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Abstract. Well-posed boundary value problems are constructed for calculating rotation
shells of with a stiffness variable along the meridian in two directions, and also with
variable bilateral with respect to the reference surface with the shell wall thickness.
Algorithms for the numerical integration of systems of differential equations with variable
coefficients are discussed.
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1. Introduction

Shell structures are widely used in the creation of structures for modern
mechanical engineering, in the oil and gas, chemical and other industries. At the
same time, the requirements for ensuring the strength reliability while reducing
the weight indicators lead to the need to build more and more reliable models
and methods for calculating shell structures with non-homogeneous parameters
(in particular, with variable stiffness) [4, 6–8,10,13–15,17].

In the problems of determining the optimal distribution of material [9] or
calculating the durability of shells taking into account the degradation of their
surface in an aggressive environment [16], the stiffness parameters change at each
step of successive approximations. This leads to the necessity of restructuring the
grid at each step of the corresponding iterative computational (search) algorithm
using the known finite element analysis packages [1, 5].
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An effective approach to the study of the behavior of such structural elements
with irregular parameters remains the direct solution of boundary value problems
for systems of differential equations describing their state, where the components
of the stress-strain state are unknown. In this case, the parameters of non-homoge-
neity (change in the thickness of the shell wall) are taken into account quite simply,
since they turn out to be components of the coefficients of these systems and the
computational costs when using this approach are mainly associated only with
the need to solve the corresponding boundary value problems [3, 12,15].

This paper presents general information about the exact mathematical models
of shells with rigidity, in two directions, as well as with a two-sided change in the
shell wall thickness with respect to the reference surface.

2. Basic Relations

The basic equations of the moment theory of shells are obtained under the
assumption that shells of revolution (with an arbitrary meridian shape in the
general case) and circular (annular) plates are homogeneous, isotropic, thin and
elastic. The validity of Kirchhoff’s hypotheses is accepted, as well as the smallness
of deformations and angles of rotation in comparison with unity. The shell wall
thickness is generally considered arbitrary h = h (s, ϕ).

Deformation of the middle surface ε1, ε2, γ12 the angles of rotation of the
normal to the surface ϑ1, ϑ2 and the parameters of the change in curvature χ1, χ2,
χ12 are associated with the displacements u, v, w (Fig. 1) by the dependencies [3]:

ε1 =
∂u

∂s
+

w

R1
; ε2 =

∂v

r∂ϕ
+

cos θ

r
u+

sin θ

r
w;
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u

R1
− ∂w

∂s
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sin θ

r
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r∂ϕ
;
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∂

∂s

(v
r

)
+
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; (2.1)
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∂s
;

χ2 =
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r
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r2
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∂ϕ
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r2

∂2w
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r
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1

r
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∂ϕ
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sin θ

r

∂v

∂s
,

where θ(s) is the angle between the normal to the median surface and the shell
rotation axis; r(s) is the radius of the parallel circle.
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Fig. 2.1. Efforts and displacements in the shell

Elastic ratios are taken in the usual form

N1 =
Eh

1− µ2
(ε1 + µε2); M1 = D(χ1 + µχ2);

N2 =
Eh

1− µ2
(ε2 + µε1); M2 = D(χ2 + µχ1); (2.2)

S =
Eh

2(1 + µ)
γ12; M = D(1− µ)χ12,

where D = Eh3/(12(1 − µ2)) is the cylindrical stiffness; R1, R2 are thr radii
of curvature of the surface; E,µ are the modulus of elastic and Poisson’s ratio,
respectively. As a result, the equations of forces and moments can be written as
follows:

∂

∂s
(rN1) +

∂

∂ϕ

(
S +

M

R1

)
− cos θ ·N2 +

r

R1
Q1 + rq1 = 0;

∂N2

∂ϕ
+

∂

∂s

[
r

(
S +

M

R2

)]
+ cos θ

(
S +

M

R1

)
+ sin θ ·Q2 + rq2 = 0;

∂

∂s
(rQ1) +

∂Q2

∂ϕ
− r

R1
N1 − sin θ ·N2 + rq3 = 0; (2.3)

1

r

[
∂

∂s
(rM) +

∂M2

∂ϕ
+ cos θ ·M

]
−Q2 = 0;

1

r

[
∂M

∂ϕ
+

∂

∂s
(rM1)− cos θ ·M2

]
−Q1 = 0,

Here, for the force factors, the generally accepted designations are introduced [3]:
N1, N2, S,M1,M2,M,Q1, Q2, Р° q1, q2, q3 are the meridional, circumferential and
normal components of the intensity of the external load, respectively.

