝑡), 

the equation can be rewritten depending on the number of vehicles, as: 

 

 𝑌𝑖(𝑡) = min (
𝑛𝑖(𝑡)

∆𝑡
, min(𝑄𝑖, 𝑄𝑖+1) ,

𝜔

𝑢𝑓
⋅

(𝑁𝑖+1−𝑛𝑖+1(𝑡))

∆𝑡
) (13) 

 

Which is the result of a comparison between the maximum flow of vehicles that can be 

“sent” by the cell 𝑖 directly upstream of the boundary during the time step: 

 

 𝑆𝑖(𝑡) = min (𝑄𝑖, 𝑢𝑓 ⋅ 𝑘𝑖(𝑡)) (14) 

 

and those that can be “received” by the downstream cell i+1: 
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 𝑅𝑖+1(𝑡) = min (𝑄𝑖+1,
𝜔

𝑢𝑓
⋅

(𝑁𝑖+1−𝑛𝑖+1(𝑡))

∆𝑡
) (15) 

 

Hence, the flow 𝑌𝑖(𝑡) can be rewritten as: 

 

 𝑌𝑖(𝑡) = min(𝑆𝑖(𝑡), 𝑅𝑖+1(𝑡)) (16) 

 

Lastly, the density 𝑘𝑖(𝑡 + 1) of cell 𝑖 is updated with the exiting flow 𝑌𝑖(𝑡) of cell 𝑖 and the 

incoming flow 𝑌𝑖−1(𝑡) from the boundary of the upstream cell 𝑖 − 1 as: 

 

 𝑘𝑖(𝑡 + 1) =  𝑘𝑖(𝑡) + [𝑌𝑖−1(𝑡) − 𝑌𝑖(𝑡)] ⋅
∆𝑡

∆𝑥
 (17) 

 

Daganzo’s CTM cannot fully predict a realistic traffic flow behaviour due to the assumption 

of uniform speed: platoons keep the same density between the upstream and the downstream 

stop-line section, and all vehicles travel at the same free-flow speed. Thus, a traffic flow model 

that considers platoon dispersion was proposed [9]. This model uses a Drake speed-density 

relationship [21], validated against real-world data collected on a signalised arterial site in 

Salerno (Italy). The following sections show the results of this combination. In future works, 

further mono-regime [22-25] or two regimes [26] speed-density relationships could be adopted 

to attempt the best fit with field data. 

 

 

3. PROPOSED CELL TRANSMISSION AND PLATOON DISPERSION MODEL 

(CT and PDM) 

 

As shown in the CTM equations, there is no platoon dispersion due to the assumption that 

all vehicles travel at the same speed (therefore maintaining the same density) when moving 

towards the downstream section. Thus, to overcome this shortfall, the flow propagation is 

modelled applying at each cell, the well-known Drake speed-density relationship, in which the 

corresponding flow, 𝑋𝑖(𝑡), is computed as follows: 

 

 𝑋𝑖(𝑡) = 𝑘𝑖(𝑡) ⋅ 𝑢𝑓 ⋅ exp ⋅ (−0.5 (
𝑘𝑖(𝑡)+𝑘𝑖+1(𝑡)

2⋅𝑘𝑚
)

2

) (18) 

 

where: 

 

𝑢𝑓  is the free-flow speed; 

𝑘𝑚  is the traffic density at maximum flow; 

𝑘𝑖(𝑡)  is the density in cell 𝑖 at time 𝑡; 

𝑘𝑖+1(𝑡)  is the density in cell 𝑖 + 1 at time 𝑡; 

 

Next, the flow 𝑌𝑖(𝑡) to the adjacent downstream cell is formulated as: 

 

 𝑌𝑖(𝑡) = min(𝑆𝑖(𝑡), 𝑅𝑖+1(𝑡), 𝑋𝑖(𝑡)) (19) 
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4. CASE STUDY 

 

A field study was identified, providing empirical support to test the proposed traffic flow 

model via its traffic-dispersion patterns. The purpose of the survey and subsequent analysis was 

to measure the extent to which the field-observed and simulated traffic stream characteristics 

(obtained through the CT and PDM described in section III) match each other.  

The study uses data from a signalised arterial of Salerno (Italy) (Figure 1). It has 520 m in 

length and contains two signalised junctions with a cycle of 80 seconds. The observation of the 

traffic characteristics was in three different sections:  

 at the upstream signalised intersection, considering only the straight-on stream of 

traffic, 

 in the middle section, 240 m from the upstream junction,  

 at the signalised downstream intersection.  

 

The traffic flow data were collected for one hour, on the morning peak hour (from 7:30 a.m. 

to 8:30 a.m.). Figure 1 indicates the layout of the arterial and the study sections.  

