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Abstract. A 1-parameter initial boundary value problem (IBVP) for a linear homogeneous
degenerate wave equation (JODEA, 28(1), 1 вЂ“ 42) in a space-time rectangle is considered.
The origin of degeneracy is the power law coefficient function with respect to the spatial
distance to the symmetry line of the rectangle, the exponent being the only parameter of
the problem, ranging in (0,1) and (1,2) and producing the weak and strong degeneracy
respectively. In the case of weak degeneracy separation of variables is used in the rectangle
to obtain the unique bounded continuous solution to the IBVP, having the continuous
flux. In the case of strong degeneracy the IBVP splits into the two derived IBVPs posed
respectively in left and right half-rectangles and solved separately using separation of
variables. Continuous matching of the obtained left and right families of bounded solutions
to the IBVPs results in a linear integro-differential equation of convolution type. The
Laplace transformation is used to solve the equation and obtain a family of bounded
solutions to the IBVP, having the continuous flux and depending on one undetermined
function..

Key words: degenerate wave equation, separation of variables, linear integro-differential
equation of convolution type, Laplace transformation.
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1. Introduction and Setting of the Problem

The current study is a sequel to [2] and deals with the following 1-parame-
ter simplified initial boundary value problem (IBVP) for the degenerate wave
equation in the space-time rectangle [0, T ]× [−1,+1]



∂2u(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(−1,+1) ,

u(t,−1;α) = h2(t;α)

u(t,+1;α) = h1(t;α)

}
, t ∈ [0, T ] ,

∂u(0, x;α)

∂t
=
∗∗
u(x;α)

u(0, x;α) =
∗
u(x;α)

 , x ∈ [−1,+1] ,

(1.1)
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where known control functions h1(t;α), h2(t;α)∈C 1[0, T ]
⋂

C 2(0, T ] obey the com-
patibility conditions: h1(0;α)=

∗
u(+1;α), h ′1(0;α)=

∗∗
u(+1;α), h2(0;α)=

∗
u(−1;α),

and h ′2(0;α)=
∗∗
u(−1;α), and the 1-parameter family of coefficient functions is de-

fined as follows
a(x;α) = |x|α, x ∈ [−1,+1] , (1.2)

the parameter α∈(0, 2), and all the dependent and independent variables are non-
dimensional. Simplification of the IBVP (1.1) compared to that of [2] is in exten-
ding the power law for the coefficient function to the segment [−1,+1]. One should
refer to [2] to find out more details on the problem formulation.

The degenerate wave equation of the IBVP (1.1) has non-unique one-sided
solutions, obtained in [2] as the following power series

u1,j(t, x;α) =

∞∑
γ=0

U1,j,γ(t;α) |x|γθ,

u3,j(t, x;α) = U3,j(t;α) + |x|ν U3,j,0(t;α) ,

u5,j(t, x;α) = U5,j(t;α) + |x|ν
∞∑
γ=0

U5,j,γ(t;α) |x|γθ,

(1.3)

where ν = 1 − α, θ = 2 − α, the values {1, 3, 5} of the first subscript k refer to
the kind of the above solutions, and the values {1, 2} of the second subscript j
refer to the values x>0 and x<0 respectively. The coefficient functions of the so-
lutions u1,j(t, x;α) and u5,j(t, x;α) obey the following recurrence relations{

U ′′1,j,γ−1(t;α) = γθ [γθ − ν]U1,j,γ(t;α) ,

U ′′5,j,γ−1(t;α) = γθ [γθ + ν]U5,j,γ(t;α) ,
γ ∈ N .

and the function U5,j(t;α) is linear: U ′′5,j(t;α) = 0, whereas both coefficient func-
tions U3,j(t;α), U3,j,0(t;α) are linear: U ′′3,j(t;α) = 0, U ′′3,j,0(t) = 0. Note, that
the solution of the third kind is derived from the fifth one when U ′′5,j,0(t;α)=0.

The solution of the first kind is bounded for α ∈ (0, 2), whereas the solutions
of the third and fifth kind are bounded for α ∈ (0, 1] and unbounded for α ∈ (1, 2).
An other representation of the solutions of the first and fifth kinds, showing their
relation to the Bessel functions of the first kind and orders ∓%, reads as follows

u1,j(t, x;α) = |x|
ν
2

(
s−%

∞∑
γ=0

U1,j,γ(t;α) s2γ

)
,

u5,j(t, x;α) = U5,j(t;α) + |x|
ν
2

(
s+%

∞∑
γ=0

U5,j,γ(t;α) s2γ

)
,

(1.4)

where %θ = ν and the auxiliary variable s = |x|
θ
2 is used.
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The spatial derivatives of the solutions (1.3)

qk,j(t, x;α) =
∂uk,j
∂x

= sign (x)



|x|ν θ
∞∑
γ=1

γ U1,j,γ(t;α) |x|(γ−1)θ,

|x|−α ν U3,j,0(t;α) ,

|x|−α
∞∑
γ=0

[ν + γθ]U5,j,γ(t;α) |x|γθ

(1.5)

are bounded in the case of weak degeneracy (α∈(0, 1)) and unbounded in the case
of strong degeneracy (α ∈ (1, 2)) for the first kind, and always unbounded for
the third and fifth kinds. The fluxes of the solutions (1.3)

−fk,j(t, x;α) = a qk,j =



x θ
∞∑
γ=1

γ U1,j,γ(t;α) |x|(γ−1)θ,

sign (x) ν U3,j,0(t;α) ,

sign (x)
∞∑
γ=0

[ν + γθ]U5,j,γ(t;α) |x|γθ

(1.6)

are bounded, but have quite different nature at the interior degeneracy: the flux of
the first kind is vanishing at the degeneracy and, therefore, continuous; whereas
the two others have generally non-vanishing values of opposite signs. The odd-
behavior of the one-sided fluxes of the fifth kind prompts us the way of their
continuous matching.

In the current study we shall try to continuously match the one-sided solu-
tions (1.3) of the first and fifth kinds (therefore, the subscript k takes values {1, 5})
to find bounded solutions to the IBVP (1.1) using the method of separation of va-
riables (SV) and implying an analogy of the required solutions with a continuous
imaginary ‘string’. The current study is arranged as follows.

In Section 2 we: 1) give some preliminaries on SV in relation to the original
IBVP in the case of weak degeneracy and based on the one-sided solutions of
kinds 1, 5, both continuous and improving to have the continuous fluxes; 2) split
the original IBVP posed in the space-time rectangle [0, T ]× [−1,+1] and descri-
bing the behavior of the continuous ‘string’, into the derived IBVP2 posed in
the left space-time rectangle [0, T ] × [−1, 0]) and the IBVP1 posed in the right
space-time rectangle [0, T ] × [0,+1]), describing respectively the behaviour of
the left and the right parts of the ‘string’ separately in the case of strong de-
generacy; 3) formulate the conditions for continuous matching the bounded so-
lutions u1,j(t, x;α) to the IBVPj and expressing the integrity of the ‘string’ and
continuity of the flux; 4) apply the method of SV to find the unique bounded solu-
tions u(t, x;α) to the IBVP in the case of weak degeneracy, continuous and having
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the continuous flux; 5) apply the method of SV to find families of bounded solu-
tion u1,j(t, x;α) to the IBVPj in the case of strong degeneracy, having the continu-
ous flux and depending on undetermined functions hj+2(t;α)∈C 1[0, T ]

⋂
C 2(0, T ];

6) apply the continuity condition to the solutions u1,j(t, x;α) to derive a linear
integro-differential equation of convolution type with respect to the required func-
tions hj+2(t;α).

In Section 3 we solve the above integro-differential equation with respect to
the difference h3(t;α) − h4(t;α) and show that one of the two functions can be
chosen quite freely, that is, the bounded solutions to the IBVP of the resulting
family are continuous and have the continuous fluxes.

In Section 4 we summarize the results obtained and some observations on
the procedures applied.

In Section 2 we place some useful rules to calculate the coefficients of expansions
in the series of the eigenfunctions used in Section 2.

2. Method of Separation of Variables

2.1. Preliminaries to SV

Implementing SV to the IBVP (1.1) is essentially based on the following two
assertions.