As the main variables with respect to which the system is written, four
quantities u, v, w, ϑ1 are selected, which characterize the displacements and the
four force factors N1, S∗, Q∗1, M1 corresponding to them, where S∗ = S + 2M

R2
;

Q∗1 = Q1 + 1
r
∂M
∂ϕ are reduced efforts. After appropriate transformations, the

equations of the moment theory for homogeneous isotropic elastic thin-walled
shells of variable thickness under asymmetric loading can be, as is known [3, 12],
reduced to a system of eight partial differential equations, which can be written
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in the form:
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3. Shells with Stiffness, Variable in two Directions

To solve system (2.4) in the case h = h (s, ϕ), it is proposed to use the method
of straight lines [2,4,7,12], the essence of which is to replace the derivatives in the
direction of the circumferential coordinate by difference relations, which allows
one to obtain a set of one-dimensional boundary value problems along each i-
th meridian (i = 1,m), which are subsequently solved by the sweep method
with orthogonalization according to S.K. Godunov [11] along the nodal points j
(j = 1, n).

Assuming that the shell state parameters are sufficiently smooth in the circum-
ferential direction, the partial derivatives with respect to the variable ϕ = ϕi ,
(i = 1, 2, ...,m) equations (2.4) are replaced by finite differences of the fourth order
of accuracy [2]:

y′ = (yi−2 − 8yi−1 + 8yi+1 − yi+2) / (12∆) ;

y′′ = (−yi−2 + 16yi−1 − 30yi + 16yi+1 − yi+2) /
(
12∆2

)
; (3.1)

y′′′ = (yi−3 − 8yi−2 + 13yi−1 − 13yi+1 + 8yi+2 − yi+3) /
(
8∆3

)
;

y′
v

= (−yi−3 + 12yi−2 − 39yi−1 + 56yi − 39yi+1 + 12yi+2 − yi+3) /
(
6∆4

)
,

where ∆ = ∆ϕi is the step of the difference grid in the circumferential direction
with the approximation error O

(
∆4
)
.

It should be noted that, depending on the method of replacing derivatives
with finite differences, different systems of the method of lines are possible, which
may differ in the accuracy of the approximating relations for the corresponding
derivatives.
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After replacing the derivatives with respect to the coordinate ϕ in the system
of equations (2.4) and reducing similar terms for the components of the stress-
strain state vector Y = (u, v, w, ϑ1, N1r, S

∗
1r, Q

∗
1r, M1r)

T for each i-th strip
(i = 1, 2, ...,m), we can obtain a boundary value problem for a system of ordinary
differential equations.

Further (in order to avoid cumbersome presentation) such a system for the
case of a cylindrical shell is given (sin θ = 1, cos θ = 0, R1 =∞, R2 = R):
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Here,

∆ = ∆ϕi; ∆ϕi = 2π/m; ϕi = ∆ϕi (i− 1) ;(
∂K

∂ϕ

)
i

=
Ki−2 − 8Ki−1 + 8Ki+1 −Ki+2

12∆
;(

∂D

∂ϕ

)
i

=
Di−2 − 8Di−1 + 8Di+1 −Di+2

12∆
;(

∂2D
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)
i

=
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12∆2
.

