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STABILITY OF NEURAL ORDINARY DIFFERENTIAL
EQUATIONS WITH POWER NONLINEARITIES

VasiliyYe. Belozyorov∗, DanyloV. Dantsev†

Abstract. The article presents a study of solutions of ODEs system with a special
nonlinear part, which is a continuous analogue of an arbitrary recurrent neural network
(neural ODEs). As a nonlinear part of the mentioned system of differential equations, we
used sums of piecewise continuous functions, where each term is a power function. (These
are activation functions.) The use of power activation functions (PAF) in neural networks
is a generalization of well-known the rectified linear units (ReLU). In the present time
ReLU are commonly used to increase the depth of trained of a neural network. Therefore,
the introduction of PAF into neural networks significantly expands the possibilities of
ReLU. Note that the purpose of introducing power activation functions is that they
allow one to obtain verifiable Lyapunov stability conditions for solutions of the system
differential equations simulating the corresponding dynamic processes. In turn, Lyapunov
stability is one of the guarantees of the adequacy of the neural network model for the
process under study. In addition, from the global stability (or at least the boundedness)
of continuous analog solutions it follows that learning process of the corresponding neural
network will not diverge for any training sample.
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1. Introduction

One of the fundamental goals of machine learning is modeling and understan-
ding real-world phenomena from observations. In the process of modeling two
main problems are considered: (i) the problem of minimizing deviations between
the trajectory of the described model and the real dynamics that the system under
study demonstrates; (ii) the problem of increasing the degree of convergence of the
procedure for minimizing deviations, which is solved in the problem (i). However,
there is also a third problem: (iii) if a neural network models a certain dynamic
process, then how to guarantee the stability or boundedness of solutions of a
system of differential equations describing a continuous analog of the aforemen-
tioned neural network?

The solution of all three problems substantially depends on the choice of
activation functions included in the architecture of a neural network. In this work
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we will primarily study the problem (iii) with respect to the choice of activation
functions in the domain of modeling dynamical systems.

A wide variety of naturally occurring phenomena can be approximated by
power laws: from frequency distribution of words in natural language [11] to the
size distribution of neuronal avalanches in cortical networks [8, 9, 15]. Moreover,
it is common for chaotic processes to contain unbounded nonlinearities while
describing a bounded and stable process [1,3,4,10,15]. Therefore, it is only natural
to question the fit and expressivity of power functions as activation functions.
In order to solve the numerous problems associated with the stability of neural
networks, it is necessary to expand the class of activation functions. At present,
this set already includes unbounded activation functions [13]. In this regard,
the creation of neural networks with unbounded activation functions requires
guaranteeing the stability or boundedness conditions of solutions of the equations
describing the neural networks [6] – [9].

The key contributions of this article are:
• Section 3 introduces the concept of a piecewise continuous power activation

function (PAF) and presents its main properties;
• The conditions for the global stability of neural ODEs with PAFs, found with

the help of the well-known method of Lyapunov functions, are given in Sections 4
and 5. Note that checking these conditions is reduced only to checking the negative
definiteness of two known matrices.

In the future, these results will be used to construct new types of chaotic
neural networks.

1.1. The relationship between neural networks and differential
equations

In recent years, an interesting idea has appeared to interpret a system of
ordinary differential equations in the form of a suitable neural network (residual
network) [3] – [6]. The essence of this idea is as follows.

Consider the following neural network (this is a system of difference equations):

x(t+ 1) = x(t) + H(x(t),Ω),x(0) = x0; t = 1, ..., N. (1.1)

Here x ∈ Rn is a vector of states, Ω ∈ Rk is a vector of parameters, H(x,Ω) :
Rn × Rk → Rn is a vector field of continuous functions. (The number N in
neurodynamics denotes the number of "layers"in the neural network (1.1).)

Now we rewrite relation (1.1) in the following form:

x(t+ 1)− x(t)

(t+ 1)− t
= H(x(t),Ω).

If we consider function x(t) as a function of a continuous argument on some
interval [x0,xN ], then the last equation can be rewritten in the following form:

x(t+ ∆t)− x(t)

∆t
= H(x(t),Ω).
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If now we direct the number of "layers"N →∞ and we assume ∆t→ 0, then we
get the following system of ordinary differential equations

ẋ(t) = H(x(t),Ω),x(0) = x0, (1.2)

So we can say that neural network (1.1) is the well-known Euler discretization
procedure of system (1.2):

x(t+ ∆t)− x(t) = ∆t · (H(x(t),Ω)),x(0) = x0, (1.3)

where ∆t is the discretization step.
It is clear that sequence (1.1) can be viewed as a neural network with N − 1

hidden layers, input layer x0 and output layer xN . The architecture of such neural
network is determined by the vector H(x(t),Ω) [4, 5].

Thus, in some cases, we can replace the study of neural network (1.1) with
its continuous analog (1.2). In this case, the stability of neural network (1.1) at
N →∞ will follow from the stability of the system of differential equations (1.2).
(If it is known that the process described by equation (1.2) converges, then by
increasing the number of layers N of neural network (1.1) or decreasing step ∆t in
equation (1.3), we can achieve convergence of the learning process of this neural
network [4, 5].)

Therefore, in the future, this article will be devoted to the study of the stability
of system (1.2), which in neurodynamics is called the system of neural ODEs [4,5].
(Note that a new application of neural ODEs using invariant theory was proposed
in [2].)

2. Mathematical preliminaries

Now we give three well-known results of the nonlinear theory of systems, which
will be used later.

Let
ẋ(t) = G(x(t)),x(t) ∈ Rn,G(x) ∈ Rn, t ∈ R (2.1)

be a system of ordinary autonomous differential equations and let x(t,x0) be a
trajectory of this system with initial data x0 ∈ Rn. Here G(x) : Rn → Rn is a
continuous vector-function; x(0,x0) = x0.

In the future, we will assume that point x = 0 is the equilibrium point of
system (2.1) .

Definition 2.1. [9] The equilibrium point x = 0 of system (2.1) is stable if, for
each ε > 0, there is δ = δ(ε) > 0 such that ‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0;
asymptotically stable if it is stable and δ can be chosen such that ‖x0‖ < δ ⇒
lim
t→∞

x(t) = 0.