Proposition 2.1. Let the following incomplete 1-parameter boundary value prob-
lems be given

[
a(x;α)Z ′j (x;α)

]′
+ λj(α)Zj(x;α) = 0 , 0 < |x| < 1 ,

Zj(∓1;α) = 0 ,
(2.1)

then: 1) the eigenvalues and the eigenfunctions of the problems of the two kinds(
λk,j,µ(α), Zk,j,µ(x;α)

)
≡
(
λk,µ(α), Zk,µ(x;α)

)
(marked with the first subscript

k ∈ {1, 5}) are defined as follows
λ1,µ(α) =

(
θ

2
s1,µ

)2

≡ σ2
1,µ , Z1,µ(x;α) = |x|

ν
2 J−%

(
s1,µ |x|

θ
2

)
,

λ5,µ(α) =

(
θ

2
s5,µ

)2

≡ σ2
5,µ , Z5,µ(x;α) = |x|

ν
2 J+%

(
s5,µ |x|

θ
2

)
,

(2.2)

where ν, θ, % are the α-dependent quantities

ν(α) = 1− α , θ(α) = 2− α , %(α) =
ν

θ
=

1− α
2− α

; (2.3)

J∓%(s) are the Bessel functions of the first kind and orders ∓% [7];
{
sk,µ

}∞
µ=1

are the unbounded monotonically increasing sequences of the zeros of functions



Solutions to a simplified IBVP for 1D degenerate wave equation 5

J∓%(s); 2) the eigenfunctions (2.2) of each kind are orthogonal in L2(−1, 0) and
L2(0,+1) respectively, that is

∓
ˆ ∓1

0
Zk,µ(x;α)Zk,γ(x;α) dx =

1

θ
J 2
∓%+1(sk,µ) δµ,γ ≡ ‖Zk,µ‖2δµ,γ , (2.4)

where µ, γ ∈ N , and δµ,γ is the Kronecker delta.

Proof. We start proving the first part of the proposition from representing the eigen-
functions (2.2) in such a generic formulation

Zk,µ(x;α) = |x|
ν
2 Z%(s) , s=sk,µ |x|

θ
2 , (2.5)

where the generic Bessel function Z%(s) stands for the Bessel functions J∓%(s) of
the first kind and satisfies the ordinary differential equation

s2 Z′′%(s) + s Z ′%(s) +
(
s2 − %2

)
Z%(s) = 0 .

Differentiating the generic eigenfunction (2.5) with respect to x yields to

Z ′k,µ(x;α) = sign (x)

[
ν

2
|x|

ν
2−1

Z%(s) +
θ

2
sk,µ |x|

ν
2 +

θ
2−1

Z ′%(s)

]
,

a(x;α)Z ′k,µ(x;α) = sign (x)

[
ν

2
|x|
−ν2 Z%(s) +

θ

2
sk,µ |x|

−ν2 +
θ
2 Z ′%(s)

]
,

[
a(x;α)Z ′k,µ(x;α)

]′
= |x|

−ν2−1
[
−
(
ν

2

)2

Z%(s) +

(
θ

2

)2(
s2 Z′′%(s) + s Z ′%(s)

)]

= −
(
θ

2
sk,µ

)2

|x|
ν
2 Z%(s) = −σ2

k,µ Zk,µ(x) ,

wherefrom we conclude, that the functions (2.2) indeed satisfy the differential
equation of the problems (2.1). This completes the proof of the first part of
the proposition.

To prove the second part of the proposition, we use:

1) the variable transformation s = x
θ
2 when calculating the integral

ˆ 1

0
Zk,µ(x;α)Zk,γ(x;α) dx =

2

θ

ˆ 1

0
s Z%

(
sk,µ s

)
Z%
(
sk,γ s

)
ds ;

2) the known value of the last integral [7]
ˆ 1

0
s Z%

(
sk,µ s

)
Z%
(
sk,γ s

)
ds =

1

2
Z 2
%+1(sk,µ) δµ,γ .

This completes the proof of the second part of the proposition.
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Proposition 2.2. Let the following composite 1-parameter boundary value prob-
lem be given

[
a(x;α)X ′(x;α)

]′
+ λ(α)X(x;α) = 0 , 0 < |x| < 1 ,

X(∓1;α) = 0 ,
[
X(x;α)

]∣∣
x=0−0

=
[
X(x;α)

]∣∣
x=0+0

,[
a(x;α)X ′(x;α)

]∣∣
x=0−0

=
[
a(x;α)X ′(x;α)

]∣∣
x=0+0

,

(2.6)

then: 1) in the case of weak degeneracy, the eigenvalues and the eigenfunctions
of the problem of the two kinds (marked with the first subscript k ∈ {1, 5}) are
defined as follows{

λ1,µ(α) = σ2
1,µ , X1,µ(x;α) = Z1,µ(x;α) ,

λ5,µ(α) = σ2
5,µ , X5,µ(x;α) = sign (x)Z5,µ(x;α) ,

(2.7)

where σ2
k,µ and Zk,µ(x;α) are given in (2.2) of Proposition 2.1; 2) the eigenfunc-

tions (2.7) of both kinds are orthogonal in L2(−1,+1), that is


ˆ +1

−1
Xk,µ(x;α)Xk,γ(x;α) dx = 2 ‖Zk,µ‖2δµ,γ ≡ ‖Xk,µ‖2δµ,γ ,

ˆ +1

−1
X1,µ(x;α)X5,γ(x;α) dx = 0 .

(2.8)

Proof. From Proposition 2.1 it follows that the functions Xk,µ(x;α) (2.7) satisfy
the differential equation of the boundary value problem, hence, we concentrate
our efforts on calculating the one-sided values of Xk,µ(x;α) and a(x;α)X ′k,µ(x;α)
at the interior degeneracy location. Substituting the known power series [7]

Z%(s) = J∓%(s) =
(s

2

)∓% ∞∑
γ=0

(−1)γ

γ! Γ(1 + γ ∓ %)

(s
2

)2γ
(2.9)

into (2.5) obtains the series representations for the quantities of interest
X1,µ(x;α) =

(s1,µ

2

)−% ∞∑
γ=0

(−1)γ |x|γθ

γ! Γ(1− %+ γ)

(s1,µ

2

)2γ

,

X5,µ(x;α) = sign (x) |x|ν
(s5,µ

2

)+% ∞∑
γ=0

(−1)γ |x|γθ

γ! Γ(1 + %+ γ)

(s5,µ

2

)2γ

,

(2.10)


a(x;α)X ′1,µ(x;α) =

(s1,µ

2

)−%
θ x

∞∑
γ=1

(−1)γγ |x|(γ−1)θ

γ! Γ(1− %+ γ)

(s1,µ

2

)2γ

,

a(x;α)X ′5,µ(x;α) =
(s5,µ

2

)+% ∞∑
γ=0

(−1)γ [ν + γθ] |x|γθ

γ! Γ(1 + %+ γ)

(s5,µ

2

)2γ

.

(2.11)
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The resulting series (2.10), (2.11) yield to the required values

X1,µ(0;α) =
(s1,µ

2

)−% 1

Γ(1− %)
, α ∈ (0, 2) ,

X5,µ(0;α) = 0 , α ∈ (0, 1) ,

sign (x) lim
x→0
|x|−ν X5,µ(x;α) =

(s5,µ

2

)+% 1

Γ(1 + %)
, α ∈ [1, 2) ,

(2.12)


[
a(x;α)X ′1,µ(x;α)

]∣∣
x=0

= 0 ,

[
a(x;α)X ′5,µ(x;α)

]∣∣
x=0

=
(s5,µ

2

)% ν

Γ(1 + %)
6= 0 ,

α ∈ (0, 2) , (2.13)

and this completes the proof of the first part of the proposition.
Orthogonality of the eigenfunctions of each kind directly follows from Propo-

sition 2.1, therefore, our concern is orthogonality of the eigenfunctions of the diffe-
rent kinds, that can be quite easily proved, indeed,

ˆ +1

−1
X1,µ(x;α)X5,γ(x;α) dx

=

ˆ 0

−1
X1,µ(x;α)X5,γ(x;α) dx +

ˆ +1

0
X1,µ(x;α)X5,γ(x;α) dx

= −
ˆ 0

−1
Z1,µ(x;α) Z5,γ(x;α) dx +

ˆ +1

0
Z1,µ(x;α) Z5,γ(x;α) dx

= −
ˆ +1

0
Z1,µ(x;α) Z5,γ(x;α) dx +

ˆ +1

0
Z1,µ(x;α) Z5,γ(x;α) dx = 0 .

This completes the proof of the second part of the proposition.

Before implementing the method of SV, we make some notes.
First, to build the eigenfunctions Z5,µ(x;α), we use the Bessel functions of

the first kind and order +%, rather than the proper Neumann functions [7],
to simplify our analysis of the IBVP. It means that the integer values of order −%

−% = −1− α
2− α

= m ∈ Z ⇔ α =
2m+ 1

m+ 1

can not be considered, i. e., the values of α = 1, 3
2 ,

5
3 ,

7
4 , etc., produced by the values

of m = 0, 1, 2, 3, etc.
Second, to guarantee uniform convergency of the expansions in series of the

eigen-functions Z1,µ(x;α), Xk,µ(x;α), based on the Bessel functions J∓%(s), we
have to impose the following restriction [6, 7] on the values of %

−1

2
6 % =

1− α
2− α

6 +
1

2
.
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Third, to solve the IBVP (1.1) in the case of weak degeneracy, we apply
the bounded eigenfunctions of Prop. 2.2.

