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Abstract. Computer simulation of the behavior of a thin elastic rectangular plate with
a circular hole and an annular inclusion made of functionally graded material has been
carried out. Using the finite element method, the influence of the geometric and mechanical
parameters of the inclusion on the concentration of stresses around the hole is investigated
and various laws of the change in the modulus of elasticity of a functionally graded
material are specified. A comparative analysis of the results has been carried out. The
recommendations for reducing stress concentration are given.
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1. Introduction

Plates and shells with holes are quite often used in various fields of technology,
power engineering, construction, etc. The presence of holes leads to the appearance
of local (additional) stresses, which can be several times higher than the basic
stresses in an element that is not weakened by a concentrator. Under certain
conditions, this initiates destruction processes. That is why, in order to increase
the strength of the structure, it is necessary to look for ways to influence the
distribution of stresses in the body, in particular, on the value of the stress
concentration factor (SCF). One of these methods is the use of inclusions around
the holes, of various geometric shapes and mechanical properties [5, 6, 11].

Recently, in the manufacture of plate-shell structural elements of new technology,
in particular, aerospace, functionally graded materials (FGM) [16, 17] are used,
which are classified as materials with unique mechanical, technological and special
properties. A specific feature of FGM is a smooth change in mechanical properties
and chemical composition in a certain direction. The gradient structure of materials
provides an increase in the level of service properties of parts and structural
elements, taking into account the respective operating conditions. FGMs have
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high strength and a set of properties when working for impact, wear, fatigue,
they can withstand increased cyclic and alternating loads, etc.

Taking into account the presence of this kind of material inhomogeneity leads
to an increase in the complexity of the mathematical model of the problem.
Finding the exact solution of the obtained boundary value problem in an analytical
form is possible only in some individual cases of the load of bodies and under
certain conditions of their fixation [3,12,13,19–23]. Therefore, when studying the
stress-strain state (SSS) of structures made of FGM and with various inhomogeneities
(holes, inclusions, etc.), it is advisable to use numerical methods of mechanics,
which, unlike analytical ones, are quite universal and effective for solving a wide
class of problems. [2, 4, 6–11]. The most effective are grid methods: the finite
element method [27], the finite difference method, the method of local variations
and their projection-iterative implementation schemes [6–8], which accelerate the
convergence of the process of obtaining a solution to the problem and significantly
reduce the cost of computer computation time.

FGM mechanics has attracted great interest in the last two decades, and many
works have appeared on theoretical, numerical and experimental studies of FGM.
Thus, in [1], analytical solutions of mixed axisymmetric problems for functionally
graded media were obtained. In [25, 26], using an analytical method, the stress
distribution in a plate with an FGM with a circular hole was investigated. In [15],
the stress concentration in multi-wedge systems with functionally graded wedges
was estimated. In [14], using various isoparametrical finite elements, the SCF
was determined in the vicinity of a circular cut in an inhomogeneous plate under
uniaxial tension, in [18] the SCF was determined around a circular cut in an FGM
plate under biaxial tension and shear.

In this work, using the finite element method (FEM), a computer simulation
of the behavior of a thin elastic rectangular plate with a circular hole and an
annular inclusion under the action of a uniaxial tensile load was carried out for
various properties of the inclusion material and its dimensions.

2. Statement of the Problem

A thin elastic homogeneous isotropic plate is given with dimensions a×b and
thickness t with a centrally located circular hole of radius R and an annular
inclusion of radius R1 (Fig. 2.1). A uniform uniaxial tensile load p = const acts
on the plate, which does not lead to the appearance of plastic deformations.

It is believed that the inclusion is modeled by an insert, which is in the plane
of the plate and has the same thickness as it; conditions of rigid adhesion are
specified at the boundary of the inclusion with the plate.