This study compares the queue propagation and platoon dispersion between the observed in 

the test site and the modelled using the CT and PDM model. Therefore, to calibrate the model, 

different procedures were applied to analyse the phenomenon of: 

 platoon dispersion: matching the cyclic flow profiles detected, with the simulated in 

the middle section of the arterial (Figure 3),   

 queue propagation: matching the uniform queue graphs at the downstream signalised 

junction (Figure 4) of the field-observed and the simulated arrivals. 

 

 
 

Fig. 1. Layout of the arterial and study sections.  

Google, (n.d.) Screenshot of the city of Salerno 

Source: Google Maps 

 

Individual vehicles were scanned and recorded at chosen intervals (time steps/clock tick) of 

1 second, using six loop detectors placed on the roadway, two at each section: two of them were 

located within 5 m of the junction with respect to the downstream signalised junction, two of 

them were located within 5 m of the junction with respect to the upstream signalised junction, 

and the last couple of 2 detectors was placed in the middle of the arterial. 

The speed and cell length adopted for the simulation was kept constant. Considering a time 

step t = 1 second, 1/3600th of an hour, and identified a free-flow speed, v= 50kmph, the 

minimum cell length equal to the maximum distance travelled by a vehicle in free-flow speed 

during one clock tick = v × t = 50 × (1/3600) ≈ 1/72 km. Since the arterial has 0.560 km of 

downstream 

upstream 
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length, then the number of cells is 0.560/(1/72) ≈ 40 cells. Fixed a jam density of 167 veh/km, 

the maximum number of vehicles that a cell can hold, N, equal to cell length x jam density is 

167 x (1/72) = 2.32 vehicles. Fixing a road capacity 𝑞𝑚𝑎𝑥 of 3600 veh/hr, the maximum number 

of vehicles that can flow into cell 𝑖 from time 𝑡 to 𝑡 + 1, 𝑄, results 3600 x (1/3600) = 1 vehicles.  

Given the input flow 𝑞𝑖 moving from the upstream junction during the cycle length, the 

incoming flow 𝑦0(𝑡) to the first cell of the link has been set equal to the desired link input flow 

(constrained by the capacity of the approach) for the corresponding time interval (CFP of 

Figure 2).  

The collected data were aggregated in four main sub-intervals, each one with a duration of 

15 minutes. The vehicles were classified depending on their category (for example, motorcycle, 

car, heavy vehicles, etc.). Finally, to deal with the heterogeneity in a mixed traffic situation, 

these categories were combined in terms of passenger car unit (PCU) by applying a relative 

weight factor to the traffic volume of each vehicle category. In this way, the flow 𝑞𝑘,𝑖−𝑖 + 𝑇  was 

obtained for each sub-interval of 15 minutes during one hour of simulation, considering the 

approach 𝑘 in the sub-interval from 𝑖 to 𝑖 +  𝑇. Then, with the following expressions, the peak 

hour factor and the mean value of the flow for the simulation interval are computed: 

 

 PHF𝑘 =
𝑞k,0−15+𝑞k,15−30+𝑞k,30−45+𝑞k,45−60

4 𝑚𝑎𝑥(𝑞k,0−15;𝑞k,15−30;𝑞k,30−45;𝑞k,45−60)
 (20) 

 

 𝑞k =
(𝑞k,0−15+𝑞k,15−30+𝑞k,30−45+𝑞k,45−60)

PHF𝑘
  (21) 

 

 𝑞k = 4𝑚𝑎𝑥(𝑞k,0−15; 𝑞k,15−30; 𝑞k,30−45; 𝑞k,45−60)  (22) 

 

Below, Table 1 summarises the characteristics of the arterial, while Table 2 reports the time 

and spatial discretisation adopted in the CT and PDM together with the Q and N values. 

 

Tab. 1 

Model characteristics 

 

Free-flow speed 

𝑢𝑓 [km/h] 
Road length 

𝐿 [km] 

Jam density 

𝑘𝑗 [veh/km] 
Max flow rate 

𝑄𝑚𝑎𝑥 [veh/h] 

Input flow 

𝑌1 [veh/h] 

50 0.56 167 3600 1725 

 

Tab. 2 

Spatial and time discretisation features adopted in CT and PDM. 

 

Clock tick 

∆𝑡 [s] 

Cell length 

∆𝑥 [m] 
Number of cells 

Maximum number of vehicles per cell 

N [veh] 

1 13.9 40 2.32 

 

 

5. MODEL CALIBRATION AND VALIDATION 

 

This section presents the details of the model calibration and validation. Subsequently, 

an aggregate goodness-of-fit measurement quantifies the degree to which the model results fit 
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the field data. The parameters to calibrate are the platoon dispersion factor α and the travel time 

factor β.  