Fourth, in the case of weak degeneracy we reduce solving the IBVP (1.1) to
the following two-step procedure: 1) solving the derived initial boundary value
problems

∂2u1(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u1(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(0,+1) ,

u1(t,+1;α) = h1(t) , t ∈ [0, T ] ,

∂u1(0, x;α)

∂t
=
∗∗
u(x)

u1(0, x;α) =
∗
u(x)

 , x ∈ [0,+1] ,

(2.14)



∂2u2(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u2(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(−1, 0) ,

u2(t,−1;α) = h2(t) , t ∈ [0, T ] ,

∂u2(0, x;α)

∂t
=
∗∗
u(x)

u2(0, x;α) =
∗
u(x)

 , x ∈ [−1, 0] ,

(2.15)

posed in the ‘right’ [0, T ] × [0,+1] and the ‘left’ [0, T ] × [−1, 0] space-time rec-
tangles and referred to as the IBVP1 and the IBVP2 respectively; 2) matching
the solutions u1(t, x;α) and u2(t, x;α) to the above initial boundary value prob-
lems

u(t, x;α) =

{
u2(t, x;α) , (t, x) ∈ [0, T ]× [−1, 0] ,

u1(t, x;α) , (t, x) ∈ [0, T ]× [0,+1] ,
(2.16)

by imposing the condition of continuity at the degeneracy segment [0, T ]×{0}

u2(t, 0;α) = u1(t, 0;α) , t ∈ [0, T ] . (2.17)

When applying the above procedure, we drop the subscript k, indicating
the first kind of the solutions (1.3), the only one bounded in the case of strong
degeneracy, therefore, the only remaining subscript is j.

2.2. Implementing SV to the IBVP

In the current section our concern is the bounded solution to the IBVP in
the case of weak degeneracy. The required solution is assumed to have the follo-
wing representation

u(t, x;α) = v(t, x;α) + w(t, x;α) , (2.18)
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where: a) the function v(t, x;α) is also required; b) the function w(t, x;α) is given
as follows

w(t, x;α) = φj=2(x;α)hj=2(t;α) + φj=1(x;α)hj=1(t;α) , (2.19)

c) the smooth blending functions φ1(x;α), φ2(x;α) satisfy the following boundary
and regularity conditions, respectively{

φ1(+1;α) = 1 , φ1(−1;α) = 0 ,

φ2(+1;α) = 0 , φ2(−1;α) = 1 ;
(2.20)

ψ1(x;α) ≡ ϕ ′1(x;α) =
[
a(x;α)φ ′1(x;α)

]′ ∈ C [−1,+1] ,

ψ2(x;α) ≡ ϕ ′2(x;α) =
[
a(x;α)φ ′2(x;α)

]′ ∈ C [−1,+1] .
(2.21)

Combining (2.18) – (2.20) yields to: a) the initial conditions for the required
function v(t, x;α)

v(0, x;α) = u(0, x;α) − w(0, x;α) ≡ ∗
v(x;α) ,

∂v(0, x;α)

∂t
=
∂u(0, x;α)

∂t
− ∂w(0, x;α)

∂t
≡ ∗∗v(x;α) ,

(2.22)

and b) reformulation of the IBVP into the following one with respect to v(t, x;α)

∂2v

∂t2
− ∂

∂x

(
a
∂v

∂x

)
= g , (t, x) ∈ (0, T ]×(−1,+1) ,

v(t,−1;α) = 0

v(t,+1;α) = 0

}
, t ∈ [0, T ] ,

∂v(0, x;α)

∂t
=
∗∗
v(x;α)

v(0, x;α) =
∗
v(x;α)

 , x ∈ [−1,+1] ,

(2.23)

where the right-hand side of the above degenerate wave equation reads

g(t, x;α) = −∂
2w(t, x;α)

∂t2
+

∂

∂x

(
a(x;α)

∂w(t, x;α)

∂x

)
. (2.24)

Then the initial functions (2.22) and the right-hand side (2.24) are expanded
into the series

∗
v(x;α) =

∞∑
µ=1

∗
v1,µ(α)X1,µ(x;α) +

∞∑
µ=1

∗
v5,µ(α)X5,µ(x;α) ,

∗∗
v(x;α) =

∞∑
µ=1

∗∗
v1,µ(α)X1,µ(x;α) +

∞∑
µ=1

∗∗
v5,µ(α)X5,µ(x;α) ,

(2.25)
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g(t, x;α) =
∞∑
µ=1

g1,µ(t;α)X1,µ(x;α) +
∞∑
µ=1

g5,µ(t;α)X5,µ(x;α) , (2.26)

where the functions Xk,µ(x;α) are defined in Prop. 2.2 and the coefficients are
calculated directly by integration

∗
vk,µ(α) =

1

‖Xk,µ‖2

ˆ +1

−1

∗
v(x;α)Xk,µ(x;α) dx ,

∗∗
vk,µ(α) =

1

‖Xk,µ‖2

ˆ +1

−1

∗∗
v(x;α)Xk,µ(x;α) dx ,

gk,µ(t;α) =
1

‖Xk,µ‖2

ˆ +1

−1
g(t, x;α)Xk,µ(x;α) dx .

(2.27)

Assuming that the ansatz for the required solution to the initial boundary
value problem (2.23) to be as follows

v(t, x;α) =
∞∑
µ=1

O1,µ(t;α)X1,µ(x;α) +
∞∑
µ=1

O5,µ(t;α)X5,µ(x;α) , (2.28)

we obtain the Cauchy problems with respect to the desired coefficient functions
of the ansatz

O′′k,µ(t;α) + σ2
k,µOk,µ(t;α) = gk,µ(t;α) , t ∈ (0, T ] ,

O ′k,µ(0;α) =
∗∗
vk,µ(α)

Ok,µ(0;α) =
∗
vk,µ(α)

 .
(2.29)

The resulting expressions for the coefficients, after applying some trivial tri-
gonometric manipulations, can be presented in the convolution form as follows

Ok,µ(t;α) =
∗
vk,µ(α) cos

(
σk,µt

)
+ σ−1

k,µ
∗∗
vk,µ(α) sin

(
σk,µt

)
+ σ−1

k,µ

ˆ t

0
gk,µ(z;α) sin

[
σk,µ(t− z)

]
dz ,

or, shortly, asOk,µ(t;α) =
∗
vk,µ(α) cos

(
σk,µt

)
+ σ−1

k,µ
∗∗
vk,µ(α) sin

(
σk,µt

)
+ σ−1

k,µ gk,µ(t;α) sin
(
σk,µt

)
.

(2.30)
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Finally, the representation (2.18) yields to the required unique bounded solu-
tion to the IBVP

u(t, x;α) =
∞∑
µ=1

O1,µ(t;α)X1,µ(x;α)

+
∞∑
µ=1

O5,µ(t;α)X5,µ(x;α)

+ φ2(x;α)h2(t;α) + φ1(x;α)h1(t;α) .

(2.31)

The above procedure can be readily interpreted in terms of decomposition of
the functions v(t, x;α), ∗v(x;α), ∗∗v(x;α), w(t, x;α), and g(t, x;α) into their even
and odd parts, for example

v(t, x;α) = ve(t, x;α) + vo(t, x;α) , x ∈ [−1,+1] , (2.32)

where both parts are defined as follows2 ve(t, x;α) = v(t,+x;α) + v(t,−x;α) ,

2 vo(t, x;α) = v(t,+x;α)− v(t,−x;α) ,

leading to decomposition of the initial boundary value problem (2.23) into the de-
rived problems

∂2ve
∂t2
− ∂

∂x

(
a
∂ve
∂x

)
= ge , (t, x) ∈ (0, T ]×(−1,+1) ,

ve(t,−1;α) = 0

ve(t,+1;α) = 0

}
, t ∈ [0, T ] ,

∂ve(0, x;α)

∂t
=
∗∗
ve(x;α)

ve(0, x;α) =
∗
ve(x;α)

 , x ∈ [−1,+1] ,



∂2vo
∂t2
− ∂

∂x

(
a
∂vo
∂x

)
= go , (t, x) ∈ (0, T ]×(−1,+1) ,

vo(t,−1;α) = 0

vo(t,+1;α) = 0

}
, t ∈ [0, T ] ,

∂vo(0, x;α)

∂t
=
∗∗
vo(x;α)

vo(0, x;α) =
∗
vo(x;α)

 , x ∈ [−1,+1] .
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Applying SV to the above problems yields to the bounded solutions in the form
of the following series

ve(t, x;α) =

∞∑
µ=1

Oe,µ(t;α)X1,µ(x;α) ,

vo(t, x;α) =

∞∑
µ=1

Oo,µ(t;α)X5,µ(x;α) ,

(2.33)

where the coefficient functions Oe,µ(t;α) and Oo,µ(t;α) are evidently the solu-
tions to respectively the same Cauchy problems (2.29). And eventually, using
the representations (2.33), (2.32) and (2.18), the same unique bounded solution
to the IBVP can be found again.