Theorem 2.1. (Lyapunov’s Theorem [9]). Let x = 0 be an equilibrium point for
system (2.1) and D ⊂ Rn be a domain containing x = 0. Let V : Rn → R be a
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continuously differentiable function, such that V (0) = 0, V (x) > 0 in D − {0},
and V̇ (x) ≤ 0 in D. Then, x = 0 is stable. Moreover, if V̇ (x) < 0 in D− 0, then
the equilibrium point x = 0 is asymptotically stable and if it is unique, then x = 0
is globally asymptotically stable.

Definition 2.2. [9] A continuously differentiable function V (x) satisfying the
conditions Lyapunov’s Theorem is called a Lyapunov function.

A set M ⊂ Rn is said to be a positively invariant set with respect to (2.1) if
from x0 ∈M it follows that x(t,x0) ∈M ∀t ≥ 0.

A point s ∈ Rn is said to be a positive limit point of x(t,x0) if there is a
sequence {tm}, with tm → ∞ as m → ∞, such that x(tm,x0) → s as m → ∞.
The set L+ of all positive limit points of x(t,x0) is called the positive limit set of
x(t,x0).

Let D ⊂ Rn be a compact set and let solution x(t,x0) is bounded and
belongs to D. Then its positive limit set L+ is a nonempty, compact, invariant
set. Moreover, x(t,x0)→ L+ as t→∞ (see Lemma 3.1 [9]).

From here the following result can be obtained.

Theorem 2.2. (LaSalle’s Theorem [9]). Let H ⊂ Rn be a compact set that is
positively invariant with respect to (2.1). Let V : Rn → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in H. Let E be the set of all points in
H where V̇ (x) = 0. Let M be the largest invariant set in E. Then every solution
starting in H approaches M as t→ +∞.

In the future, one more important result will be used.

Theorem 2.3. (Comparison Principle [9]). Consider the real scalar differential
equation v̇t(t) = g(t, v), v(t0) = v0, where the function g(t, v) is continuous in t
and locally Lipschitz in v, for all t ≥ 0 and all v(t) ∈ R. Let [t0,∞) be the interval
of existence of the solution v(t). Let w(t) be a differentiable function satisfies
the differential inequality ẇt(t) ≤ g(t, w(t)), w(t0) < v0 with w(t) ∈ R for all
t ∈ [t0,∞). Then, w(t) < v(t) for all t ∈ [t0,∞).

Several special lemmas will also be used in the proof of the main results.

Lemma 2.1. Suppose that real numbers A,B, α, β, p, q, x, and y satisfy the follo-
wing conditions: A > 0, B > 0, α ≥ 1, β ≥ 1, 0 ≤ p ≤ A

α
α+βB

β
α+β , 0 ≤ q ≤

A
β

α+βB
α

α+β , x ≥ 0, y ≥ 0 . Then inequality

Axα+β +Byα+β ≥ pxαyβ + qyαxβ (2.2)

is true. In addition, if p = 0 (or q = 0), then inequality (2.2) becomes inequality
Axα+β +Byα+β ≥ 2A

β
α+βB

α
α+β yαxβ (or Axα+β +Byα+β ≥ 2A

α
α+βB

β
α+β xαyβ).
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Proof. 1. Let A = B = 1, x 6= 0, y 6= 0, and p = A
α

α+βB
β

α+β = 1, q = A
β

α+βB
α

α+β =
1. Introduce the variable u = x/y > 0. Then inequality (2.2) can be rewritten in
the following form: f(u) = uα+β + 1− uα − uβ ≥ 0.

It is easy to check that the function f(u) has only one positive root: u = 1.
Let’s do some simple calculations:

f
′
(u) = (α+ β)uα+β−1 − αuα−1 − βuβ−1,

f
′′
(u) = (α+ β)(α+ β − 1)uα+β−2 − α(α− 1)uα−2 − β(β − 1)uβ−2,

f(1) = f
′
(1) = 0, f ′′(1) = 2αβ > 0.

From here it follows that the point u = 1 is the single minimum of function
f(u) on the interval (0,∞). The last statement leads to inequality uα+β + 1 ≥
uα + uβ ≥ puα + quβ or

xα+β + yα+β ≥ p1x
αyβ + q1y

αxβ, (2.3)

where 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1.
2. Now, instead of variables x and y in inequality (2.2), we introduce new

variables xα+β
1 = Axα+β and yα+β

1 = Byα+β . Then inequality (2.2) transforms
into inequality

xα+β
1 + yα+β

1 ≥ p

A
α

α+βB
β

α+β

xα1 y
β
1 +

q

A
β

α+βB
α

α+β

yα1 x
β
1 ,

which is equivalent to inequality (2.3) at p ≤ A
α

α+βB
β

α+β and q ≤ A
β

α+βB
α

α+β . �

Lemma 2.2. Suppose that real numbers A,B, k1, k2,m1,m2, p, q, x, and y satisfy
the following conditions: A > 0, B > 0, k1 ≥ 1, k2 ≥ 1,m1 ≥ 1,m2 ≥ 1, k1 + k2 =

r,m1+m2 = r, 0 ≤ p ≤ A
k1
r B

k2
r , 0 ≤ q ≤ A

m1
r B

m2
r , x ≥ 0, y ≥ 0 . Then inequality

Axr +Byr ≥ pxk1yk2 + qxm1ym2 (2.4)

is true.

Proof. Let A = B = 1, x 6= 0, y 6= 0, and p = A
k1
r B

k2
r = 1, q = A

m1
r B

m2
r = 1.

Then inequality (2.4) takes the form

xr + yr ≥ xk1yk2 + xm1ym2 (2.5)

1. Let u = x/y ≥ 1. Divide both sides of inequality (2.5) by a positive value
yr. Then, we have (

x

y

)r
+ 1 ≥

(
x

y

)k1
+

(
x

y

)m1

or
uk1(ur−k1 − 1) ≥ (um1 − 1). (2.6)

We will consider that r ≥ k1 + m1.Then ur−k1 − 1 ≥ um1 − 1 and inequality
(2.6) is obvious.
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Let u = x/y ≤ 1. Then, we have

ur + 1 ≥ uk1 + um1 ≥ 2uk1/2um1/2 = 2uk1/2+m1/2.

Since u ≤ 1 and r ≥ k1+m1, then uk1/2+m1/2 ≥ ur/2. Therefore, the inequality
ur + 1 ≥ 2ur/2 and unequality (2.5) is true.