FGM inclusions with arbitrary radial elastic properties are considered. In the
numerical examples, six model materials were selected with the same Poisson’s
ratio ν0 = 0.25, but with different inclusion elastic modulus Ei(r) (i = 1, 6). The
first three materials have the following laws of change in the modulus of elasticity
Ei(r) (i = 1, 3):
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Fig. 2.1. Plate geometry and loading diagram

E1(r) =

{
E0(1 + l), l ∈ [0; 0, 5]

E0(2− l), l ∈ [0, 5; 1]
; (2.1)

E2(r) =


E0(1 + 5

4 l), l ∈ [0; 0, 4]

1, 5E0, l ∈ [0, 4; 0, 6]

E0(21
4 −

5
4 l), l ∈ [0, 6; 1]

; (2.2)

E3(r) =


E0(1 + 5

3 l), l ∈ [0; 0, 3]

1, 5E0, l ∈ [0, 3; 0, 7]

E0(22
3 −

5
3 l), l ∈ [0, 7; 1]

, (2.3)

where E0 = 100GPa is the modulus of elasticity of the plate; 0 6 l 6 1 is the
normalized parametric distance in the radial direction from the center of the hole
along the width of the inclusion h = R1 − R : l = (r − R)/(R1 − R), r is the
distance from the center of the hole to an arbitrary point of inclusion; R and R1

are the radii of the hole and the annular inclusion, respectively.
Note that for the given materials of inclusions (2.1)–(2.3), the values of the

elastic modulus are in the range from 100 to 150 GPa. For three other model
materials, the laws of change in the modulus of elasticity Ei(r) (i = 4, 6) are
similar, but the values of the modulus of elasticity vary in the range from 100 to
200 GPa.
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In Fig. 2.2 we show a graphical representation of the laws of change in the
elastic modulus of an FGM inclusion. Lines 1-3 correspond to dependencies (2.1)–
(2.3).

Fig. 2.2. The laws of change in the elastic modulus of FGM inclusions

It is necessary to determine the SSS of a given plate for each of the specified
variants of inclusions to study the effect of the size and nature of the change in
the modulus of elasticity of the inclusion on the SSS of the plate in the zones of
local stress concentration and the effect on the value of the SCF; to carry out a
comparative analysis of the results for a plate without an inclusion with a plate
in the presence of an FGM-inclusion (Fig. 2.2).

3. Mathematical Model of the Problem

The relationship of the theory of elasticity for the region of a plane-stressed
plate has the form [23,24]:

— equilibrium equations:
∂σ11

∂x
+
∂σ12

∂y
+R1 = 0,

∂σ21

∂x
+
∂σ22

∂y
+R2 = 0,

; (3.1)

or in matrix form
[∂]T {σ}+ {R} = 0,

where
{
R1

R2

}
is a vector of volumetric forces, [∂] =

 ∂/∂x
0
∂/∂y

0
∂/∂y
∂/∂x

 is the

differentiation matrix, {σ} =


σ11

σ22

σ12

 is the stress vector(σ12 = σ21);
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— geometric equations (in Cauchy form):

ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
, γ12 =

∂u1

∂y
+
∂u2

∂x
(3.2)

or in matrix form
{ε} = [∂] {u} ,

where {u} =

{
u1(x, y)
u2(x, y)

}
is the displacement vector, {ε} =


ε11

ε22

γ12

 is the

deformation vector;
— physical equations:

ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
, γ12 =

∂u1

∂y
+
∂u2

∂x
(3.3)

which with respect to stresses have the form:
σ11 =

E

1− ν2
ε11 +

Eν

1− ν2
ε22, σ12 = γ12

E

2(1 + ν)
,

σ22 =
Eν

1− ν2
ε11 +

E

1− ν2
ε22,

(3.4)

in the matrix form {σ} = [E] {ε}, where [E] is the elastic matrix, ν is the Poisson’s
ratio,

[E] =


E

1−ν2
Eν

1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 E
2(1−ν)

 , {ε} =


∂u1
∂x

∂u2
∂y

∂u1
∂y + ∂u2

∂x

 (3.5)

The work of internal forces on possible displacements:

δU =
1

2

ˆ
Ω

(σ11δε11 + σ22δε22 + σ12δγ12) dΩ =
1

2

ˆ
Ω
{δε}T {σ} dΩ.