Calculating the flux of the obtained solution to the IBVP

−f(t, x;α) =
∞∑
µ=1

O1,µ(t;α)
[
a(x;α)X ′1,µ(x;α)

]

+
∞∑
µ=1

O5,µ(t;α)
[
a(x;α)X ′5,µ(x;α)

]
+ ψ2(x;α)h2(t;α) + ψ1(x;α)h1(t;α)

(2.34)

proves that the following condition holds

f(t, 0− 0;α) = f(t, 0 + 0;α) , t ∈ [0, T ] , (2.35)

due to: a) Prop. 2.2 and b) the regularity conditions (2.21) imposed on the blending
functions φ1(x;α) and φ2(x;α) (or, shortly, due to continuous differentiability of
the function w(t, x;α) (2.19)).

2.3. Implementing SV to the IBVP1 and the IBVP2

The required solutions to the IBVPj in the case of strong degeneracy are as-
sumed to have the following representation

uj(t, x;α) = vj(t, x;α) + wj(t, x;α) , (2.36)

where: a) the functions vj(t, x;α) are required; b) the functions wj(t, x;α) are
given as follows

wj(t, x;α) = φj(x;α)hj(t;α) + φj+2(x;α)hj+2(t;α) , (2.37)

c) the smooth blending functions φj(x;α), φj+2(x;α) satisfy the following boun-
dary and regularity conditions, respectively:{

φ1(+1;α) = 1 , φ1(0;α) = 0 ,

φ3(+1;α) = 0 , φ3(0;α) = 1 ,
(2.38)
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φ2(−1;α) = 1 , φ2(0;α) = 0 ,

φ4(−1;α) = 0 , φ4(0;α) = 1 ,
(2.39)

ψ1(x;α) ≡ ϕ ′1(x;α) =
[
a(x;α)φ ′1(x;α)

]′
ψ3(x;α) ≡ ϕ ′3(x;α) =

[
a(x;α)φ ′3(x;α)

]′ ∈ C [0,+1] , (2.40)

ψ2(x;α) ≡ ϕ ′2(x;α) =
[
a(x;α)φ ′2(x;α)

]′
ψ4(x;α) ≡ ϕ ′4(x;α) =

[
a(x;α)φ ′4(x;α)

]′ ∈ C [−1, 0] ; (2.41)

d) hj+2(t;α) are the required corrections to vj(t, x;α) at the degeneracy segment.
Assuming that hj+2(0;α) =

∗
v(0, x;α), h ′j+2(0;α) =

∗∗
v(0, x;α) and combining

(2.36) – (2.39) yields to: a) the initial conditions for vj(t, x;α)
vj(0, x;α) = uj(0, x;α) − wj(0, x;α) ≡ ∗

vj(x;α) ,

∂vj(0, x;α)

∂t
=
∂uj(0, x;α)

∂t
−
∂wj(0, x;α)

∂t
≡ ∗∗vj(x;α) ,

(2.42)

and b) reformulation of the IBVPj into the following auxiliary IBVPaj with respect
to the functions vj(t, x;α)

∂2v1

∂t2
− ∂

∂x

(
a
∂v1

∂x

)
= g1 , (t, x) ∈ (0, T ]×(0,+1) ,

v1(t,+1;α) = 0 , t ∈ [0, T ] ,

∂v1(0, x;α)

∂t
=
∗∗
v1(x;α)

v1(0, x;α) =
∗
v1(x;α)

 , x ∈ [0,+1] ,

(2.43)



∂2v2

∂t2
− ∂

∂x

(
a
∂v2

∂x

)
= g2 , (t, x) ∈ (0, T ]×(−1, 0) ,

v2(t,−1;α) = 0 , t ∈ [0, T ] ,

∂v2(0, x;α)

∂t
=
∗∗
v2(x;α)

v2(0, x;α) =
∗
v2(x;α)

 , x ∈ [−1, 0] ,

(2.44)

where the right-hand sides of the above degenerate wave equations

gj(t, x;α) = −
∂2wj(t, x;α)

∂t2
+

∂

∂x

(
a(x;α)

∂wj(t, x;α)

∂x

)
,

being expanded due to (2.37), read as followsgj(t, x;α) = −φj(x;α)h′′2(t;α) − φj+2(x;α)h′′j+2(t;α)

+ψj(x;α)h2(t;α) + ψj+2(x;α)hj+2(t;α) .
(2.45)
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Then the initial functions (2.42) and the right-hand sides (2.45) are expanded
into the series 

∗
vj(x;α) =

∞∑
µ=1

∗
vj,µ(α)Z1,µ(x;α) ,

∗∗
vj(x;α) =

∞∑
µ=1

∗∗
vj,µ(α)Z1,µ(x;α) ,

(2.46)

gj(t, x;α) =
∞∑
µ=1

gj,µ(t;α)Z1,µ(x;α) , (2.47)

where the coefficients are determined straightforwardly by integration. The expan-
ded forms of the coefficients in (2.47) are

gj,µ(t;α) = aj,µ(α)h′′j (t;α) + cj,µ(α)h′′j+2(t;α)

+ bj,µ(α)hj(t;α) + dj,µ(α)hj+2(t;α) ,
(2.48)

where 

a1,µ(α) = − 1

‖Z1,µ‖2

ˆ +1

0
φ1(x;α)Z1,µ(x;α) dx ,

b1,µ(α) = +
1

‖Z1,µ‖2

ˆ +1

0
ψ1(x;α)Z1,µ(x;α) dx ,

c1,µ(α) = − 1

‖Z1,µ‖2

ˆ +1

0
φ3(x;α)Z1,µ(x;α) dx ,

d1,µ(α) = +
1

‖Z1,µ‖2

ˆ +1

0
ψ3(x;α)Z1,µ(x;α) dx ,

(2.49)



a2,µ(α) = − 1

‖Z1,µ‖2

ˆ 0

−1
φ2(x;α)Z1,µ(x;α) dx ,

b2,µ(α) = +
1

‖Z1,µ‖2

ˆ 0

−1
ψ2(x;α)Z1,µ(x;α) dx ,

c2,µ(α) = − 1

‖Z1,µ‖2

ˆ 0

−1
φ4(x;α)Z1,µ(x;α) dx ,

d2,µ(α) = +
1

‖Z1,µ‖2

ˆ 0

−1
ψ4(x;α)Z1,µ(x;α) dx .

(2.50)

And now substituting the ansatz for the solutions

vj(t, x;α) =
∞∑
µ=1

Oj,µ(t;α)Z1,µ(x;α) (2.51)
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into the IBVPaj obtains the Cauchy problems for the coefficient functions
O′′j,µ(t;α) + σ2

1,µOj,µ(t;α) = gj,µ(t;α) , t ∈ (0, T ] ,

O ′j,µ(0;α) =
∗∗
vj,µ(α)

Oj,µ(0;α) =
∗
vj,µ(α)

 .
(2.52)

The resulting expressions for the coefficients can be readily presented in the con-
volution form as followsOj,µ(t;α) =

∗
vj,µ(α) cos

(
σ1,µt

)
+ σ−1

k,µ
∗∗
vj,µ(α) sin

(
σ1,µt

)
+ σ−1

1,µ gj,µ(t;α) sin
(
σ1,µt

)
.

(2.53)

Finally, the representation (2.36) obtains the required solutions to the IBVPj
u1(t, x;α) =

∞∑
µ=1

O1,µ(t;α)Z1,µ(x;α)

+ φ1(x;α)h1(t;α) + φ3(x;α)h3(t;α) ,

(2.54)


u2(t, x;α) =

∞∑
µ=1

O2,µ(t;α)Z1,µ(x;α)

+ φ2(x;α)h2(t;α) + φ4(x;α)h4(t;α) .

(2.55)

Calculating the fluxes of the obtained solutions uj(t, x;α)
−f1(t, x;α) =

∞∑
µ=1

O1,µ(t;α)
[
a(x;α)Z ′1,µ(x;α)

]
+ ψ1(x;α)h1(t;α) + ψ3(x;α)h3(t;α) ,

(2.56)


−f2(t, x;α) =

∞∑
µ=1

O2,µ(t;α)
[
a(x;α)Z ′1,µ(x;α)

]
+ ψ2(x;α)h2(t;α) + ψ4(x;α)h4(t;α) ,

(2.57)

proves that the following condition holds

f2(t, 0− 0;α) = f1(t, 0 + 0;α) = 0 , t ∈ [0, T ] , (2.58)

yet before matching the solutions, due to: a) Prop. 2.1 and b) the regularity condi-
tions (2.40) and (2.41) imposed on the blending functions φj(x;α) and φj+2(x;α)
(or, shortly, due to continuous differentiability of the functions wj(t, x;α) (2.37)).
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2.4. Matching the Solutions to the IBVP1 and the IBVP2

To implement matching the obtained one-sided solutions u1(t, x;α) (2.54)
and u2(t, x;α) (2.55), we will follow the procedure:

1) substitute the above solutions into the matching condition (2.17), as follows

∞∑
µ=1

O2,µ(t;α)Z1,µ(0;α) + φ2(0;α)h2(t;α) + φ4(0;α)h4(t;α)

=
∞∑
µ=1

O1,µ(t;α)Z1,µ(0;α) + φ1(0;α)h1(t;α) + φ3(0;α)h3(t;α) ;

2) replace the values Z1,µ(0;α) with the pre-derived formula (2.12)

Z1,µ(0;α) =
(s1,µ

2

)−% 1

Γ(1− %)
=
θ+% σ−%1,µ

Γ(1− %)
≡ C% σ

−%
1,µ ;

3) account for the boundary conditions (2.38) and (2.39) imposed on the blen-
ding functions φj(x;α) and φj+2(x;α), to obtain the following linear integro-dif-
ferential equation of convolution type with respect to h3(t;α) and h4(t;α)

C%

∞∑
µ=1

σ−%1,µ O2,µ(t;α) + h4(t;α) = C%

∞∑
µ=1

σ−%1,µ O1,µ(t;α) + h3(t;α) .

