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Abstract. The paper suggests an approach to modeling of industrial enterprises providing
production according to the set standard with admissible tolerances and requirements. The
mathematical model has the form of a discrete control system. We use the properties of
generalized inverse matrices to design the control. We present an algorithm of the control
of a production process providing release of production. This approach allows to simulate
the technological processes (including metallurgical, chemical, energy, etc.) and gives the
operating conditions under the constant influence of internal and external destabilizing
factors.
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1. Introduction

Nowadays the problem of improving the efficiency of the production enterprise
management is of constant interest to the researchers. The problem is related to
the improvement of the operations management and production planning system
at the enterprise level. The main purpose of organization of the planning processes
is to ensure thorough fulfillment of the production tasks together with maximal
utilization of the production resources. This allows timely fulfillment of the obliga-
tions to produce outputs by the time they are required at the next production
line, guarantees the optimal duration of the production cycle, and leads to the
reduction of work in progress and to the minimization of shortages.

It is advisable to use the methods of mathematical modeling and simulation
to create a technology of planning in production. Approaches to the mathematical
modeling of production processes in an enterprise as a whole and in its individual
production centers are underdeveloped. Therefore, it is necessary to create the
techniques which allow describing the production processes in the strict mathema-
tical terms. The authors suggest an approach which can be practically integrated
into wide classes of the information platforms for manufacturing enterprises: MRP
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II (Manufacturing Resource Planning), ERP (Enterprise Resource Planning), APS
(Advanced Planning & Scheduling Systems) and MES (Manufacturing Execution
Systems). Given the high level of the automation of production, the introduction
of effective tools in the form of production planning system class APS (Advanced
Planning & Scheduling Systems) in combination with MES - systems (Manufactu-
ring Execution Systems) provides high-precision production process planning in
real time [1, 2].

2. Mathematical Model of the Production Process Management
System of an Industrial Enterprise

Considering the problem of designing the control which ensures the execution
of the production process in accordance with the established standards the authors
have reviewed the mathematical model of the production control system of an
industrial enterprise. Having analyzed the problems of the automation of the
enterprise management systems the authors intend to suggest an algorithm for
the automation of the production process using the technique of genelized inver-
tion [2].

The production process of a modern enterprise consists of a set of measures
to produce finished, semi-finished or other products. One of the main tasks of
industrial development is the introduction of the new products, machine and
equipment designs, automation tools, the latest technologies, etc. Each product
industry has its own specifics depending on the type of production, purpose, size
and accuracy of the machines, level of production and technical equipment. In
general case, automation of the production is a stage of machine production,
characterized by the release of the human factor from the direct performance of
the management functions in the production processes and the delegation of these
functions to the information and computing systems [3]. Control is a purposeful
action on the object to ensure its operation in the optimal or specified mode
within acceptable tolerances.

Automation of the production processes does not exclude a person completely
from the value chain. Automation rather means the most rational distribution
of computing and production load at each production center. The proportions of
such distribution depends on the specific enterprise and the goals of automation.
The enterprise automation processes are subject to certain requirements, without
which they become inefficient and difficult to implement.

Firstly, a process management model is a must. At present, significant number
of the enterprises operate on the basis of a system-functional approach, which
preceded the process approach. The complexity of the transition to the process
management model depends on the scale and specifics of an enterprise.

Secondly, compliance of the current model of the enterprise processes with the
technical criteria used in their automation is a very important requirement.

Nowadays at modern enterprises it is impossible to organize a serial production
of the quality products without automation of the process of control over the
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parameters of production processes. We suggest a mathematical model for solving
the similar problems of the manufacturing plants, to ensure the stability of produc-
tion processes with real-time control of key production parameters. This model can
be integrated into an automated enterprise management system. The property of
functional stability of complex technical systems must be realized. It means that
the technological process must perform its main technological tasks as intended
under the influence of external and internal destabilizing factors [4].

The automation stage allows re-engineering of the processes. The purpose
of reengineering is to find and overcome the bottlenecks in the enterprise. It is
necessary to monitor the production potential, to identify the opportunities for
expansion of the production system of the enterprise, the resources that are not
used rationally, and so on. It is important to prepare the companies for the re-
engineering process. It is necessary to bring the structures of its processes in
the most efficient configuration and in the most efficient form. It is necessary to
ensure strict compliance with the requirements for the technological process at
each production center in accordance with the standards, with the deviations only
within the permissible tolerance standards.

In practice, the principal characteristics of integrated automated enterprise
management systems are widely implemented for this purpose. These systems
automate a wide range of the management functions, including the tasks of
strategic, production and financial planning, operational management of supply,
procurement, and inventory. In addition, they automate the tasks of design,
technological and technical preparation of production, etc.