As for the fulfillment of the boundary conditions, for the case of an open shell
at the ends of the variation interval ϕ, one-sided differences are used, where for the
straight lines 0 and m, the values of the parameters specified in accordance with
the conditions for fixing the contour are taken into account. For a closed cylindrical
shell, when the derivatives in the circumferential direction are replaced by their
finite-difference expressions, only the central differences are used. The boundary
conditions at the meridional edges of the shell (s = 0, s = L where L is the shell
length) are taken into account when solving boundary value problems along the
meridian s = si, (i = 1, 2, ..., n), using the sweep method with orthogonalization
according to S.K. Godunov [11].

4. Rotational Shells with a Stiffness Variable Along Meridian

In the case h = h (s) of separating variables, the Fourier method is used. At the
same time, the problem of solving the system of partial differential equations (2.4)
by expanding the components of the stress-strain state and load into trigonometric
series in the circular coordinate [3,10,12,15], reduces, in the general case, to solving
systems of t+1 ordinary differential equations for finding harmonics of expansions
of the sought functions in Fourier series.

The decomposition of the load, displacements and forces acting in the shell
into Fourier series [3, 15] along the circumferential coordinate ϕ is carried out in
the form

f =
∞∑
k=0

f ck cos kϕ+
∞∑
k=1

f tk sin kϕ; ψ =
∞∑
k=1

ψck sin kϕ−
∞∑
k=0

ψtk cos kϕ (4.1)

where f , in the generally accepted notation [3], stands for the functions u, w,
ε 1, ε 2, ϑ1, χ1, χ2, N1, N2, Q1,M1,M2, q1, q3, whereas ψ can be substituted by
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functions v, γ12, ϑ2, χ12, S,Q2,M, q2, f
c
k , f

t
k, ψ

c
k, ψ

t
k, and f

c
k , f

t
k , ψck, ψ

t
k are the

coefficients of their expansions in trigonometric series.
With this choice of functions, the expansion coefficients with the superscript

t, which correspond to the skew-symmetric deformation of the shell with respect
to the zero meridian, are determined by exactly the same system of equations as
the coefficients with the index c, which correspond to the symmetric deformation.
Therefore, the results of further transformations for these coefficients coincide,
which allows them to be carried out only for functions with the index c, omitting
this sign.

In this case, the displacements and forces that correspond to the k-th term of
the expansion are determined by the formulas [3]

u = uk(s) cos kϕ; v = vk(s) sin kϕ; w = wk(s) cos kϕ;

ϑ1 = ϑ1k(s) cos kϕ; ϑ2 = ϑ2k(s) sin kϕ; N1 = N1k(s) cos kϕ; (4.2)
S∗ = S∗k(s) sin kϕ; Q∗1 = Q∗1k(s) cos kϕ; N2 = N2k(s) cos kϕ;

M1 = M1k(s) cos kϕ; M2 = M2k(s) cos kϕ; M = Mk(s) sin kϕ.

The use of the Fourier method (and this is possible only in the case when
the shell wall thickness changes only in the meridional direction h = h(s), and
remains constant in the circumferential direction) makes it possible to reduce the
adopted system of equations of state of the shell in partial derivatives to a system
of ordinary differential equations with respect to the coefficients expansions in
trigonometric series of the main variables of the stress-strain state, which are the
coefficients of the expansion of displacements and force factors. In this case, it is
convenient to take for the main unknowns their product by the radius r of the
parallel circle N1kr(s), S

∗
kr(s), Q

∗
1kr(s), M1kr(s)) :

duk
ds

= −µcos θ

r
uk − µ

k

r
vk −

(
1

R1
+ µ

sin θ

r

)
wk +

1− µ2

Ehr
(N1kr);

dvk
ds

=
k

r
uk +

cos θ

r
vk +

2(1 + µ)

Ehr
(S∗kr);

dwk
ds

=
1

R1
uk − ϑ1k;

dϑ1k

ds
= −µ k

r2
sin θvk − µ

k2

r2
wk − µ

cos θ

r
ϑ1k +

12(1− µ2)