2. Now let u = y/x ≤ 1. Divide both sides of inequality (2.5) by a positive
value xr. Then, we have

1 +

(
y

x

)r
≥

(
y

x

)k2
+

(
y

x

)m2

or
1− um2 ≥ uk2(1− ur−k2). (2.7)

It is easy to check that if r ≥ k1 +m1, then r ≤ k2 +m2. Since u = y/x ≤ 1,
then 1 − um2 ≥ 1 − ur−k2 and inequality (2.7) is obvious. The proof of case
u = y/x ≥ 1 is similar to the proof given in item 1.

3. Let 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1. Then inequality (2.5) implies inequality

xr + yr ≥ p1x
k1yk2 + q1x

m1ym2 . (2.8)

Now, instead of variables x and y in inequality (2.4), we introduce new variables
xr1 = Axr and yr1 = Byr. Then inequality (2.8) transforms into inequality

xr1 + yr1 ≥
p

A
k1
r B

k2
r

xk11 y
k2
1 +

q

A
m1
r B

m2
r

xm1
1 ym2

1 ,

which is equivalent to inequality (2.4) at p ≤ A
k1
r B

k2
r and q ≤ A

m1
r B

m2
r . �

Lemma 2.1 admits the following generalization.

Lemma 2.3. (Generalization of Lemma 2.1.) Let the real numbers γ1 ≥ 1, ..., γn ≥
1, and x1 ≥ 0, ..., xn ≥ 0. Put r = γ1 + ... + γn. Then for natural numbers i and
j such that 1 ≤ i < j ≤ n the following inequality

r + γj − γi
r

xri +
r + γi − γj

r
xrj ≥ x

r−γi
i xγij + x

γj
i x

r−γj
j (2.9)

is true.

Proof. For simplicity we put n = 3, i = 1, and j = 2. Then inequality (2.9) takes
the form

r + γ2 − γ1

r
xr1 +

r + γ1 − γ2

r
xr2 − x

r−γ1
1 xγ12 − x

γ2
1 x

r−γ2
2 ≥ 0.

Let u = x1/x2. Then the left-hand side of the last inequality can be represented
as the following function

f(u) =
2γ2 + γ3

γ1 + γ2 + γ3
ur +

2γ1 + γ3

γ1 + γ2 + γ3
− uγ2+γ3 − uγ2 .
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Then from here it follows that

f
′
(u) = (2γ2 + γ3)uγ1+γ2+γ3−1 − (γ2 + γ3)uγ2+γ3−1 − γ2u

γ2−1,

f
′′
(u) = (2γ2 + γ3)(γ1 + γ2 + γ3 − 1)uγ1+γ2+γ3−2

−(γ2 + γ3)(γ2 + γ3 − 1)uγ2+γ3−2 − γ2(γ2 − 1)uγ2−2.

Thus, if x1 = x2, then f(1) = f
′
(1) = 0 and f ′′(1) = 2γ1γ2 + (γ1 + γ2)γ3 > 0.

Let u 6= 0. Then we can consider the equation

f
′
(u)u1−γ2 = p(u)− q(u) = (2γ2 + γ3)uγ1+γ3 − (γ2 + γ3)uγ3 − γ2 = 0, (2.10)

where p(u) = (2γ2 + γ3)uγ1+γ3 , q(u) = (γ2 + γ3)uγ3 + γ2u
γ2 .

Introduce in (2.10) a new variable v = uγ3 ≥ 0. Then we have p(v) = q(v),
where p(v) = (2γ2 + γ3)v1+γ1/γ3 , γ1/γ3 > 0 is a concave power function and
q(v) = (γ2 + γ3)v + γ2, γ2 > 0 is a linear function.

Since p(0) = 0 and q(0) = γ2 > 0, then v = 1 is only one positive solution of
the equation p(v) = q(v). This means that uγ3 = 1 and the point u = 1 is the
single minimum of function f(u) on the interval (0,∞). The inequality (2.9) for
i = 1, j = 2 is proved. The proof of the remaining inequalities for 1 ≤ i < j ≤ n is
similar. �

3. New activation functions.

Let
α =

2mr + 1

2nr + 1
> 0 or

2mr

2nr + 1
> 0 or

2mr + 1

2nr
> 0

and β =
2ml + 1

2nl + 1
> 0 or

2ml

2nl + 1
> 0 or

2ml + 1

2nl
> 0

be rational irreducible fractions. (Here mr, nr,ml, nl are nonnegative integers.)
Consider one of the piecewise continuous real functions:

either

f(x, α ∨ β) =

{
xβ ≡ 2nl+1

√
x2ml+1 < 0, if x < 0;

xα ≡ 2nr+1
√
x2mr+1 ≥ 0, if x ≥ 0

(3.1)

or

f(x, α ∨ β)

=

{
xβ ≡ 2nl+1

√
x2ml > 0, if x < 0;

xα ≡ 2nr+1
√
x2mr+1 ≥ 0 or 2nr

√
x2mr+1 ≥ 0 or 2nr+1

√
x2mr ≥ 0, if x ≥ 0.

(3.2)
Let r = m/n > 0 be an irreducible rational fraction; m and n are positive

integers.
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Definition 3.1. The fraction r is called odd if the numbers m and n are odd.
(Otherwise, the fraction r is called even.) The function f(x, α ∨ β) is called an
strictly odd activation function if α and β are odd. (If at least one of the numbers
α or β is even, then the function f(x, α ∨ β) is called an strictly even activation
function.)

From an applied point of view, the representation function f(x, α ∨ β) in
the form (3.1) is not very convenient. In order to make this representation more
applied, we prove the following lemma.

Lemma 3.1. The fraction r can be approximated with any preassigned accuracy
ε by either an odd or even fraction.

Proof. Let us introduce the rational fraction r1 = r1(k) = (2km + 1)/(2kn + 1),
where k is a positive integer.Then, we have

lim
k→∞

|r − r1| = lim
k→∞

∣∣∣∣∣mn − 2km+ 1

2kn+ 1

∣∣∣∣∣ = lim
k→∞

|m− n|
n(2kn+ 1)

= 0.

From here it follows that

|m− n|
n(2kn+ 1)

<
|m− n|
n22k

< ε and
|m− n|
εn2

< 2k.

Thus, we have

k = k(ε) > log2

|m− n|
εn2

and r ≈ r1(k).

Now let either r1 = r1(k) = (2km)/(2kn+1) or r1 = r1(k) = (2km+1)/(2kn).
Then, in the case r1(k) = (2km)/(2kn+ 1), we have

lim
k→∞

|r − r1| = lim
k→∞

∣∣∣∣∣mn − 2km

2kn+ 1

∣∣∣∣∣ = lim
k→∞

m

n(2kn+ 1)
= 0.