The above representation of the matching condition (2.17) can be rewritten
in the expanded form

a2(t;α) ∗ h′′2(t;α) + b2(t;α) ∗ h2(t;α) +
ˇ

∗
v2(t;α) +

ˇ

∗∗
v2(t;α)

+ c2(t;α) ∗ h′′4(t;α) + d2(t;α) ∗ h4(t;α) + h4(t;α)

= a1(t;α) ∗ h′′1(t;α) + b1(t;α) ∗ h1(t;α) +
ˇ

∗
v1(t;α) +

ˇ

∗∗
v1(t;α)

+ c1(t;α) ∗ h′′3(t;α) + d1(t;α) ∗ h3(t;α) + h3(t;α)

(2.59)

where the coefficient functions are defined by the following series
ˇ

∗
vj(t;α) = C%

∞∑
µ=1

σ−%1,µ
∗
vj,µ(α) cos

(
σ1,µt

)
,

yj(t;α) = C%

∞∑
µ=1

σ−%−1
1,µ yj,µ(α) sin

(
σ1,µt

)
,

(2.60)

and one should substitute symbols ‘
ˇ

∗∗
v’, ‘a’, ‘b’, ‘c’, and ‘d’ instead of ‘y’ in (2.60).
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3. The Laplace Transformation

3.1. Finding the Images

To solve the integro-differential equation (2.59) of convolution type, we apply
the Laplace transformation [3], producing for a function f(t), t ∈ [0,∞), its trans-
form as follows

F (τ) = L [f(t)] :=

ˆ ∞
0

f(t) e−τt dt , τ = ξ + iη ∈ C , (3.1)

provided the original function f(t) satisfies the known sufficient conditions for
the image function F (τ) to exist.

When applying the Laplace transformation we use:
1) the convolution theorem

L [p(t) ∗ q(t)] = L [p(t)] · L [q(t)] = P (τ) ·Q(τ) , (3.2)

where the symbol ‘middle dot’ between the two images is used, where it is needed,
for reminding about the origin of their multiplication;

2) the transforms of the control functions hj(t;α) and their second derivatives,
accounting for the given initial conditions

L
[
hj (t;α)

]
= Hj(τ ;α) ,

L
[
h′′j (t;α)

]
= Hj(τ ;α) τ2 − hj(0;α) τ − h ′j(0;α) ,

3) the transforms of the required functions h3(t;α), h4(t;α) and their second
derivatives, accounting for the prescribed initial conditions

L
[
hj+2(t;α)

]
= Hj+2(τ ;α) ,

L
[
h′′j+2(t;α)

]
= Hj+2(τ ;α) τ2 − hj+2(0;α) τ − h ′j+2(0;α) ,

4) the transforms of the trigonometric sine and cosine functions
L
[
sin
(
σ1,µt

)]
=

σ1,µ

τ2 + σ 2
1,µ

≡ Sµ(τ ;α) ,

L
[
cos
(
σ1,µt

)]
=

τ

τ2 + σ 2
1,µ

≡ Cµ(τ ;α) ,

(3.3)

Then, the Laplace transformation applied to the equation (2.59) yields evidently
to its image as follows

[
1 +Q2(τ ;α)

]
·H4(τ ;α) + R2(τ ;α)

=
[
1 +Q1(τ ;α)

]
·H3(τ ;α) + R1(τ ;α) ,

(3.4)
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where

Rj(τ ;α) = Pj(τ ;α) ·Hj(τ ;α) + Vj(τ ;α)−Kj(τ ;α)−Nj(τ ;α) , (3.5)


Pj(τ ;α) = Aj(τ ;α) τ2 +Bj(τ ;α)

= C%

∞∑
µ=1

σ−%%,µ
aj,µ(α) τ2 + bj,µ(α)

τ2 + σ 2
1,µ

,


Qj(τ ;α) = Cj(τ ;α) τ2 +Dj(τ ;α)

= C%

∞∑
µ=1

σ−%%,µ
cj,µ(α) τ2 + dj,µ(α)

τ2 + σ 2
1,µ

,


Vj(τ ;α) =

∗
Vj(τ ;α) +

∗∗
Vj(τ ;α)

= C%

∞∑
µ=1

σ−%%,µ

∗
vj,µ(α) τ +

∗∗
vj,µ(α)

τ2 + σ 2
1,µ

,


Kj(τ ;α) =

∗
Kj(τ ;α)hj(0;α) +

∗∗
Kj(τ ;α)h ′j(0;α)

= C%

∞∑
µ=1

σ−%%,µ aj,µ(α)
hj(0;α) τ + h ′j(0;α)

τ2 + σ 2
1,µ

,


Nj(τ ;α) =

∗
Nj(τ ;α)hj+2(0;α) +

∗∗
Nj(τ ;α)h ′j+2(0;α)

= C%

∞∑
µ=1

σ−%%,µ cj,µ(α)
hj+2(0;α) τ + h ′j+2(0;α)

τ2 + σ 2
1,µ

,

the functions Aj(τ ;α), Bj(τ ;α), Cj(τ ;α), Dj(τ ;α),
∗
Vj(τ ;α), and

∗∗
Vj(τ ;α) being

the images of the functions aj(t;α), bj(t;α), cj(t;α), dj(t;α),
ˇ

∗
vj(t;α), and

ˇ

∗∗
vj(t;α) .

Assuming that φ1,4(x;α) = φ1,3(−x;α) (see Section 2 at p. 24), we easily
conclude that: 1) the equality Q1(τ ;α) = Q2(τ ;α) holds; 2) the image (3.4) of
the matching condition (2.59) reduces to[

1 +Q1(τ ;α)
]
·∆H(τ ;α) = R2(τ ;α)−R1(τ ;α) , (3.6)

where ∆H(τ ;α) ≡ H3(τ ;α) − H4(τ ;α) , or after dividing both sides of (3.6) by
[1 +Q1(τ ;α)], to the formula

∆H(τ ;α) =
R2(τ ;α)−R1(τ ;α)

1 +Q1(τ ;α)
. (3.7)
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3.2. Finding the Original Functions

We start from estimating applicability of some known approaches to invert
the formula (3.7) and find the original function h(t;α) = h3(t;α)− h4(t;α).

a) We could expect that rewriting the formula (3.7) as follows

∆H(τ ;α) =
[
1 +Q1(τ ;α)

]−1
·
[
R2(τ ;α)−R1(τ ;α)

]
(3.8)

makes it possible to invoke the convolution theorem (3.2) and find the func-
tion h(t;α) provided both multipliers in (3.8) are the images.

To estimate this approach to be useful, we take into account that for any
original function f(t) its transform F (τ) is necessarily [3]: 1) analytic in the right
half of the τ -plane: < τ >ξ∗>0, where ξ∗ is some proper real value; 2) vanishing
when < τ→+∞.

Proposition 3.1. The functions R1(τ ;α), R2(τ ;α) (3.5) are transforms, whereas
the function [1 +Q1(τ ;α)]−1 is not a transform.

Proof. Let’s turn to the expressions (3.5). The functions Pj(τ ;α) are analytic in
the whole τ -plane except for the simple poles τ∓µ = ∓ iσ1,µ [5] and both do not
vanish when < τ → +∞. Nevertheless, both products Pj(τ ;α) · Hj(τ ;α) vanish
when < τ→+∞, since both multipliers Hj(τ ;α) are the transforms of the control
functions hj(t;α). From this we conclude that the above products are trans-
forms as well. Then, we notice that the functions

∗
Vj(τ ;α) and

∗∗
Vj(τ ;α),

∗
Kj(τ ;α)

and
∗∗
Kj(τ ;α),

∗
Nj(τ ;α) and

∗∗
Nj(τ ;α) are themselves the transforms, and this comp-

letes the proof of the first part of the proposition.
The function Q1(τ ;α) has the same properties as both functions Pj(τ ;α) have,

therefore the function [1 +Q1(τ ;α)]−1 is not a transform, and this completes
the proof of the second part of the proposition.