Eh3r
(M1kr);

d(N1kr)

ds
= −Eh

r

[
cos2θ +

k2h2sin2θ

6(1 + µ)r2

]
uk + k

Eh

r
cos θνk

+
Eh

r
sin θ cos θ

[
1− k2h2

6(1 + µ)r2

]
wk −

k2Eh3

6(1 + µ)r2
sin θ · ϑ1k

+
µ

r
cos θ(N1kr)−

k

r
(S∗kr)−

1

R1
(Q∗1kr)− q1kr;
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d (S∗kr)

ds
=

Eh

r
k cos θuk +

Eh

r
k2vk +

Eh

r
k sin θ

(
1 +

k2h2

12r2

)
wk (4.3)

+
Eh3

12r2
k sin θ cos θ · ϑ1k + µ

k

r
(N1kr)−

cos θ

r
(S∗kr)

+µ
k

r2
sin θ (M1kr)− q2kr;

d (Q∗1kr)

ds
=

Eh

r
sin θ cos θ

[
1− k2h2

6(1 + µ)r2

]
uk +

Eh

r
k sin θ

(
1 +

k2h2

12r2

)
vk

+
Eh

r

[
sin2θ +

k4h2

12r2
+
k2h2cos2θ

6(1 + µ)r2

]
wk

+
3 + µ

1 + µ
· Eh

3

12r2
k2 cos θ · ϑ1k +

(
1

R1
+ µ

sin θ

r

)
(N1kr)

+µ
k2

r2
(M1kr)− q3kr;

d (M1k · r)
ds

= − k2Eh3

6(1 + µ)r2
sin θ · uk +

Eh3

12r2
k sin θ cos θ · vk

+
3 + µ

1 + µ

Eh3

12r2
k2 cos θ · wk +

Eh3

12r

(
cos2θ +

12k2

1 + µ

)
ϑ1k

+(Q∗1kr) + µ
cos θ

r
(M1k · r) .

The expansion coefficients of displacements and forces for each harmonic
number k, which are not the main variables, using the relations of the theory
of elasticity and the dependences between displacements and deformations, are
expressed in terms of the main variables as follows:

ϑ2k =

(
sin θ

r
vk +

k

r
wk

)
sin kϕ;

N2k =

[
µN1k + Eh

(
k

r
vk +

cos θ

r
uk +

sin θ

r
wk

)]
cos kϕ; (4.4)

M2k =

[
µM1k +

Eh3

12

(
cos θ

r
ϑ1k +

k

r2
sin θvk +

k2

r2
wk

)]
cos kϕ;

Mk = D

(
−k
r
ϑ1k −

k cos θ

r2
wk +

k sin θ

r2
uk

)
sin kϕ.

The inconvenience of the system of equations (4.3) is that the forces and
displacements are related to the local coordinate system associated with the
normal and tangent to the shell meridian. Therefore, the coefficients of the system
have discontinuities when the shell meridian consists of several sections with
corner points between them. In this case, it turns out to be necessary to draw up
compatibility equations for different areas.
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These difficulties, in accordance with [3], can be circumvented by passing
to global coordinates. For this, forces and displacements are projected onto the
normal to the shell’s symmetry axis and onto the axis itself. In this case, instead
of displacements u, w, displacements ξ, ζ are introduced, and instead of forces
N1, Q

∗
1, X, Z forces are introduced as follows:

ξ = u cos θ + w sin θ; ζ = u sin θ − w cos θ; (4.5)
X = N1 cos θ +Q∗1 sin θ; Z = N1 sin θ −Q∗1 cos θ.