Automation of the modern technological processes leads to the creation of
the complex dynamic models. The behavior of such models has a fractal struc-
ture [5]. Many processes are described by nonlinear dynamical systems of complex
structure that have global attractors [6–8]. At the same time problems of control
arise in such systems [9–13].

Producing usually consists of a number of stages, at each of which there are
certain requirements for the parameters and characteristics of the raw materials,
semifinished and finished products. Denote by x(i) the vector of parameters at i
-th stage, i = 1, 2, . . . N (2.1). At each stage there is an external influence u(i)
on the production process to obtain the desired parameters (work effect, energy
effect, chemical or other technological influences at each stage). It is clear that the
final quality of the product, as well as the intermediate quantity at each stage,
depends on the strict adherence to the technology and ensuring the endurance of
the necessary parameters at each previous step. We assume that this requirement
holds.

Also we denote by A(i) a matrix of dependence of product quality indicators at
i+1-st stage on the indicators at i-th stage, and by C(i) a matrix that determines
the structure of influence on the production process u(i). Then the mathematical
model of the technological process can be written as follows

x (t+ 1) = A (t)x (t) + C (t)u (t) , t = 0, 1, . . . , N − 1, (2.1)
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Fig. 2.1. Topology of linear technological production process

x(t) ∈ Rn, A(t) ∈ Rn×n, C(t) ∈ Rn×m, u(t) ∈ Rm.

Here we denote by Rn the n-dimensional Euclidean space with the Euclidean norm
‖·‖ in it, x = (x1, x2, . . . , xn)T is a state vector of system (2.1), u = (u1, . . . , um)T

is a control vector, A(t) is an n × n matrix, C (t) is an n × m matrix, t =
0, 1, . . . , N − 1. Let IN = {0, 1, . . . , N}, x(t, x0, u) be a solution of system (2.1),
t ∈ IN under the control u (t), t ∈ IN−1.

We admit that there is an accurately defined set of certain works and a number
of criteria in order to fulfill during realization of process. It means that we know
characteristics of the process at the initial stage, requirements for products at the
end of the process, and intermediate characteristics of products at control points
at stages of this process. At the same time, in the automation of such processes
in practice it is necessary to set control tasks describing the design conditions for
the control function u providing controlled purposeful execution of the process.
In addition, it is advisable to provide conditions for practical stability for these
processes [13–18].

3. Control Design

The main problem we analyze consists of finding the control function providing
execution of the process, so that the result of the process ensures ultimately
in x(N) products that meet all the quality characteristics required by current
standards for it.

The purpose of designing a control function u is to ensure that the process
is performed in such a way that we end up with a product that meets all the
characteristics required by the standards. If at the end of the process the product
has deviations from the specified standard parameters, then such deviations are
guaranteed to fall into the set of permissible tolerances, which are defined by
current standards for such products [2]. This means that there is a desired final
state xN ∈ Rn and a positive parameter ε > 0 such that

‖x (N)− xN‖ < ε.

Let us define a set of admissible controls. To do this, we consider space `(m)
2

of sequences of vectors from Rm such that if u ∈ `(m)
2 then

∑∞
t=0 ‖ u(t) ‖2< ∞,
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u (t) ∈ Rm, t = 0, 1, 2, . . . . `(m)
2 is a real Hilbert space with inner product

〈u, v〉`2 =

∞∑
t=0

〈u (t) , v(t)〉 , u, v ∈ `(m)
2

and norm

‖ u ‖`2=

√√√√ ∞∑
t=0

‖u(t)‖2 <∞.

We assume that a control function u is admissible if u ∈ `
(m)
2 and u(t) = 0,

t = N + 1, N + 2, . . . .
Denote Θ (t) = At−1At−2 . . . A1A0, Θ (t, s) = At−1At−2 . . . As, Θ (t, t) = E,

where E is the identity matrix, t, s ∈ IN . The problem is to find a control that
moves the system (2.1) from the initial state x(0) = x0 to the nearest point x(N)
to a given state xN [12]. This way we get the problem of minimization

I(u) = ‖x(N, x0, u)− xN‖ (3.1)

on the solutions of system (2.1) with the initial condition x(0) = x0. Here
x(N, x0, u) denotes the value of the solution of system (2.1) with the initial
condition x(0) = x0 for an admissible control u ∈ `

(m)
2 at the moment t = N .