From here it follows that
m

n(2kn+ 1)
<

m

n22k
< ε and

m

εn2
< 2k.

Thus, we again have

k = k(ε) > log2

m

εn2
and r ≈ r1(k).

Furter reasoning is obvious. This completes the proof of Lemma 3.1. �

Thus, any irreducible rational even fraction with any preassigned accuracy can
be represented by a rational odd fraction and vice verca.

Since any finite or periodic decimal fraction can be represented as a rational
fraction, Lemma 1 allows us to consider odd and even activation functions f(x, α∨
β) with powers in the form of decimal fractions.
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Thus, in computer simulation, instead of (3.1), we can use the following
representation of the activation function:

f(x, α ∨ β) =

{
−(−x)β if(x < 0 and β > 0); 0 if(x < 0 and β = 0)
xα if(x ≥ 0 and α > 0); 0 if(x ≥ 0 and α = 0),

(3.3)

where α ≥ 0, β ≥ 0 are finite decimal fractions.
Similarly, instead (3.2), we can use the following representation of the activation

function:

f(x, α ∨ β) =

{
(−x)β if(x < 0 and β > 0); 0 if(x < 0 and β = 0)
xα if(x ≥ 0 and α > 0); 0 if(x ≥ 0 and α = 0),

(3.4)

where α ≥ 0, β ≥ 0 are finite decimal fractions.
It is clear that representations (3.3) and (3.4) generalize representations (3.1)

and (3.2). Therefore, the following definition is justified.

Definition 3.2. Representation (3.3) ((3.4)) is called an odd (even) activation
function.

The last remark allows us to use the tools of well-known mathematical packages
to calculate power functions. Below, these packages were used to plot several
activation functions. (It should be noted that these graphs are substantially
differ from each other at 0 < α < 1, 0 < β < 1 and α > 1, β > 1. This
difference is the main reason for different approaches when proving stability in
case 0 < α < 1, 0 < β < 1 and case α > 1, β > 1.)

Important note. Functions (3.3) and (3.4) may have properties that functions
(3.1) and (3.2) do not have. For example, f(x) = x2 is the even function, while the
function f(x) = x201/99 close to it is odd. The classic view of whether a function
f(x) = xp is even or odd is that the number p must be a positive integer. We
have tried to extend these concepts to arbitrary (not integer) positive degrees. In
our work, evenness or oddness is defined as follows: any power function f(x) = xp

at x ≥ 0 is nonnegative. But at x < 0 , function f(x) = xp is either positive
(even) or negative (odd). A natural question arises: why are such functions the
subject of research in this article? In our opinion, the most comprehensive answer
is given in [13]. It was said in [13] that ReLU [14] – [16] became a new building
block of deep neural networks instead of traditional bounded activation functions.
Therefore, we hope that generalization (3.1) (or (3.3)) and (3.2) (or (3.4)) will
lead to deeper results than those obtained using ReLU.

3.1. Even and odd activation functions

The concepts of even and odd activation functions introduced above can be
extended as follows.

Let g(x) and h(x) be two nonnegative increasing functions continuously diffe-
rentiable on the interval (r,∞). Suppose also that each of these functions has a
single root x∗ = r (g(r) = h(r) = 0) on the interval [r,∞).
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(a1) (a2)

Fig. 3.1. The odd activation functions: (a1) f1(x) = piecewise(x < 0,−(−x)1/11, x ≥ 0, x3/11),

f2(x) = piecewise(x < 0,−(−x)1/5, x ≥ 0, x2/5), f3(x) = piecewise(x < 0,−(−x)3/11, x ≥
0, x5/11); (a2) f1(x) = piecewise(x < 0,−(−x)1.1, x ≥ 0, x1.5), f2(x) = piecewise(x <

0,−(−x)9/5, x ≥ 0, x23/10), f3(x) = piecewise(x < 0,−(−x)23/9, x ≥ 0, x7/2)

(a1) (a2)

Fig. 3.2. The semi-even (a1) and semi-odd (a2) activation functions: (a1) f1(x) = piecewise(x <

0, 0, x ≥ 0, x1.67), f2(x) = piecewise(x < 0, 0, x ≥ 0, x0.7), f3(x) = piecewise(x < 0, 0, x ≥
0, x3); (a2)f1(x) = piecewise(x < 0,−(−x)7/3, x ≥ 0, 0), f2(x) = piecewise(x < 0,−(−x)3, x ≥
0, 0), f3(x) = piecewise(x < 0,−(−x)0.7, x ≥ 0, 0)

(a1) (a2)

Fig. 3.3. The even activation functions: (a1) f1(x) = piecewise(x < 0, (−x)1.1, x2), f2(x) =

piecewise(x < 0, (−x)1.4, x3.7), f3(x) = piecewise(x < 0, (−x)3, x5); (a2)f1(x) = piecewise(x <

0, (−x)0.3, x2), f2(x) = piecewise(x < 0, (−x)1.4, x0.7), f3(x) = piecewise(x < 0, (−x)3, x0.5)
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Consider the following piecewise continuous functions on an open interval
(−∞,∞):

fo(x) = −h(−x) if x < r and g(x) if x ≥ r (3.5)

and
fe(x) = h(−x) if x < r and g(x) if x ≥ r. (3.6)

Definition 3.3. Representation (3.5) ((3.6)) is called an extended odd ( extended
even) activation function.

Let the root x∗ = r be the same for all odd and even functions. Then it is
easy to check the following properties of these functions:

(i) the product of two odd or even functions is even.
(ii) the product of even and odd functions is odd.
(iii) the derivative of an even function is odd and vice versa. (Indeed, let fo(x)

be odd. Then ġ(x) ≥ 0, ḣ(x) ≥ 0 if x ≥ r. Hence ḟo(x) = −ḣ(−x)(−1) = ḣ(−x) >
0 if x < r and ġ(x) ≥ 0 if x ≥ r. Thus, the function ḟo(x) is even.)

In what follows, we will assume that r = 0 and g(x) = axα, h(x) = bxβ are
power activation functions. Here a > 0, b > 0, α > 0, and β > 0.

Definition 3.4. Let α = β and a = b for the power function fo(x) or fe(x). Then
the function fo(x) is called odd antisymmetric, and the function fe(x) is called
even symmetric.

In the future, systems ẋ(t) = H(x) (x ∈ Rn,H : Rn → Rn) of neural ODEs
of order n of the following two types will be considered.