The same dependencies are also related to the coefficients of the expansion in
the Fourier series of the corresponding functions. Substitution of uk, wk, N1k, Q

∗
1k

and their derivatives through ξk, ζk, Xk, Zk into system (4.3) brings it to the
form:

dξk
ds

= −µcos θ

r
ξk − µ

k cos θ

r
vk − sin θ · ϑ1k +

1− µ2

Eh

cos2θ

r
(Xkr)

+
1− µ2

Eh

sin θ cos θ

r
(Zkr);

dζk
ds

= −µsin θ

r
ξk − µ

k sin θ

r
vk + cos θ · ϑ1k

+
1− µ2

Eh

sin θ · cos θ

r
(Xkr) +

1− µ2

Eh

sin2θ

r
(Zkr);

dvk
ds

= k
cos θ

r
ξk + k

sin θ

r
ζk +

cos θ

r
vk +

2(1 + µ)

Ehr
(S∗k · r);

dϑ1k

ds
= −µk2 sin θ

r2
ξk + µk2 cos θ

r2
ζk − µk

sin θ

r2
vk − µ

cos θ

r
ϑ1k

+
12(1− µ2)

Eh3r
(M1k · r);

d (Xk · r)
ds

=
Eh

r

(
1 +

h2k4

12r2
sin2θ

)
ξk −

Eh3

12
· k

4 sin θ · cos θ

r3
ζk

+
Ehk

r

(
1 +

h2k2

12r2
sin2θ

)
vk +

Eh3k2

12
· sin θ · cos θ

r2
ϑ1k

+µ
cos θ

r
(Xk · r) + µ

sin θ

r
(Zk · r)− k

cos θ

r
(S∗k · r)

+µk2 sin θ

r2
(M1k · r)− rqxk;

d (Zk · r)
ds

= −k4Eh
3

12
· sin θ · cos θ

r3
ξk +

Eh3

12r3

(
2k2

1 + µ
+ k4cos2θ

)
ζk (4.6)

−Eh
3k3

12
· sin θ · cos θ

r3
vk −

Eh3k2

12
· 2 + (1 + µ)cos2θ

(1 + µ)r2
ϑ1k

−k sin θ

r
(S∗k · r)− µk2 cos θ

r2
(M1k · r)− rqzk;
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d (S∗k · r)
ds

=
Ehk

r

(
1 +

h2k2

12r2
sin2θ

)
ξk −

Eh3k3

12
· sin θ · cos θ

r3
ζk

+
Ehk2

r
vk +

Eh3k

12r2
· sin θ · cos θ · ϑ1k + µk

cos θ

r
(Xkr)

+µ
k sin θ

r
(Zk · r)−

cos θ

r
(Sk · r) + µ

k sin θ

r2
(M1k · r)− rq2k;

d (M1k · r)
ds

=
Eh3k2

12
· sin θ · cos θ

r2
ξk −

Eh3k2

12

2 + (1 + µ)cos2θ

(1 + µ)r2
ζk

+
Eh3k

12
· sin θ · cos θ

r2
vk +

Eh3

12r

(
cos2θ +

2k2

1 + µ

)
ϑ1k

+ sin θ(Xkr)− cos θ(Zkr)− µ
cos θ

r
(M1k · r)

where the following designations are introduced for the radial and axial loading
components

qxk = q1k cos θ + q3k sin θ; qzk = q1k sin θ − q3k cos θ. (4.7)

Since the coefficients of the resulting system of equations do not contain the
curvature 1/R1 of the meridian, they remain continuous even for a shell whose
curvature is subject to discontinuity. As a consequence, the main unknowns,
referred to a fixed coordinate system, remain continuous for an arbitrary shape of
the meridian, including for combined shell, which makes it possible not to compose
the docking equations for such cases. As for the force unknowns Xkr, Zkr, S

∗
kr,

M1kr, they experience discontinuity of a predetermined magnitude only where
concentrated forces are applied to the shells at a specific parallel of the load.

The specified forces and displacements at the ends of the shell are the boundary
conditions for the resulting system, which are also decomposed into the correspon-
ding trigonometric series along the circumferential coordinate.