Since

x(N, x0, u) = Θ (N)x0 +
N−1∑
k=0

Θ (N, k)C (k)u (k) ,

then the substitution of the last equality in (3.1) gives

I(u) = ‖x(N, x0, u)− xN‖ = ‖Θ (N)x0 +

N−1∑
k=0

Θ (N, k)C (k)u (k)− xN‖

= ‖
N−1∑
k=0

W (k)u (k)− c‖, (3.2)

where c = xN −Θ(N)x0,

W (t) = Θ (N, t)C(t), W T (t) = (w1(t) w2(t) . . . wn(t)) ,

wj(t) ∈ Rm, t ∈ IN−1, j = 1, 2, . . . , n are vectors describing the matrix W (t)
rows, t ∈ IN−1. At the same time, one can observe that

H = {w1 (·) , w2 (·) , . . . , wn (·)} ⊂ `(m)
2

and wj (t) = 0, t = N,N + 1, . . . , j = 1, 2, . . . , n.
We define a linear manifold L = Lin H. Since `(m)

2 is Hilbert space then `(m)
2

decomposes into a direct sum

`
(m)
2 = L⊕ L⊥,
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where L⊥ is an orthogonal complement to L. Any control u ∈ `
(m)
2 can be

represented as follows

u (t) = u0 (t) + v (t) , t= 0, 1, . . . . (3.3)

Here u0 ∈ L, v ∈ L⊥. Therefore

〈u0, v〉`2 = 0

for u0 ∈ L. Since u0 ∈ Lin H there exists a vector λ = (λ1, λ2, . . . , λn)T such that

u0 (t) = λ1w1 (t) + λ2w2 (t) + λnwn (t) = W T (t)λ ∈ Im(W T (t)).

Here Im(·) denotes an image of a linear operator. From (3.3) we have

u (t) = W T (t)λ+ v (t) , t= 0, 1, . . . . (3.4)

Observe that
∑N−1

k=0 W (k) v (k) = 0 since v ∈ L⊥. Substituting (3.4) in (3.2)
transforms problem (3.1) into

J (λ) = ‖
N−1∑
k=0

W (k)W T (k)λ− c‖ → min
λ∈Rn

, (3.5)

c = xN −Θ(N)x0. We see that v ∈ L⊥ does not affect the solution (3.1), it plays
the role of an invariant and it can be considered zero. Using the properties of
generalized inversion [19] we obtain the solution of problem (3.5)

λ̂ = Φ+(N)c+ z, (3.6)

where Φ(N) =
∑N−1

k=0 W (k)W T (k), Φ+(N) is a generalized inverse matrix to the
matrix Φ(N), z ∈ Ker(Φ(N)) is an arbitrary vector [19].

Since Ker(Φ(N)) = ZNRn, ZN = Z (Φ(N)) = E − Φ+(N)Φ(N) is the
projection operator onto Ker(Φ(N)), then (3.6) has the following representation

λ̂ = Φ+(N)c+ ZNp, (3.7)

where p ∈ Rn, c = xN − Θ(N)x0 [19]. Formula (3.7) describes the set of all
solutions of problem (3.4). Note that among the vectors that solve the problem
(3.5), the vector

λ̂ = Φ+(N)c

has the smallest norm. This follows from the properties of generalized inverse
matrices. Substituting (3.7) in (3.4) at v(t) = 0, t ∈ IN−1 gives

u (t) = W T (t) Φ+(N) (xN −Θ(N)x0) +W T (t)ZNp. (3.8)

p ∈ Rn, t ∈ IN−1. Formula (3.8) solves problem (3.1). If p = 0 then

u (t) = W T (t) Φ+(N) (xN −Θ(N)x0) , t ∈ IN−1.
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Substituting (3.8) in (3.5) we obtain

I(u) = J(λ̂) = ‖Φ(N)λ̂− c‖ = ‖Φ(N)Φ+(N)c+Φ(N)ZNp− c‖.

Since ZNp ∈ Ker(Φ (N) then Φ(N)ZNp = 0. Therefore

I(u) = ‖Φ(N)Φ+(N)c− c‖ = ‖(I − Φ(N)Φ+(N))c‖.

Since Y (Φ(N)) = Φ(N)Φ+(N) is a projector onto the image Im(Φ(N)) of
the matrix Φ(N), Z(ΦT (N)) = E − Φ(N)Φ+(N) is a projector onto the kernel
Ker

(
ΦT (N)

)
of the matrix ΦT (N) [19], then

I(u) = ‖Y (Φ(N))c− c‖ = ‖Z(ΦT (N))c‖. (3.9)

Formula (3.9) shows how accurately we can move system (2.1) from the point
x (0) = x0 to the state x (N) = xN . From (3.9) it follows, that I(u) = 0 if and
only if (Φ(N))c = c or Z(ΦT (N)) = 0. Thus the following statement is true.

Theorem 3.1. The control function

u (t) = W T (t) Φ+(N) (xN −Θ(N)x0) +W T (t)ZNp (3.10)

moves system (2.1) from the initial state x(0) = x0 to the nearest point x(N) to
a given state xN . Here p ∈ Rn, t ∈ IN−1, ZN = Z (Φ(N)) = E − Φ+ (N) Φ (N).
Moreover

‖x(N)− xN‖ = ‖Y (Φ(N))c− c‖ = ‖Z(ΦT (N))c‖
describes Euclidean distance from x (N) to xN , where c = xN − Θ(N)x0. If
Y (Φ(N))c = c so that c = xN − Θ(N)x0 belongs to the image Im(Φ(N)) of
the matrix Φ(N), then (3.10) moves system (2.1) from x(0) = x0 to the point
x (N) = xN .