(T1) Each of the n equations of system ẋ(t) = H(x) includes no more than n
power functions. These functions are the same for each equation of the system.

(T2) Each of the n equations of system ẋ(t) = H(x) includes only one power
function. Moreover, all the functions mentioned are, generally speaking, different.

Thus, in both cases (T1) and (T2), the system ẋ(t) = H(x) contains no more
than n different power functions.

The sense of introducing such types of ODE is as follows.
All neurons of a neural network located in one layer are divided into n groups,

each of which contains no more than n neurons.
In the case of (T1), the signals entering the neurons of each group are trans-

formed according to different power laws. At the same time, these laws are the
same for different groups.

In the case of (T2), the signals entering the neurons of each group are trans-
formed only according to one power law. At the same time, these laws are,
generally speaking, different for different groups.

In the future, two different algorithms for learning neural networks will be
designed. One of them will be based on property (T1) and the other on property
(T2). Here it is important to find out for which of the algorithms the learning
problem is solved more efficiently. (For example, for which of the algorithms a
higher rate of convergence can be achieved.)
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The rest of the article will be devoted to the study of the stability problem.

4. First use of power functions in neural ODEs: Architecture
(T1)

Consider the following system of real differential equations

ẋ1(t) = c1 + a11x1(t) + a12x2(t) + ...+ a1nxn(t)
+b11piecewise(x1(t) < 0,−(−x1(t))β1 , x1(t)α1)
. . . . . . . . . . . . . . . . . . . . .

+b1npiecewise(xn(t) < 0,−(−xn(t))βn , xn(t)αn),
. . . . . . . . . . . . . . . . . . . . . ,

ẋn(t) = cn + an1x1(t) + an2x2(t) + ...+ annxn(t)
+bn1piecewise(x1(t) < 0,−(−x1(t))β1 , x1(t)α1)
. . . . . . . . . . . . . . . . . . . . .

+bnnpiecewise(xn(t) < 0,−(−xn(t))βn , xn(t)αn)

(4.1)

with initial values xi(0) = xi0. Here αi ≥ 0, βi ≥ 0; ci, aij , bij ∈ R; i, j = 1, ..., n.
Introduce the following designations : f(xi, αi ∨ βi) = piecewise(xi(t) <

0,−(−xi(t))βi , xi(t)αi), i = 1, ..., n;

A =

 a11 · · · a1n
... · · ·

...
an1 · · · ann

 ∈ Rn×n, B =

 b11 · · · b1n
... · · ·

...
bn1 · · · bnn

 ∈ Rn×n,

x = (x1, ..., xn)T , f(x) = (f(x1, α1 ∨ β1), ..., f(xn, αn ∨ βn))T , c = (c1, ..., cn)T ∈
Rn.

Then the system (4.1) can be rewritten in more compact form

ẋ(t) = c +A · x(t) +B · f(x(t)). (4.2)

Theorem 4.1. Let αi > 0 and βi > 0, and the function f(xi, αi ∨ βi) be odd;
i = 1, ..., n. Suppose also that for system (4.1) one of the three conditions:

(i) αi > 1, βi > 1, i = 1, ..., n, and the symmetric matrix B +BT is negative
definite;

(ii) αi < 1, βi < 1, i = 1, ..., n, and the symmetric matrix A+AT is negative
definite;

(iii) αi > 1, βi < 1 or αi < 1, βi > 1, i = 1, ..., n, and the symmetric matrices
A+AT and B +BT are negative definite, is satisfied.

Then any solution of system (4.1) is bounded. In addition, if in case (i) A = 0
and c = 0 or in case (ii) B = 0 and c = 0, then the equilibrium point 0 is globally
asymptotically stable.

Proof. Let (u,v) ≡ ((u1, ..., un), (v1, ..., vn)) be a scalar product of vectors u,v ∈
Rn.



Stability of Neural ODEs with Power Nonlinearities 33

We define the applicant for the role of the Lyapunov function for system (4.1)
at c = 0 the real function V (x1, ..., xn) by the following rule:

V (x1, ..., xn) =
f(x1, γ1 + 1)

γ1 + 1
+ ...+

f(xn, γn + 1)

γn + 1
= 0.5

(
(
f(x1, γ1)

γ1 + 1
, ...,

f(xn, γn)

γn + 1
), (x1, ..., xn)

)
+ 0.5

(
(x1, ..., xn), (

f(x1, γ1)

γ1 + 1
, ...,

f(xn, γn)

γn + 1
)
)
,

where ∀i ∈ {1, ..., n}

γi =

{
βi, if xi < 0,
αi, if xi ≥ 0.

(i1) The case of strictly odd function f(xi, αi ∨ βi) and c = 0; i = 1, ..., n.

Since fractions βi+1 and αi+1 have an even numerator and odd denominator,
then the function V (x1, ..., xn) will be positive definite.

Further, from the definition of function V (x1, ..., xn) and system (4.1) it follows
that

V̇t(x1(t), ..., xn(t)) =
(f(x1, γ1 + 1)

γ1 + 1
+ ...+

f(xn, γn + 1)

γn + 1

)′
t

= f(x1(t), α1 ∨ β1) · ẋ1(t) + ...+ f(xn(t), αn ∨ βn) · ẋn(t)

= 0.5
(
f(x1(t), α1 ∨ β1), f(x2(t), α2 ∨ β2), ..., f(xn(t), αn ∨ βn)

)
·A ·


x1(t)
x2(t)
...

xn(t)



+0.5(x1(t), x2(t), ..., xn(t)) ·AT ·


f(x1(t), α1 ∨ β1)
f(x2(t), α2 ∨ β2)

...
f(xn(t), αn ∨ βn)



+
(
f(x1(t), α1∨β1),f(x2(t), α2∨β2), ..., f(xn(t), αn∨βn)

)
S


f(x1(t),α1∨β1)
f(x2(t),α2∨β2)

...
f(xn(t),αn∨βn)

 ,

(4.3)
where S := 0.5(B +BT ).

Introduce the norm of matrix Q = {qij} ∈ Rn by the following formula:

‖Q‖ =
∑

1≤i,j≤n
|qij |.