5. Shells with Two-Sided Relative to the Reference Surface
Change in Wall Thickness

Let us consider the case of the shell wall thickness δ(s) variable along the
meridian under axisymmetric loading. In this case, both the external and internal
components of the shell wall thickness with respect to the reference surface are
independent functions of the meridional coordinate s. Let us denote by H(s) and
h(s) the distances along the normal direction from the reference surface to the
outer and inner surfaces of the shell, respectively, and h∗ (s) the distance from
the middle surface to the reduced surface (Fig. 5.2), so that

H(s)− h∗(s) =
δ(s)

2
; h(s) + h∗(s) =

δ(s)

2
; (5.1)

h∗(s) =
(H(s)− h(s))

2
.
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Fig. 5.2. Position of the reference surface (dashed line) relative to the middle surface (dash-dotted
line)

It is also assumed that the error associated with the mismatch of the normal
to the middle surface and the reference surface can be neglected for thin-walled
shells.

Taking into account that the deformations ε1, ε2 and parameters of changing
the curvatures χ1, χ2 of the reference surface are expressed through the deforma-
tions of the middle surface as follows ε1 = ε1cp − h∗χ1, ε2 = ε2cp − h∗χ2 (Fig.
5.2), the relationship between stresses and deformations on the reference surface
in accordance with Hooke’s law will have the form

σ1 =
E

1− µ2
((ε1 + µε2) + z (χ1 + µχ2)) ; (5.2)

σ2 =
E

1− µ2
((ε2 + µε1) + z (χ2 + µχ1)) .

Note that expressions (5.2) at z = h∗ coincide with the well-known [3] expressions
for calculating the stresses on the middle surface.

Internal forces and moments relative to the reference surface, taking into
account the known dependencies

N1 =

ˆ H

−h
σ1dz; N2 =

ˆ H

−h
σ2dz; (5.3)

M1 =

ˆ H

−h
σ1zdz; M2 =

ˆ H

−h
σ2zdz,

and relations (5.2) after introducing the notation

K1 =
E(H + h)

(1− µ2)
; K2 =

E(H2 − h2)

2(1− µ2)
; D =

E

1− µ2

H3 + h3

3
(5.4)



92 A.A. Dzyuba, A. P. Dzyuba, L.D. Levitina, I. A. Safronova

will be next:

N1 = K1 (ε1 + µε2) +K2 (χ1 + µχ2) ;

N2 = K1 (ε2 + µε1) +K2 (χ2 + µχ1) ;
(5.5)

M1 = K2 (ε1 + µε2) +D (χ1 + µχ2) ;

M2 = K2 (ε2 + µε1) +D (χ2 + µχ1) .
(5.6)

Considering that N1 sin θ−Q1 cos θ = F (s); N1 cos θ+Q1 sin θ = N , (Fig. 2.1)
we represent the efforts N1and Q1 in the form

N1 =
F (s)

2πr
sin θ +N cos θ; Q1 = −F (s)

2πr
cos θ +N sin θ, (5.7)

where N is the spacer force; F (s) = P0 +

ˆ sn

s0

(qn cos θ − q1 sin θ) 2πrds is total

axial loading; P0 is axial load; qn, q1 is distributed normal and meridian loads,
respectively.

We take as the main variables the radial displacement ξ, the angle of rotation
of the normal ϑ, the axial displacement ζ, as well as the spacer force Nr and
moment M1r multiplied by the radius of the parallel circle.

Eliminating from (5.5) taking into account

ε2 =
ξ

r
; χ1 =

dϑ

ds
; χ2 =

cos θ

r
ϑ;

1

R1
=
dθ

ds
;

1

R2
=

sin θ

r
. (5.8)

we obtain
N2 = µN1 +K1(1− µ2)

ξ

r
+K2(1− µ2)

cos θ

r
ϑ. (5.9)

Similarly, relations (5.6) yield the expression for M2

M2 = µM1 +K2(1− µ2)
ξ

r
+D(1− µ2)

cos θ

r
ϑ. (5.10)

From equation (5.5), taking into account (5.7), (5.8), we obtain

ε1 =
1

K1

(
F (s)

2πr
sin θ +N cos θ

)
− µξ

r
− K2

K1

(
dϑ

ds
+ µ

cos θ

r
ϑ

)
. (5.11)

Substituting further (5.7), (5.8), (5.11) into (5.6), we obtain

M1 =
K2

K1

(
cos θ

r
Nr +

sin θ

r

F (s)