Although the first approach turnes out to be unsuccessful, nevertheless it
follows from Proposition 3.1 that the right-hand side of the formula (3.7) is indeed
the transform of the required function h(t;α).

b) The next approach is to invert the right-hand side of the formula (3.7)
directly. Indeed, let the Laplace transform F (τ) for an original function f(t)
be given, then applying the inverse Laplace transformation [3], known also as
the Bromwich integral, yields to the required original function

f(t) = L−1 [F (τ)] =
1

2πi

ˆ ξ∗ + i∞

ξ∗ − i∞
F (τ) e+tτ dτ , (3.9)

where < τ = ξ∗ is a vertical straight line lying to the right of all the singularities
of F (τ) (see Fig. 3.1, a).

Practically, calculating the Bromwich integral is performed using the Cauchy
residue theorem [5], but this approach implies that the singularities of the integrand
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Fig. 3.1. All the singularities of the integrand of the Bromwich integral (3.9) lie in the half-plane
(gray color) to the right of the path of integration τ = ξ∗ + iη, ξ∗ = const, η ∈ (−∞,+∞)

(dark blue), or the Bromwich line (a); the oriented Bromwich countour ABCA (light red),
consists of the segment AB of the Bromwich line and the arc BCA of the circle of radius R
centered at the origin; to apply the Cauchy residue theorem, the integrand must vanish at BCA
when R→∞ and all the singularities of the integrand must lie inside ABCA (b)

are isolated and known (see Fig. 3.1, b). The functions Pj(τ ;α) and Q1(τ ;α)
have the same poles being removable singularities of the integrand and having
no impact on calculating the integral; whereas finding all zeros of the func-
tion [1 + Q1(τ ;α)] generally implies some proper approximation [4] of the latter
and results in a huge bulk of the computational work. Therefore, we do not reject
calculating the Bromwich integral at all, but postpone applying this approach for
a while.

c) To implement the third approach, we:
1) recombine the terms in the series (3.5)
Kj(τ ;α) = C%

( ∞∑
µ=1

σ−%1,µ aj,µ(α)Cµ(τ ;α)

)
hj(0;α)

+ C%

( ∞∑
µ=1

σ−%−1
1,µ aj,µ(α)Sµ(τ ;α)

)
h ′j(0;α) ,


Nj(τ ;α) = C%

( ∞∑
µ=1

σ−%1,µ cj,µ(α)Cµ(τ ;α)

)
hj+2(0;α)

+ C%

( ∞∑
µ=1

σ−%−1
1,µ cj,µ(α)Sµ(τ ;α)

)
h ′j+2(0;α) ,
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
Pj(τ ;α)−

Ψj(α)︷ ︸︸ ︷
C%

∞∑
µ=1

σ−%1,µ aj,µ(α) = −C%
∞∑
µ=1

σ−%+1
1,µ aj,µ(α)Sµ(τ ;α)

+C%

∞∑
µ=1

σ−%−1
1,µ bj,µ(α)Sµ(τ ;α) ,



Ω1(α)︷ ︸︸ ︷
C%

∞∑
µ=1

σ−%1,µ cj,µ(α)−Q1(τ ;α) = +C%

∞∑
µ=1

σ−%+1
1,µ cj,µ(α)Sµ(τ ;α)

−C%
∞∑
µ=1

σ−%−1
1,µ dj,µ(α)Sµ(τ ;α) ≡ Q̂1(τ ;α) ,

and easily find the respective original functions
pj(t;α) = −C%

∞∑
µ=1

σ−%+1
1,µ aj,µ(α) sin

(
σ1,µt

)

+C%

∞∑
µ=1

σ−%−1
1,µ bj,µ(α) sin

(
σ1,µt

)
+ Ψj(α) δ(t) ,

(3.10)


q̂1(t;α) = +C%

∞∑
µ=1

σ−%+1
1,µ cj,µ(α) sin

(
σ1,µt

)

−C%
∞∑
µ=1

σ−%−1
1,µ dj,µ(α) sin

(
σ1,µt

)
,

(3.11)



∗
kj(t;α) = C%

∞∑
µ=1

σ−%1,µ aj,µ(α) cos
(
σ1,µt

)
,

∗∗
kj(t;α) = C%

∞∑
µ=1

σ−%−1
1,µ aj,µ(α) sin

(
σ1,µt

)
,

(3.12)



∗
nj(t;α) = C%

∞∑
µ=1

σ−%1,µ cj,µ(α) cos
(
σ1,µt

)
,

∗∗
nj(t;α) = C%

∞∑
µ=1

σ−%−1
1,µ cj,µ(α) sin

(
σ1,µt

)
,

(3.13)

where δ(t) is the Dirac delta function;
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2) represent the denominator of the formula (3.7) as follows

1 +Q1(τ ;α) = 1 + Ω1(α)− Q̂1(τ ;α) ≡ Cα − Q̂1(τ ;α)

= Cα

(
1− C−1

α Q̂1(τ ;α)
)
≡ Cα

(
1− Q̄1(τ ;α)

)
;

3) rewrite the formula (3.7) as is usually done when solving integral equations
of convolution type

∆H(τ ;α) = C−1
α

(
1 +

Q̄1(τ ;α)

1− Q̄1(τ ;α)

)
·
[
R2(τ ;α)−R1(τ ;α)

]
; (3.14)

4) expand the ‘fractional’ term in (3.14) in the following power series

Q̄1(τ ;α)

1− Q̄1(τ ;α)
= Q̄1(τ ;α) +

∞∑
γ=2

[
Q̄1(τ ;α)

]·γ
, (3.15)

provided that |Q̄1(τ ;α)| < 1 in a proper right half-plane of the τ -plane [3];
5) invert the above power series in the form of the Neumann series [3]

L−1

[
Q̄1(τ ;α)

1− Q̄1(τ ;α)

]
= q̄1(t;α) +

∞∑
γ=2

[
q̄1(t;α)

]∗γ ≡ Φ(t;α) , (3.16)

or the sum of iterated kernels, where q̄1(t;α) = C−1
α q̂1(t;α) (3.11);

6) invert the terms in the brackets in (3.14)
rj(t;α) = pj(t;α) ∗ hj(t) +

∗
vj(t;α) +

∗∗
vj(t;α)

−
∗
kj(t;α)hj(0;α)− ∗

nj(t;α)hj+2(0;α)

−
∗∗
kj(t;α)h ′j(0;α)− ∗∗nj(t;α)h ′j+2(0;α) ;

(3.17)

7) finally, invert the formula (3.7) by invoking the convolution theorem (3.2){
Cα (h3(t;α)− h4(t;α)) = [r2(t;α)− r1(t;α)]

+ Φ(t;α) ∗ [r2(t;α)− r1(t;α)] .
(3.18)

4. Conclusions

1. In the current study we have applied the previously obtained [2] one-sided
solutions u1,j(t, x;α), u5,j(t, x;α) (1.3), (1.4) to the degenerate wave equation as
the building blocks of procedures for finding bounded solutions to the IBVP (1.1),
posed in the space-time rectangle [0, T ]×[−1,+1], in the cases of weak (α ∈ (0, 1))
and strong (α ∈ (1, 2)) degeneracy.
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2. In the case of weak degeneracy the bounded unique solution (2.31) to
the IBVP 

u(t, x;α) =

∞∑
µ=1

O1,µ(t;α)X1,µ(x;α)

+

∞∑
µ=1

O5,µ(t;α)X5,µ(x;α)

+ φ2(x;α)h2(t;α) + φ1(x;α)h1(t;α)

(4.1)

has been obtained in the space-time rectangle [0, T ]×[−1,+1], using the method
of SV based on the eigenfunctions X1,µ(x;α) and X5,µ(x;α), defined in Prop. 2.2
at p. 6. The solution (4.1) satisfies the following two continuity conditions{

u(t, 0− 0;α) = u(t, 0 + 0;α) ,

f(t, 0− 0;α) = f(t, 0 + 0;α) ,
t ∈ [0, T ] , (4.2)

at the degeneracy segment, where f(t, x;α) is the flux of the solution.
3. In the case of strong degeneracy a family of bounded non-unique solutions

to the IBVP have been obtained in the space-time rectangle [0, T ] × [−1,+1],
applying the following procedure:

a) two families of bounded solutions (2.54), (2.55)
u1(t, x;α) =

∞∑
µ=1

O1,µ(t;α)Z1,µ(x;α)

+ φ1(x;α)h1(t;α) + φ3(x;α)h3(t;α) ,

(4.3)


u2(t, x;α) =

∞∑
µ=1

O2,µ(t;α)Z1,µ(x;α)

+ φ2(x;α)h2(t;α) + φ4(x;α)h4(t;α) .