Similarly, we define the norm of vector u = (u1, ..., un)T :

‖u‖ =
∑

1≤i≤n
|ui|.
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Now we estimate the derivative V̇t(x1(t), ..., xn(t)) of function V (x1(t), ...,
xn(t)), taking into account the fact that matrix S is negative definite:

V̇t(x(t)) ≤ 0.5‖(f(x1(t), α1 ∨ β1), ..., f(xn(t), α1 ∨ β1))‖ · (‖A‖+ ‖AT ‖) · ‖x(t)‖

+λmax(S) · (f2(x1(t), α1 ∨ β1) + f2(x2(t), α2 ∨ β2) + ...+ f2(xn(t), αn ∨ βn))

= 0.5(|f(x1(t), γ1)|+ ...+ |f(xn(t), γn)|) · (|x1(t)|+ ...+ |xn(t)|) · (‖A‖+ ‖AT ‖)

+λmax(S) · (f2(x1(t), α1 ∨ β1) + f2(x2(t), α2 ∨ β2) + ...+ f2(xn(t), αn ∨ βn),

where λmax(S) denotes the maximal eigenvalue of symmetric matrix S.
The last inequality can be rewritten as follows:

d

dt
V (x1(t), ..., xn(t)) ≤ a·W (x1(t), ..., xn(t))−b·(f(x1(t), 2γ1)+...+f(xn(t), 2γn)),

(4.4)
where

W (x1, ..., xn) =
∑

1≤i,j≤n
|rij | · |xγii | · |xj |,

and the constants a = 0.5(‖A‖+ ‖AT ‖) = ‖A‖ > 0, and b = −λmax(S) > 0.
The solution of inequality (4.4) can be found by the formula

V (x1(t), ..., xn(t)) (4.5)

≤ V0 · exp

tˆ

0

[
aW (x1(τ), ..., xn(τ))− b · (f(x1(τ), 2γ1) + ...+ f(xn(τ), 2γn)

V (x1(τ, ..., xn(τ))

]
dτ,

where the constant V0 = V (x1(0), ..., xn(0)) > 0.
Note that the functionsW (x1, ..., xn), V (x1, ..., xn), and the function H(x1, ...,

xn) = f(x1, 2γ1)+...+f(xn, 2γn) are positive definite power functions. In addition,
degW (x1, ..., xn) = deg V (x1, ..., xn) = max(γi + 1), and degH(x1, ..., xn) =
2 max γi; i = 1, ..., n.

Now assume that αi > 1 and βi > 1 . Then, we have 2 max γi > max(γi + 1);
i = 1, ..., n. In this case, on the one hand, there exists a moment T0 > 0 such that
if t > T0, then aW (x1, ..., xn)− bH(x1, ..., xn) < 0, and

lim
t→∞

aW (x1(t), ..., xn(t))− bH(x1(t), ..., xn(t))

V (x1(t), ..., xn(t))
< 0. (4.6)

Thus, we have V (x1(t), ..., xn(t)) → 0 at t → ∞. But on the other hand this
fact means that if the function V (x1(t), ..., xn(t)) is small enough, then there
exists the moment T1 > T0 > 0 such that if t > T1, then aW (x1(t), ..., xn(t)) −
bH(x1(t), ..., xn(t)) > 0 and the positive function V (x1(t), ..., xn(t)) increases, and
so on.

Denote by H = {h1, ..., hn} ⊂ Rn the set of all points satisfying condition
aW (h1, ..., hn)−bH(h1, ..., hn) ≤ 0 . Since functionH(x1, ..., xn) is positive definite,
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then H is the compact positively invariant set with respect to (4.2). Therefore, if
solution x(t) of system (4.2) belongs to H, then it is bounded. It means that the
solution V (x1, ..., xn) of equation (4.3) also should be bounded.

Now we assume that there exists a moment Tu such that for t = Tu x(Tu) 6∈ H.
Then inequality (4.6) holds.

Denote by S the ball centered at the origin whose surface passes through
point Tu ∈ S. In this case H ⊂ S. Therefore, by virtue of (4.6) and according to
LaSalle’s Theorem, there is a moment Ts > Tu such that x(Ts) ∈ H. Again we
get that solution x(t) of system (4.2) starting at S belongs to S. In addition, x(t)
is attracted to the boundary of H as t→ +∞. Thus, it is bounded.

Now we use Comparison Principle. Then it remain to compare the solution
V (x1, ..., xn) of equation (4.3) and a similar solution of inequality (4.4). From
here it follows the boundedness of solution x(t) of system (4.2) for any initial
condition x0 ∈ Rn. Finally, if A = 0 and c = 0, then H = 0. In this case system
(4.2) has only zero equilibrium point and any trajectory of this system is attracted
to the origin (see Lyapunov’s Theorem). The assertion of Theorem 4. 1 for item
(i) become obvious. This completes the proof of case (i1).

(i2) The case of strictly odd function f(xi, αi ∨ βi) and c 6= 0; i = 1, ..., n.

Now we show that system (4.2) with the strictly odd activation function
f(x, αi ∨ βi) can be reduced to case c = 0; i = 1, ..., n.

Let α = αi and β = βi. Consider the equation

A · x +B · f(x) + c = 0, (4.7)

where f(x) = ((x1)α∨β, ..., (xn)α∨β)T .
Let q ={least common multiply of numbers 2nr + 1, 2nl + 1} (see (3.1)).

We introduce new variables u1, ..., un by the formulas: x1 = (u1/x0)q, ..., xn =
(un/x0)q, where x0 6= 0 is a new variable. Then in the new variables the left-hand
sides of equations (4.7) are the sums of monomials of odd degrees: U1(x0, u1, ..., un)+
c1x

s
0 = 0, ..., Un(x0, u1, ..., un) + cnx

s
0 = 0, where the number s ={least common

multiply of numbers q, q · α, and q · β} is odd.
Now it remains to apply Theorems 1 or 3 [12] to the system of polynomial

equations

U1(x0, u1..., un) + c1x
s
0 = 0, ..., Un(x0, u1, ..., un) + cnx

s
0 = 0. (4.8)

According to [12] system (4.8) has a nontrivial real solution (x∗0 6= 0, u∗1, ..., u
∗
n).

Put x∗0 = 1 and introduce into system (4.2) new variables v1, ..., vn by the
formulas v1 = x1 − (u∗1)q, ..., vn = xn − (u∗n)q.

As a result, instead of system (4.2), we obtain the following system

v̇(t) = A · v +B · f(v) + P(v), (4.9)

where P(0) = 0 and

if α > 1, β > 1, then lim
‖v‖→∞

‖P(v)‖
‖f(v)‖

=

(
∞
∞

)
= 0. (4.10)
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(Here ‖z‖ is any norm of vector z ∈ Rn.)
Now in system (4.9) we put v = x and introduce the same function V (x1, ...,

xn) as in Theorem 4.1. From here it follows that

V̇t(x1(t), ..., xn(t)) ≤ right side of formula (4.4)+PT (x(t))


f(x1(t), α1 ∨ β1)
f(x2(t), α2 ∨ β2)

...
f(xn(t), αn ∨ βn)


+(f(x1(t), α1 ∨ β1), ..., f(xn(t), αn ∨ βn)) ·P(x(t)).