The work of external forces on possible displacements:

δA =

ˆ
L
{P}T {δu} dL,

where {P} =

{
px(x, y)

py(x, y)

}
is the external load vector.

In the case of a uniform uniaxial tensile load px(x, y) = p = const; py(x, y) =
= 0.

For FGM in formulas (3.3)–(3.5), we set E = E(x, y).
The functional of the total potential energy of deformation of a plate, which

is loaded in its plane, has the form:
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∏
=

1

2

ˆ
Ω
{δε}T {σ} dΩ−

ˆ
L
{P}T {δu} dL. (3.6)

4. Solution Method

The solution of the obtained variational problem was carried out using the
FEM [27]. The main idea of this method when analyzing the behavior of a
structure is as follows: a continuous medium (the structure as a whole) is modeled
by dividing it into subdomains (finite elements), in each of which the behavior of
the medium is described using a separate set of selected, so-called basis functions
representing stresses and move in the specified area. Within each finite element,
the selected continuous function is approximated by a polynomial of some degree.
As a result, the original variational problem is replaced by a discrete model, a
system of linear or nonlinear algebraic equations with unknown values of the
sought function at the nodes of the finite element mesh.

The calculations were carried out using triangular (six-node) Lagrangian finite
elements of the second degree (Fig. 4.3, a), while the unknown displacement
functions inside each finite element are approximated by a quadratic polynomial.
In the areas of stress concentration, an adaptive mesh with a refinement factor of
10 was used (Fig. 4.3, b).

Fig. 4.3. Breakdown of an area into finite elements: a) the type of the final element; b) a fragment
of an adaptive finite element mesh

5. Numerical Analysis

The calculations were carried out on a PC ARTLINE Gaming X75 (X75v16),
with an Intel Core i7-10700F processor with a clock rate of 2.9–4.8GHz, 32 GB of
RAM, an nVidia GeForce RTX 2060 SUPER video card, system bit width x64.
The number of finite elements is 1871, the number of nodes is 3885 The calculation
time on average is 4s.

Numerical studies were carried out for square plates of thickness t = 0.01m,
with sides a = b = 0.2m. The radius of the circular hole is R = a/20, the tensile
load is p = 10MPa.
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For the purpose of comparative analysis, a calculation was carried out for a
homogeneous plate with a circular hole without inclusion. Received SCF = 3.05;
the maximum values of the intensity of deformations in this case, which is in good
agreement with the results from [19].

As a result of the computational experiments using the FEM, the distribution
of the stress and strain intensities in the plate was obtained, the SCF was calculated
for uniaxial tension of the plate with inclusions from the FGM with the inclusion
width R and 2R.

When using FGM-inclusions 1, 2, 3 with the width of the inclusion h = R,
the SCF almost does not change. Calculations for these inclusions at h = 2R are
given in Table 1. Here, δ1 and δ2 are the deviation of SCF and the maximum

Problem SCF δ1, % εmax
i , 10−4 δ2, %

FGM inclusion 1 2,84 -6,9 1,93 -9,4

FGM inclusion 2 2,81 -7,9 1,89 -11,3

FGM inclusion 3 2,79 -8,5 1,85 -13,1

Table 1. Stress concentration factor and corresponding deformations in a plate with FGM-
inclusion at h = 2R

value of the intensity of deformation εmax
i from the corresponding value for the

plate without inclusion.
From Table. 1 it can be seen that in the case of an annular inclusion of width

2R from an FGM, the maximum deformations and SCF in a plate with a hole
are less than in a plate without inclusions. The smallest SCFs and strains were
obtained in the case of FGM inclusion 3.