A first analysis confirmed the two main findings pointed out by [13], which refers to 

the necessity to carry out a proper calibration of the traffic flow model parameters and the 

identification of their sensitivity. Indeed, the objective function is more sensitive to the travel 

time factor than the platoon dispersion factor. Therefore, following the literature [14], 

the platoon dispersion α was fixed to 0.25; and the travel time parameter β remains variable to 

calibrate, Comparing the measured flow volume in the middle section of the arterial and the one 

simulated in the proposed CT and PDM. 

 

 
 

Fig. 2. Upstream junction CFP 

 

 
 

Fig. 3. Middle section CFP 

 

The term “aggregate” refers to the combination of all the measurements into a single metric. 

The aggregate measure adopted therein is the Mean Absolute Proportional Error (MAPE), 

calculated as follows: 

F
lo

w
 [

v
eh

/h
] 

Time [s] 

Time [s] 

F
lo

w
 [

v
eh

/h
] 
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 MAPE =  (
1

m
) ∑i = 1. . m

|Oi−Ei|

Oi
  (23) 

 

where: 

Oi is the measure of performance observed from field data, 

Ei is the measure of performance estimated by the simulation model. 

 

The MAPE estimates error as a proportion of the observed mean, making it easily 

understandable due to its physical meaning.  

The queue length is estimated from the characteristics of the interacting approach at the 

downstream signalised junction (cycle-length 80 s, effective green 45 s) to then compare its 

values with the ground truth data. 

The MAPE computation returns a value indicating that the simulation and the modelled 

results differ by 14%. Finally, the travel time factor β, estimated was equal to 0.84. 

 

 
 

Fig. 4. Uniform queue graph at downstream junction 

 

 

6. CONCLUSION AND FUTURE WORKS 

 

In the case of network signal setting design, reliable traffic flow modelling is required to 

simulate the vehicles dispersion and the horizontal queue propagation. Thus, this paper 

proposes a macroscopic traffic flow model combining the Cell Transmission and the Platoon 

Dispersion model. This paper aims to calibrate and validate the model by considering the real-

world data collected in the city of Salerno (in the south of Italy). 

The MAPE indicator was adopted and the overall results return that the consistency between 

the observed and the simulated results is around 14%. In terms of calibration consistently with 

[13], the travel time factor β was estimated and it was equal to 0.84. 

For future works, it would be worthy of interest: 

 to extend the model validation by considering data at a network level, 

 to analyse other flow-density relationships, 

 to include in the proposed model, the simulation of multi-commodity flow sources. 

Time [s] 

Q
u
e
u
e 

p
o

si
ti

o
n
 [

v
e
h
] 



166 F. Storani, R. Di Pace, S. De Luca, S. Memoli 

 

Acknowledgements 

 

This research was partially supported by the University of Salerno, under the PhD 

programme on transportation (Ph.D. School in Environmental Engineering), local grant 

n. ORSA180377- 2018, local grant n. ORSA191831- 2019. 

 

 

References 

 

1. Cantarella G.E., G. Improta. 1988. „Capacity factor or cycle time optimization for 

signalized junctions: A graph theory approach”. Transportation Research Part B: 

Methodological 22(1): 1-23. DOI: 10.1016/0191-2615(88)90031-8.  

2. Di Gangi Massimo, Giulio E. Cantarella, Roberta Di Pace, Silvio Memoli. 2016. 

„Network traffic control based on a mesoscopic dynamic flow model”. Transportation 

Research Part C: Emerging Technologies 66: 3-26. DOI: 10.1016/j.trc.2015.10.002.  

3. Cantarella Giulio Erberto, Stefano De Luca, Roberta Di Pace, Silvio Memoli. 2014. 

„Signal Setting Design at a Single Junction Through the Application of Genetic 

Algorithms”. Advances in Intelligent Systems and Computing: 321-331.  

4. Cantarella Giulio Erberto, Stefano De Luca, Roberta Di Pace, Silvio Memoli. 2013. 

The Application of Multicriteria Genetic Algorithms for Signal Setting Design at a Single 

Junction”. In: 2013 8th EUROSIM Congress on Modelling and Simulation. IEEE,  

472-477. ISBN: 978-0-7695-5073-2.  

5. Robertson DI. 1969. „TRANSYT: A Traffic Network Study Tool”. Road Research 

Laboratory. UK. 

6. Geroliminis Nikolaos, Alexander Skabardonis. 2005. „Prediction of Arrival Profiles and 

Queue Lengths Along Signalized Arterials by Using a Markov Decision Process”. 

Transportation Research Record: Journal of the Transportation Research Board 1934: 

116-124. DOI: 10.3141/1934-12.  

7. Chow Andy H.F., Shuai Li, W.Y. Szeto, David Z.W. Wang. 2015. „Modelling urban 

traffic dynamics based upon the variational formulation of kinematic waves”. 

Transportmetrica B: Transport Dynamics 3(3): 169-191. 