Then instead of inequality (4.4) we have the following inequality:

d

dt
V (x1(t), ..., xn(t)) ≤ a·W (x1(t), ..., xn(t))−b·(f(x1(t), 2γ1)+...+f(xn(t), 2γn))

+2‖P(x(t))‖ · ‖(f(x1(t), α1 ∨ β1), ..., f(xn(t), αn ∨ βn))‖. (4.11)

To study the solutions of inequality (4.11), we use the same reasonings as in
the study of inequality (4.4). Then, taking into account (4.10), in the integrand
of formula (4.5), we get

lim
t→∞

aW (x1(t), ..., xn(t))− bH(x1(t), ..., xn(t))

V (x1(t), ..., xn(t))

+ lim
t→∞

2‖P(x(t))‖ · ‖(f(x1(t), α1 ∨ β1), ..., f(xn(t), αn ∨ βn))‖
V (x1(t), ..., xn(t))

< 0.

Now the completion of the proof of item (i) in case c 6= 0 completely repeats
the proof in case c = 0.

(i3) The case of odd function f(xi, αi ∨ βi) and c = 0; i ∈ {1, ..., n}.

Consider the differential equation ẋ(t) = xγ(t), where the function xγ is odd.
Introduce the function V (x) = xγ+1 = xγ · x, where the function x is odd. It is
clear that the function V (x) is even.

We have: if x ≥ 0, then V̇t = (γ+1)·xγ ·ẋ(t) = (γ+1)·xγ ·xγ = (γ+1)·x2γ ≥ 0;
if x < 0, then V̇t = −(γ + 1) · (−x)γ · ẋ(t) = −(γ + 1) · (−x)γ · [−(−x)γ ] =
(γ + 1) · (−x)2γ > 0.

Thus, the function V̇t is also even. From here it follows that all the results
obtained in item (i1) for strictly odd functions remain valid for odd functions.

(i4) The case of odd function f(xi, αi ∨ βi) and c 6= 0; i = 1, ..., n.

We return to equation (4.7). We assume that the activation functions in
this equation are odd. Then, according to Lemma 3.1, any odd function with
parameters αo and βo can be approximated with any given accuracy ε > 0 by a
strictly odd function whose parameters are ordinary fractions αso and βso.

Let x∗so(αso ∨ βso) ∈ Rn be a root of system (4.7) with strictly odd activation
functions. Then, by the principle of the continuous dependence of the solution of
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system (4.7) on parameters α and β , there must be a solution x∗o(αo ∨ βo) ∈ Rn
of system (4.7) with odd activation functions such that ‖x∗so(αso ∨ βso)−x∗o(αo ∨
βo)‖ < ε.

This completes the proof of item (i4) and the whole item (i).

(ii1) The case of strictly odd function f(xi, αi ∨ βi) and c = 0; i = 1, ..., n.

Define the applicant for the role of the Lyapunov function for system (4.2)
at c = 0 the real function V (x1, ..., xn) by the following rule: V (x1, ..., xn) =
x2

1 + x2
2 + ...+ x2

n = (x,x) = xT · x. From here it follows that

V̇t(x1(t), ..., xn(t)) = (x1(t), x2(t), ..., xn(t)) · (A+AT )


x1(t)
x2(t)
...

xn(t)



+
(
f(x1(t), α1 ∨ β1), f(x2(t), α2 ∨ β2), ..., f(xn(t), αn ∨ βn)

)
·B ·


x1(t)
x2(t)
...

xn(t)



+(x1(t), x2(t), ..., xn(t)) ·BT ·


f(x1(t), α1 ∨ β1)
f(x2(t), α2 ∨ β2)

...
f(xn(t), αn ∨ βn)

 . (4.12)

Thus, from (4.12) we have:

V̇t(x1(t), ..., xn(t)) ≤ −λmax(A+AT ) · ‖x(t)‖2

+f(x1(t), γ1 + 1) + ...+ f(xn(t), γn + 1))(‖B‖+ ‖BT ‖).

Consider the equation

d

dt
V (x1(t), ..., xn(t)) = −a · V (x1(t), ..., xn(t)) + bW (x1(t), ..., xn(t)), (4.13)

where
W (x1, ..., xn) = f(x1, γ1 + 1) + ...+ f(xn, γn + 1),

and the constants a = −λmax(A+ AT ) > 0, and b = ‖B‖+ ‖BT ‖ > 0. Then the
solution of equation (4.13) can be found by the formula

V (x1(t), ..., xn(t)) = V0·exp

tˆ

0

[
−aV (x1(τ), ..., xn(τ)) + bW (x1(τ), ..., xn(τ))

V (x1(τ), ..., xn(τ))

]
dτ,

(4.14)
where the constant V0 = V (x1(0), ..., xn(0)) > 0.
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As αi < 1, βi < 1, then γi < 1 and 2γi < γi + 1 < 2; i = 1, ..., n.
Then, in all the arguments given for the proof of Theorem 4.1 (item (i1)), it is
necessary to replace the function aW (x1(t), ..., xn(t))− bH(x1(t), ..., xn(t)) with
the function −aV (x1(t), ..., xn(t)) + bW (x1(t), ..., xn(t)). As a result, we again
obtain the boundedness of solution V (x1, ..., xn) of equation (4.13).

It is clear that the set of all points H ⊂ Rn satisfying condition −aV (x1, ..., xn)
+bH(x1, ..., xn) ≤ 0 is the compact positively invariant set with respect to (4.2).
Therefore, according to LaSalle’s Theorem, if a solution x(t) of system (4.2)
belongs to H, then it is bounded. It means that the solution V (x1, ..., xn) of
equation (4.13) also should be bounded.

We use Comparison Principle. Now it again remain to compare the solution
V (x1, ..., xn) of equation (4.12) and a similar solution of equation (4.13). From
here it follows the boundedness of solution x(t) of system (4.2) for any initial
condition x0 ∈ Rn. Finally, if B = 0 and c = 0, then H = 0. In this case system
(4.2) has only zero equilibrium point and any trajectory of this system is attracted
to the origin (see again Lyapunov’s Theorem). This completes the proof of case
(ii1).