In the presence of inclusions from FGM of width 2R, a redistribution of stresses
occurs along the section AB from the edge of the inclusion to its middle part. Thus,
the maximum stresses decrease, but the stresses increase along the width of the
inclusion in the section AB in the interval l ∈ [0, 1; 0, 7]. The nature of the stress
distribution is close to the parabolic pattern (Fig. 5.4).

The SCF and deformations under uniaxial tension of a plate with FGM
inclusions 4, 5, 6 with the width of the inclusion R and 2R are shown in Table 2
and Table 3 respectively.

In the case with the inclusion width h = R for all three variants of inclusions,
the SCF decreased by about 8%, and the maximum deformations by 13-17%
compared to the plate without inclusions. FGM-inclusion 6 turned out to be the
best from the point of view of reducing the concentration of SSS parameters (Fig.
5.5).
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Fig. 5.4. Distribution of relative stresses σy/p in a plate with an FGM-inclusion over the width
of the inclusion in the section AB at h = 2R

Problem SCF δ1, % εmax
i , 10−4 δ2, %

FGM inclusion 1 2,82 -7,5 1,85 -13,1

FGM inclusion 2 2,79 -7,5 1,80 -15,5

FGM inclusion 3 2,79 -8,5 1,76 -17,4

Table 2. Stress concentration factor and corresponding deformations in a plate with FGM-
inclusion at h = R

Fig. 5.5. Distribution of relative stresses σy/p in a plate with an FGM-inclusion over the width
of the inclusion in the section AB at h = R
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Analogical calculations were carried out for a plate with an inclusion width
equal to 2R. The results are shown in Table 3.

Problem SCF δ1, % εmax
i , 10−4 δ2, %

FGM inclusion 1 2,67 -12,8 1,76 -17,4

FGM inclusion 2 2,62 -14,4 1,70 -20,2

FGM inclusion 3 2,59 -15,4 1,64 -23,0

Table 3. Stress concentration factor and corresponding deformations in a plate with FGM
inclusion at h = 2R

Here, the SCF and the maximum deformations in the plate in the presence
of FGM inclusions also turn out to be less than in the case of a plate without
inclusions, and the stress across the width of the inclusion in the section AB
increases in the interval l ∈ [0, 1; 0, 7] (Fig. 5.6). The nature of stress distribution
in section AB for all three inclusions is similar. The best turns out to be FGM-
inclusion 6, which makes it possible to reduce the stress concentration by ∼ 15%,
and deformations by ∼ 23%.

Fig. 5.6. Distribution of relative stresses σy/p in a plate with an FGM-inclusion over the width
of the inclusion in the section AB at h = 2R

As an example (see Fig. 5.7), we show the distribution patterns of stress and
strain intensities in a plate with FGM-inclusion 1.
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Fig. 5.7. SSS components in a plate with FGM-inclusion 1 at h = 2R:
a) stress intensity; b) the intensity of stresses in the vicinity of the hole; c) the intensity of
deformations

6. Conclusions

As a result of the computer simulation and numerical study of the effect of
a change in the elastic modulus of an inclusion in the radial direction on the
distribution of stress and strain intensities in a thin homogeneous plate near a
circular hole, it has been established that in the presence of FGM inclusions with
certain mechanical properties, it becomes possible to influence not only the SCF
value in plate near local stress concentrators, but also on the stress distribution
over the width of the inclusion. In a comparative analysis of the results obtained
for a plate with an FGM inclusion and a plate without an inclusion, it was
shown that the use of FGM inclusions is effective. This makes it possible to
simultaneously reduce the concentration of SSS parameters (stresses and strains)
around the hole and increase the strength of the plate as a whole.

The nature of the stress distribution in the plate is influenced by both the
width of the FGM inclusion and the law of change in the modulus of elasticity:
the larger the width of the inclusion and the larger the region with the maximum
value of the elastic modulus of the inclusion, the greater the effect of the inclusion
on the value of SCF and the magnitude of maximum deformations. The influence
of the range of the change in the value of the elastic modulus is also established:
the greater it is, the greater the effect on the value of the SCF in the plate.
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