Note that control function (3.10) solves the problem for arbitrary x0, xN if
and only if Z(ΦT (N)) = 0 or in equivalent form Φ(N)Φ+(N) = E. Since the
matrix Φ(N) is symmetric of n× n, this means that Φ+(N) = Φ−1(N).

Theorem 3.2. Among the control functions that moves system (2.1) from x (0) =
x0 to the nearest state x (N) to the point xN , the function

u∗ (t) = W T (t) Φ+(N) (xN −Θ(N)x0) , t ∈ IN−1 (3.11)

has the smallest norm in `(m)
2 .

Proof. From the proof of theorem (3.1) it follows that the admissible control u
moving system (2.1) from x (0) = x0 to the nearest point to xN x (N) satisfies
(3.3), where u0 = u∗ + z0 ∈ L, u∗ is determined by (3.11), z0(t) =W T (t)ZNp,
p ∈ Rn, t ∈ IN−1, v ∈ L⊥. Then

‖u‖2`2 = 〈u, u〉`2 = 〈u0 + v0, u0 + v0〉`2
= 〈u0, u0〉`2 + 〈v0, v0〉`2 + 2〈u0, v0〉`2 = 〈u0, u0〉`2 + 〈v0, v0〉`2
> 〈u0, u0〉`2 = 〈u∗ + z0, u∗ + z0〉`2 = 〈u∗, u∗〉`2 + 〈z0, z0〉`2 + 2〈u∗, z0〉`2 .
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Since ZNp ∈ KerΦ(N) we have Φ(N)ZNp = 0 and

〈u∗, z0〉`2 =

N−1∑
t=0

〈
W T (t) Φ+(N) (xN −Θ(N)x0) ,W T (t)ZNp

〉
=

〈
Φ+(N) (xN −Θ(N)x0) ,

N−1∑
t=0

W (t)W T (t)ZNp

〉
=
〈
Φ+(N) (xN −Θ(N)x0) ,Φ(N)ZNp

〉
= 0.

Finally, we obtain

‖u‖2`2 > 〈u∗, u∗〉`2 + 〈z0, z0〉`2 > 〈u∗, u∗〉`2 = ‖u∗‖2`2 .

The last inequality proves the theorem.

4. Algorithm of Control of Production Process

We offer an algorithm of control design of the production process, which
ensures the production according to a standard in compliance with the permissible
standards of tolerances at a production plant.

Step 1. Given the initial state x (0) = x0 and the final state x (N) = xN , the
parameter ε > 0 determining the set of possible deviations (tolerances) for
the product from the requirements of the standard, the matrices A(t), C(t),
t = 0, 1, . . . N − 1.

Step 2. Find the matrices

Θ(N) = AN−1AN−2 . . . A1A0, Θ (N, t) = AN−1AN−2 . . . At,

W (t) = Θ (N, t)C(t), t = 0, 1, . . . N − 1.

Step 3. Find the matrix Φ(N) =
∑N−1

k=0 W (k)W T (k).

Step 4. Find the generalized inverse matrix Φ+(N).

Step 5. Find the control function

u (t) = K (t) (xN −Θ(N)x0) ,

where K (t) = W T (t) Φ+(N) for all t = 0, 1, . . . N − 1.

Step 6. Find the matrix ZN = E − Φ+(N)Φ(N). If the condition

‖ZN (xN −Θ(N)x0)‖ < ε

is true then the control u (t) solves the problem with specified tolerances

‖x (N)− xN‖ < ε.

Otherwise the control u (t) ensuring the producing of products with given
tolerances does not exist. End of the algorithm description.
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5. Conclusion

In this paper we have analyzed the modern approaches to the automation of
production process management in the industrial enterprises, we have solved the
problem of designing of a control function that ensures the implementation of
the production process. As a result of the process, we get a finished product that
meets all the characteristics required by the current standards. We propose an
algorithm for automating the atomic process of production.

The research results are important for the design, modernization and integrati-
on of the enterprise information systems into one generalized enterprise information
system. This will ensure their high efficiency in operation. The lack of such
solutions in our country and abroad makes research results a priority.

We see the prospects for further research in the design and improvement of the
models and methods for constructing functionally stable technological processes
that are integrated into the information system of the enterprise. This approach
ensures the efficiency of the information infrastructure during the time required to
perform the technological processes and sustainable operation of the enterprise as
a whole. In doing so, we will take into account the specific needs of the enterprises
operating in the sectors with continuous production cycle, such as metallurgy,
energy, chemical industry and so on.
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