DOI: 10.1080/21680566.2015.1005559.  

8. Daganzo Carlos F. 1995. „The cell transmission model, part II: Network traffic”. 

Transportation Research Part B: Methodological 29(2): 79-93.  

DOI: 10.1016/0191-2615(94)00022-R.  

9. Cantarella Giulio E., Stefano De Luca, Roberta Di Pace, Silvio Memoli. 2015. „Network 

Signal Setting Design: Meta-heuristic optimisation methods”. Transportation Research 

Part C: Emerging Technologies 55: 24-45. DOI: 10.1016/j.trc.2015.03.032.  

10. Yu L., M. Van Aerde. 1995. „Implementing TRANSYT’s macroscopic platoon 

dispersion in microscopic traffic simulation models”. In: 74thTransportation Research 

Board Annual Meeting. Washington DC, USA,  

11. Yu Lei. 2000. „Calibration of Platoon Dispersion Parameters on the Basis of Link Travel 

Time Statistics”. Transportation Research Record: Journal of the Transportation 

Research Board 1727(1): 89-94. DOI: 10.3141/1727-11.  

12. Rakha Hesham, Mohamadreza Farzaneh. 2006. „Issues and Solutions to Macroscopic 

Traffic Dispersion Modeling”. Journal of Transportation Engineering 132(7): 555-564. 

DOI: 10.1061/(ASCE)0733-947X(2006)132:7(555). 

 



Calibration and validation of a macroscopic traffic flow model based on… 167. 

 

13. Farzaneh Mohamadreza, Hesham Rakha. 2006. „Procedures for Calibrating TRANSYT 

Platoon Dispersion Model”. Journal of Transportation Engineering 132(7): 548-554. 

DOI: 10.1061/(ASCE)0733-947X(2006)132:7(548).  

14. Retzko Hans-Georg, M Schenk. 1993. „Effects of the platoon dispersion on 

the optimizing of fixed-time signal control in road networks”. Transportation and Traffic 

Theory: Proc., 12th Int. Symp. on the Theory of Traffic Flow and Transportation.  

P. 539-551.  

15. Astarita Vittorio. 1996. „Flow propagation description in dynamic network loading 

models”. In: Proceedings of the International Conference on Applications of Advanced 

Technologies in Transportation Engineering. P. 599-603.  

16. Ran Bin, David Boyce 1996. Modeling Dynamic Transportation Networks. Berlin, 

Heidelberg: Springer Berlin Heidelberg. ISBN: 978-3-642-80232-4.  

17. Wu J.H., Y. Chen, M. Florian. 1998. „The continuous dynamic network loading problem: 

a mathematical formulation and solution method”. Transportation Research Part B: 

Methodological 32(3): 173-187. DOI: 10.1016/S0191-2615(97)00023-4.  

18. Lighthill M.J., G.B. Whitham. 1955. „On kinematic waves II. A theory of traffic flow on 

long crowded roads”. Proceedings of the Royal Society of London. Series A. 

Mathematical and Physical Sciences 229(1178): 317-345. DOI: 10.1098/rspa.1955.0089.  

19. Richards Paul I. 1956. „Shock Waves on the Highway”. Operations Research 4(1):  

42-51. DOI: 10.1287/opre.4.1.42.  

20. Newell G.F. 1993. „A simplified theory of kinematic waves in highway traffic I: General 

theory. II: Queuing at freeway bottlenecks. III: Multi-destination flows”. Transportation 

Research Part B P. 281-313.  

21. Drake Joseph S., Joseph L. Schofer, Adolf D. May Jr. 1967. „A Statistical Analysis of 

Speed Density Hypotheses”. In: Third International Symposium on the Theory of Traffic 

Flow Proceedings. New York: Elsevier North Holland, Inc. 

22. Greenberg Harold. 1959. „An Analysis of Traffic Flow”. Operations Research 7(1):  

79-85. DOI: 10.1287/opre.7.1.79.  

23. Underwood R.T. 1961. „Speed, volume, and density relationships”. In: Qualty and 

Theory of Traffic Flow. A Symposium: 141-188. New Haven, Connecticut: Highway 

Traffic. 

24. Drew Donald R. 1968. Traffic flow theory and control. New York, McGraw-Hill. 

25. Pipes Louis A. 1967. „Car following models and the fundamental diagram of road 

traffic”. Transportation Research 1(1): 21-29. DOI: 10.1016/0041-1647(67)90092-5.  

26. Edie Leslie C. 1961. „Car-following and steady-state theory for noncongested traffic”. 

Operations research 9(1): 66-76. 

 

 

Received 02.12.2021; accepted in revised form 11.02.2022 

 

 

 
Scientific Journal of Silesian University of Technology. Series Transport is licensed under 

a Creative Commons Attribution 4.0 International License 