2π

)
+

(
D − K2

2

K1

)(
dϑ

ds
+ µ

cos θ

r
ϑ

)
,

from which one of the equations of the system of state follows

dϑ

ds
= −µcos θ

r
ϑ−

(
K2

DK1 −K2
2

)
cos θ

r
Nr + (5.12)

+

(
K1

DK1 −K2
2

)
M1r

r
−
(

K2

DK1 −K2
2

)
sin θ

r

F (s)

2π
.
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Next, we take into account the equilibrium equations (2.3), which for the
axisymmetric case can be represented in the form

1

r

d

ds
(Q1r)−

N1

R1
− N2

R2
+ qn = 0; (5.13)

1

r

d

ds
(N1r)−N2

cos θ

r
+
Q1

R1
+ q1 = 0; (5.14)

1

r

d

ds
(M1r)−M2

cos θ

r
−Q1 = 0. (5.15)

Substitution of the found expressions (5.5), (5.7)–(5.9) into equation (5.13)
gives one more equation of the system

dξ

dS
= −µcos θ

r
ξ − ϑ sin θ +

D

DK1 −K2
2

cos2θ

r
Nr

+
K2

DK1 −K2
2

sin θ

r
M1r +

D

DK1 −K2
2

sin θ cos θ

r

F (s)

2π
. (5.16)

The following equation is obtained from (5.14) after substituting into it the
values of the variables from (5.7)–(5.9), taking into account that

d

ds

(
F (s)

2π

)
= (qn cos θ − q1 sin θ)2πr;

d (Nr)

ds
= K1(1− µ2)

ξ

r
+K2(1− µ2)

cos θ

r
ϑ (5.17)

+µ
cos θ

r
(Nr) + µ

sin θ

r

F (s)

2π
− qrr

where qr = q1 cos θ + qn sin θ.
Substituting into (5.15) the expression for and from (5.6), (5.7), we obtain

d (M1r)

dr
= K2

(
1− µ2

) cos θ

r
ξ +D

(
1− µ2

) cos2θ

r
ϑ

+ sin θ (Nr) + µ
cos θ

r
(M1r)− cos θ

F (s)

2π
. (5.18)

To determine the axial displacement, the expression for (5.11) is substituted
into the equation of continuity of deformations, which will have the form

dζ

ds
= −µsin θ

r
ξ + ϑ cos θ +

D

DK1 −K2
2

sin θ cos θ

r
(Nr)

− K2

DK1 −K2
2

sin θ

r
(M1r) +

D

DK1 −K2
2

sin2θ

r

F (s)

2π
. (5.19)

Thus, the obtained equations (5.14) , (5.12), (5.17) – (5.19) form a system of
differential equations with variable coefficients, which describes the stress-strain
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state of shells of revolution with a two-sided, relative to the reference surface,
change along the meridian wall thickness.

For the particular case, when the reference surface coincides with the median,
that is h∗(s) = 0, it follows that H(s) = h(s). Then (5.4) will have the form
K1 = Eδ/

(
1− µ2

)
, K2 = 0, D = Eδ3/

(
12
(
1− µ2

))
, where δ (s) = H (s) + h (s)

is the shell thickness, and the system of the obtained equations coincides with the
well-known system of equations given in [3].

The boundary conditions are the conditions for fixing the ends of the shell.
For the numerical solution of the obtained boundary value problem for a system
of ordinary differential equations with variable (due to a change in the shell wall
thickness) coefficients under the given boundary conditions, a sufficiently effective
and repeatedly tested in the problems of mechanics of thin-walled structures [3,
12,15] are used the sweep method of S. K. Godunov [11].

Conclusion.

The article presents correct mathematical models describing the state of asym-
metrically loaded shells of revolution with variable wall thickness in the meridian
and circumferential directions, only along the meridian, as well as with a two-sided
change in the wall thickness relative to the reference surface. For all considered
cases, boundary value problems for systems of ordinary differential equations with
variable coefficients are constructed, the numerical solution of which is carried out
by the sweep method.
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