(4.4)

to the derived IBVP1 (2.14) and IBVP2 (2.15), posed in the ‘right’ [0, T ]× [0,+1]
and the ‘left’ [0, T ]× [−1, 0] space-time rectangles, are obtained, using the method
of SV based on the eigenfunctions Z1,µ(x;α), defined in Prop. 2.1 at p. 4;

b) the solutions of both families, depending on undetermined functions h3(t;α)
and h4(t;α) and satisfying the only continuity condition for their fluxes

f2(t, 0− 0;α) = f1(t, 0 + 0;α) , t ∈ [0, T ] , (4.5)

are then matched to implement the other continuity condition

u2(t, 0− 0;α) = u1(t, 0 + 0;α) , t ∈ [0, T ] , (4.6)

nevertheless, the resulting matched family still retains one undetermined function.
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Appendix. Calculating the Coefficients a, b, c, and d

In this section the method of calculating the coefficients (2.49), (2.50) is presen-
ted. We take for φk,j(x;α) and φk,j+2(x;α) the following power functions

{
φj(x;α) = |x|ωj ,

φj+2(x;α) = 1− |x|ωj+2 ,
(4.7)

where the undetermined exponents ωk,j and ωk,j+2 should be adjusted to the pa-
rameter α in a special way. To impose the proper constraint on the exponents,
we calculate the derived functions: 1) the ‘fluxes’ ϕ(x;α) = a(x;α)φ ′(x;α)

 ϕj(x;α) = + sign (x) ωj |x|
ωj−1+α,

ϕj+2(x;α) = − sign (x) ωj+2 |x|
ωj+2−1+α,

(4.8)

and 2) their derivatives ψ(x;α) = ϕ ′(x;α) =
[
a(x;α)φ ′(x;α)

] ′
 ψj(x;α) = +ωj

[
ωj − θ + 1

]
|x|ωj−θ,

ψj+2(x;α) = −ωj+2

[
ωj+2 − θ + 1

]
|x|ωj+2−θ,

(4.9)

and assume that they vanish at x = 0 smoothly, i. e., ψj(0;α) = ψj+2(0;α) = 0
and ψ ′j(0;α)= ψ ′j+2(0;α)=0, whence we immediately deduce that ωj−θ = 1+εj ,
ωj+2 − θ = 1 + εj+2, where εj , εj+2 > 0.

Taking ωj = ωj+2 = ω and substituting the functions φj(x;α), φj+2(x;α) (4.7)
in the coefficients (2.49), (2.50) yields to



aµ(α) = − 1

‖Z1,µ‖2
I2(α, ω) ,

bµ(α) = +
ϑ

‖Z1,µ‖2
I1(α, ω) ,

cµ(α) = − 1

‖Z1,µ‖2
I0(α) +

1

‖Z1,µ‖2
I2(α, ω) ,

dµ(α) = − ϑ

‖Z1,µ‖2
I1(α, ω) .

(4.10)

The definite integrals I0(α), I1(α, ω), I2(α, ω) in (4.10) can be calculated ana-
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lytically, applying the variable transformation s = s̊ x
θ
2 as follows

I0(α) =

ˆ 1

0
Z1,µ(x;α) dx =

=
2

θ

(
1

s̊

)o+1 ˆ s̊

0
so Z%(s) ds ≡

2

θ

(
1

s̊

)o+1

I ∗0 (α) ,

I1(α, ω) =

ˆ 1

0
xω−θ Z1,µ(x;α) dx =

ˆ 1

0
x
ε+1

x
ν
2 Z%(s) dx

=
2

θ

(
1

s̊

)υ+1 ˆ s̊

0
sυ Z%(s) ds ≡

2

θ

(
1

s̊

)υ+1

I ∗1 (α, ε) ,

I2(α, ω) =

ˆ 1

0
xωZ1,µ(x;α) dx =

ˆ 1

0
x
θ+ε+1

x
ν
2 Z%(s) dx

=
2

θ

(
1

s̊

)υ+3 ˆ s̊

0
sυ+2 Z%(s) ds ≡

2

θ

(
1

s̊

)υ+3

I ∗2 (α, ε) ,

(4.11)

where
o =

1

θ
, υ =

2ε+ 3

θ
, (4.12)

and to avoid confusion with zero, small letter ‘o’ is used only for the exponents, and
the notation s̊=s1,µ is used hereinafter to present calculations of the transformed
integrals I ∗0 (α), I ∗1 (α) and I ∗2 (α, ε) in a compact form.

We chose the analytical approach to calculate the integrals in (4.11), hence,
our concern is calculating the transformed integrals

I ∗0 (α) =

ˆ s̊

0
so Z%(s) ds ,

I ∗1 (α, ε) =

ˆ s̊

0
sυ Z%(s) ds ,

I ∗2 (α, ε) =

ˆ s̊

0
sυ+2 Z%(s) ds ,

(4.13)

using the following recurrence formula [7]

s%+1Z%(s) =
[
s%+1Z%+1(s)

]′
. (4.14)

The integral I ∗0 (α) is easily shown to be calculated exactly for any α. Indeed,
keeping in mind (4.14), we obtain that

I ∗0 (α) =

ˆ s̊

0
so Z%(s) ds =

ˆ s̊

0
s%+1 Z%(s) ds

=

ˆ s̊

0

[
s%+1 Z%+1(s)

]′
ds = s̊%+1 Z%+1(̊s) .

(4.15)
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To calculate the transformed integrals I ∗1 (α; ε), I ∗2 (α; ε) (4.13), we introduce
the following

Definition 4.1. The values of the parameter ε>0 in the exponents ω=θ+ 1 + ε
(4.7), (4.9), allowing for: 1) the function (4.9) to be continuously differentiable
and 2) the transformed integrals I ∗1 (α, ε), I ∗2 (α, ε) (4.13) to be calculated by parts
(this is referred to as integrability), are called proper.

Proposition 4.1. The proper values of the parameter ε are the positive values
produced by the formula

ε = −1 + k θ = −1 + k (2− α) , (4.16)

where k ∈ N .

Proof. First, we find the values of the exponent υ leading to integration by parts
using the following formula (4.14). Presenting the exponent of the integrand of I ∗2
as υ = υ−%−1+(%+ 1) = υ ′+(%+ 1) makes it clear that: 1) it is the term υ ′>0
that is responsible for integrability; 2) υ ′≡0 (mod 2) is the integrability condition.
Indeed, let:

a) υ ′ = 0, then the integral I ∗2 reads

I ∗2 (α, ε) =

ˆ s̊

0
sυ
′[
s%+1Z%(s)

]
ds =

ˆ s̊

0

[
s%+1Z%+1(s)

]′
ds = s̊%+1Z%+1(̊s) ;

b) υ ′ = 2, then integration by parts is performed successfully as well

I ∗2 (α, ε) =

ˆ s̊

0
sυ
′[
s%+1Z%(s)

]
ds =

ˆ s̊

0
s2
[
s%+1Z%+1(s)

]′
ds

= s̊%+3Z%+1(̊s)− 2

ˆ s̊

0
s%+2Z%+1(s) ds

= s̊%+3Z%+1(̊s)− 2

ˆ s̊

0

[
s%+2Z%+2(s)

]′
ds = s̊%+3Z%+1(̊s)− 2 s̊%+2J%+2(̊s) ;

c) υ ′ = 4, then integration is reduced to the previous case

I ∗2 (α, ε) =

ˆ s̊

0
s4
[
s%+1Z%+1(s)

]′
ds = s̊%+5Z%+1(̊s)− 4

ˆ s̊

0
s2
[
s%+3Z%+1(s)

]
ds

= s̊%+5Z%+1(̊s)− 4

ˆ s̊

0
s2
[
s%+3Z%+3(s)

]′
ds ,

. . . , etc. It is evident that no value of the exponent leading to integrability other
than those indicated above exists.

Second, considering the integral I ∗1 is performed exactly in the same way as
the integral I ∗2 .
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Third, we gather our observations on integrability as the following condition
imposed on υ ′: υ ′=2 k, k ∈ Z+, or reformulated for υ as follows

υ − %− 1 = 2 k , k ∈ Z+,

and substituting the expressions for υ (4.12) and % (2.3) in the above condition
we obtain

2ε+ 3

2− α
+

1− α
2− α

− 1 = 2
ε+ 1

2− α
= 2 k .

Resolving the above condition with respect to ε yields to (4.16). It is evident,
that zero value of k produces the value ε = −1 and must be neglected. Unfortuna-
tely, other values of k produce negative values of the parameter ε as well, indeed:
a) for k=1 we obtain ε=1− α; b) for k=2 it yields to ε=3− 2α, etc., therefore
(4.16) needs to be adjusted as the proposition says.

The 1-parameter family (4.2) of the admissible values of ε is shown in Fig. 4.2.
We show below, how the transformed integrals I ∗1 and I ∗2 (4.13) can be calcu-

lated exactly for non-unique proper values of the parameter ε, choosing the follo-
wing values of the parameter α: 1) 1

2 , 2) 1, and 3) 3
2 .

1) Let α= 1
2 , then θ= 3

2 , ν= 1
2 , %=−1

3 , and υ= 4
3 ε+ 2 (4.12), and applying

the property (4.14) yields to
I ∗1 =

ˆ s̊

0
s

4
3
ε+2 Z− 1

3

(s) ds = s̊
4
3
ε+2 Z 2

3

(̊s)− 4ε+ 4

3
Ī ∗1 ,

I ∗2 =

ˆ s̊

0
s

4
3
ε+4 Z− 1

3

(s) ds = s̊
4
3
ε+4 Z 2

3

(̊s)− 4ε+ 10

3

{
s̊

4
3
ε+3 Z 5

3

(̊s)− 4ε+ 4

3
Ī ∗2

}
,

where the integrals Ī ∗1 and Ī ∗2 are
Ī ∗1 =

ˆ s̊

0
s

4
3
ε− 2

3 s
5
3Z 2

3

(s) ds ,

Ī ∗2 =

ˆ s̊

0
s

4
3
ε− 2

3 s
8
3Z 5

3

(s) ds .

Assuming that ε = 1
2 , we easily find that
Ī ∗1 =

ˆ s̊

0
s

5
3Z 2

3

(s) ds = s̊
5
3Z 5

3

(̊s) ,

Ī ∗2 =

ˆ s̊

0
s

8
3Z 5

3

(s) ds = s̊
8
3Z 8

3

(̊s) ,

and complete the calculating of the integrals I ∗1 and I ∗2 as follows
I ∗1 = s̊

8
3 Z 2

3

(̊s)− 2 s̊
5
3 Z 5

3

(̊s) ,

I ∗2 = s̊
14
3 Z 2

3

(̊s)− 4 s̊
11
3 Z 5

3

(̊s) + 8 s̊
8
3Z 8

3

(̊s) ,
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Fig. 4.2. The proper values of ε vs α (4.16) for various values of the parameter k:
k = 1(1)10; 15, 20, 25, 50. Multiple proper values of ε for α= 0.5, 1.0, 1.5 are marked
with the white disks. The upper side of the 1-parameter family (4.16) is cut off along
the straight line ε = 5

then, assuming that ε = 2
Ī ∗1 =

ˆ s̊

0
s2s

5
3Z 2

3

(s) ds = s̊
11
3 Z 5

3

(̊s)− 2 s̊
8
3 Z 8

3

(̊s) ,

Ī ∗2 =

ˆ s̊

0
s2s

8
3Z 5

3

(s) ds = s̊
14
3 Z 8

3

(̊s)− 2 s̊
11
3 J 11

3

(̊s) ,

and complete the calculation of the integrals I ∗1 and I ∗2 as follows
I ∗1 = s̊

8
3 J 2

3

(̊s)− 2 s̊
5
3 Z 5

3

(̊s) ,

I ∗2 = s̊
14
3 Z 2

3

(̊s)− 4 s̊
11
3 J 5

3

(̊s) + 8 s̊
8
3Z 8

3

(̊s) .

2) Let α = 1, then θ = 1, ν = 0, % = 0, and υ = 2ε + 3 (4.12), and applying
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the property (4.14) yields to
I ∗1 =

ˆ s̊

0
s2ε+2 [s Z0(s)] ds = s̊2ε+3 Z0(̊s)− (2ε+ 2) Ī ∗1 ,

I ∗2 =

ˆ s̊

0
s2ε+4 [s Z0(s)] ds = s̊2ε+5 Z0(̊s)− (2ε+ 4)

{
s̊2ε+4 Z2(̊s)− (2ε+ 2) Ī ∗2

}
,

where the integrals Ī ∗1 and Ī ∗2 are
Ī ∗1 =

ˆ s̊

0
s2ε
[
s2Z2(s)

]′
ds ,

Ī ∗2 =

ˆ s̊

0
s2ε
[
s3Z3(s)

]′
ds .

Assuming that ε = 1, we easily calculate both integrals Ī ∗1,2
Ī ∗1 =

ˆ s̊

0
s2
[
s2Z2(s)

]′
ds = s̊4Z2(̊s)− 2

ˆ s̊

0

[
s3Z3(s)

]′
ds = s̊4Z2(̊s)− 2 s̊3Z3(̊s) ,

Ī ∗2 =

ˆ s̊

0
s2
[
s3J3(s)

]′
ds = s̊5Z3(̊s)− 2

ˆ s̊

0

[
s4Z4(s)

]′
ds = s̊5Z3(̊s)− 2 s̊4Z4(̊s) ,

and eventually find{
I ∗1 = s̊5Z0(̊s)− 4 s̊4Z2(̊s) + 8 s̊3Z3(̊s) ,

I ∗2 = s̊7Z0(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s) ,
(4.17)

whereas assuming that ε = 2, we find both integrals Ī ∗1,2 to equal
Ī ∗1 =

ˆ s̊

0
s4
[
s2Z2(s)

]′
ds = s̊6Z2(̊s)− 4 s̊5Z3(̊s) + 8 s̊4J4(̊s) ,

Ī ∗2 =

ˆ s̊

0
s4
[
s3Z3(s)

]′
ds = s̊7Z3(̊s)− 4 s̊6Z4(̊s) + 8 s̊5Z5(̊s) ,

yielding to{
I ∗1 = s̊7Z1(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s) ,

I ∗2 = s̊9Z1(̊s)− 8 s̊8Z2(̊s) + 48 s̊7Z3(̊s)− 192 s̊6Z4(̊s) + 384 s̊5Z5(̊s) .
(4.18)

3) Let α= 3
2 , then θ= 1

2 , ν=−1
2 , %= 1, and υ= 4ε + 6 (4.12), and applying

the property (4.14) yields to

I ∗1 =

ˆ s̊

0
s4ε+4

[
s2Z1(s)

]
ds = s̊4ε+6 Z2(̊s)− (4ε+ 4)

{
s̊4ε+5 Z3(̊s)− (4ε+ 2) Ī ∗1

}
,

I ∗2 =

ˆ s̊

0
s4ε+6

[
s2Z1(s)

]
ds

= s̊4ε+8 Z2(̊s)− (4ε+ 6)
{
s̊4ε+7 Z3(̊s)− (4ε+ 4)

[̊
s4ε+6 Z4(̊s)− (4ε+ 2) Ī ∗2

]}
,
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where the integrals Ī ∗1 and Ī ∗2 are
Ī ∗1 =

ˆ s̊

0
s4ε
[
s4Z4(s)

]′
ds ,

Ī ∗2 =

ˆ s̊

0
s4ε
[
s5Z5(s)

]′
ds .

Assumption ε = 1
2 gives

Ī ∗1 =

ˆ s̊

0
s2
[
s4Z4(s)

]′
ds = s̊6Z4(̊s)− 2 s̊5Z5(̊s) ,

Ī ∗2 =

ˆ s̊

0
s2
[
s5Z5(s)

]′
ds = s̊7Z5(̊s)− 2 s̊6Z6(̊s) , ,

that yields to{
I ∗1 = s̊8 Z2(̊s)− 6 s̊7Z3(̊s) + 24 s̊6Z4(̊s)− 48 s̊5Z5(̊s) ,

I ∗2 = s̊10Z2(̊s)− 8 s̊9Z3(̊s) + 48 s̊8Z4(̊s)− 192 s̊7Z5(̊s) + 384 s̊6Z6(̊s) ,

whereas assumption ε = 1 leads to
Ī ∗1 =

ˆ s̊

0
s4
[
s4J4(s)

]′
ds = s̊8J4(̊s)− 4 s̊7J5(̊s) + 8 s̊6J6(̊s) ,

Ī ∗2 =

ˆ s̊

0
s4
[
s5J5(s)

]′
ds = s̊9J5(̊s)− 4 s̊8J6(̊s) + 8 s̊7J7(̊s) ,

and eventually to{
I ∗1 = s̊5Z0(̊s)− 4 s̊4Z2(̊s) + 8 s̊3Z3(̊s) ,

I ∗2 = s̊10Z2(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s) .

As an example, we choose the values α = 1 (% = 0, θ = 1) and ε = 1, then
substitute the formula (4.15) and the values (4.17) of I ∗1 , I

∗
2 into the expres-

sions (4.11) to obtain

I0 =
2

s̊2
[̊s Z1(̊s)] ,

I1 =
2

s̊6

[̊
s5Z1(̊s)− 4 s̊4Z2(̊s) + 8 s̊3Z3(̊s)

]
,

I2 =
2

s̊8

[̊
s7Z1(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s)

]
,
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and eventually find the required coefficients (4.10)

aµ = − 2

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 6 s̊2J2(̊s) + 24 s̊J3(̊s)− 48 J4(̊s)

]
,

bµ = +
18

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 4 s̊2J2(̊s) + 8 s̊J3(̊s)

]
,

cµ = − 2

s̊4J2
1(̊s)

[̊
s3J1(̊s)

]
+

2

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 6 s̊2J2(̊s) + 24 s̊J3(̊s)− 48 J4(̊s)

]
,

dµ = − 18

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 4 s̊2J2(̊s) + 8 s̊J3(̊s)

]
.
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