(ii2) The case of strictly odd function f(xi, αi ∨ βi) and c 6= 0; i = 1, ..., n.

Repeating the same reasoning as at the beginning of (ii2), as a result we get
the system (4.9), in which P(0) = 0 and

if αi < 1, βi < 1, then lim
‖v‖→∞

‖P(v)‖
‖v‖

=

(
∞
∞

)
= 0. (4.15)

(Here ‖z‖ is any norm of vector z ∈ Rn.)
Let αi < 1, βi < 1. The function V (x1, ..., xn) is introduced as before. Then,

we have

V̇t(x1(t), ..., xn(t)) = (f(x1(t), γ1 + 1) + ...+ f(xn(t), γn + 1))′t

= right side of formula (4.13)+PT (x(t)) ·


x1(t)
x2(t)
...

xn(t)

+(x1(t), ..., xn(t)) ·P(x(t)).

Now, taking into account (4.15), in the integrand of formula (4.14), we get

lim
t→∞

−aV (x1(t), ..., xn(t)) + bW (x1(t), ..., xn(t)) + 2‖P(x(t))‖ · ‖x(t)‖
V (x1(t), ..., xn(t))

< 0.

The further proof for c 6= 0 repeats the proof of item (i3) in Theorem 4.1.

(ii3) The case of odd function f(xi, αi ∨ βi) and c = 0; i ∈ {1, ..., n}.

(ii4) The case of odd function f(xi, αi ∨ βi) and c 6= 0; i = 1, ..., n.
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If we replace αi < 1 and βi < 1 with αi > 1 and βi > 1, then the proof of
these items verbatim repeat the proof of items (i3) and (i4).

(iii) In general (with the exception of a few minor details), the proof of item (iii)
repeats the proofs of items (i) and (ii)

As before, we again define the applicant for the role of the Lyapunov function
for system (4.2) at c = 0 the real function V (x1, ..., xn) by the following rule:

V (x1, ..., xn) = V1(x1, ..., xn) + V2(x1, ..., xn),

where

V1(x1, ..., xn) = x2
1 + ...+ x2

n, V2(x1, ..., xn) =
f(x1, γ1 + 1)

γ1 + 1
+ ...+

f(xn, γn + 1)

γn + 1
.

It is clear that the functions V1(x1, ..., xn) and V2(x1, ..., xn) are positive definite.
Then, as follows from the conditions of Theorem 4.1, the functions V̇1t(x1(t), ...,
xn(t)) and V̇2t(x1(t), ..., xn(t)) are negative definite. Hence the function V̇t(x1(t),
..., xn(t)) will also be negative definite. Therefore, the function V (x1, ..., xn) is the
Lyapunov function. Thus, item (iii) of Theorem 4.1 is a simple corollary of items
(i) and (ii).

If we follow the logic of the proofs of items (i) and (ii), then the following
positive definite function U(x1, ..., xn) could claim the role of the Lyapunov func-
tion:

U(x1, ..., xn) = W (x1, α1 ∨ β1) + ...+W (xn, αn ∨ βn),

where

W (xi, αi ∨ βi) = if (xi < 0 and 0 < βi < 1) then x2
i else if(xi < 0 and βi > 1)

then (−xi)βi+1 if (xi ≥ 0 and 0 < αi < 1) then x2
i else if(xi ≥ 0 and αi > 1)

then xαi+1
i ; i = 1, ..., n.

It is clear that all n terms of function U(x1, ..., xn) are some terms of function
V (x1, ..., xn). However, the negative definiteness of function V̇t(x1(t), ..., xn(t))
does not imply negative definiteness of function U̇t(x1(t), ..., xn(t)). (Only inequa-
lity V̇t(x1(t), ..., xn(t)) ≤ U̇t(x1(t), ..., xn(t)) holds, but not the inequality V̇t(x1(t),
..., xn(t)) ≤ U̇t(x1(t), ..., xn(t)) ≤ 0.) Therefore, the negative definiteness of func-
tion U̇t(x1(t), ..., xn(t)) still needs to be proved. But since the moments of switching
t∗i of variable xi(t) from condition xi(t) < 0 to condition xi(t) ≥ 0, i ∈ {1, ..., n}
are unknown, a constructive verification of the negative definiteness of function
U̇t(x1(t), ..., xn(t)) is impossible.

Therefore, the conditions of item (iii) guaranteeing the existence of the Lyapu-
nov function V (x1, ..., xn) are more restrictive than the conditions for the existence
of the Lyapunov function U(x1, ..., xn). However, these conditions are easily veri-
fied for the coefficients of system (4.2), in contrast to the non-constructive condi-
tions for checking the existence of the Lyapunov function U(x1, ..., xn).
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The proof of all parts of Theorem 4.1 is complete. �

4.1. Generalization of Theorem 4.1 for classical neural ODEs

If we construct a continuous analogue for some recurrent neural network (see
Subsection 1.1), then we can get neural ODEs of the following form:

ẋ1(t) = f1(b11x1(t) + b12x2(t) + ...+ b1nxn(t) + c1),
. . . . . . . . . . . . . . . .

ẋn(t) = fn(bn1x1(t) + bn2x2(t) + ...+ bnnxn(t) + cn),
(4.16)

where fi(...) is an activation function; i = 1, ..., n. (It is one of the common forms
of neural ODE [6,7].)

Suppose that for system (4.1) A = 0 and detB 6= 0. Then, using the change of
variables x(t)→ B−1x(t), we can go from system (4.1) to system of type (4.16).

Let the functions fi(...), i = 1, ..., n, be the same as in Theorem 4.1. It is clear
that point xe = −B−1c is the only equilibrium point of system (4.16). Then, under
the conditions of item (i) of Theorem 4.1, the point xe is globally asymptotically
stable.

5. Second use of power functions in neural ODEs: Architecture
(T2)

Consider the following system of real differential equations

ẋ1(t) = c1 + a11x1(t) + a12x2(t) + ...+ a1nxn(t)
+b11piecewise(x1(t) < 0,−(−x1(t))β1 , x1(t)α1)
. . . . . . . . . . . . . . . . . . . . .

+b1npiecewise(xn(t) < 0,−(−xn(t))β1 , xn(t)α1),
. . . . . . . . . . . . . . . . . . . . . ,

ẋn(t) = cn + an1x1(t) + an2x2(t) + ...+ annxn(t)
+bn1piecewise(x1(t) < 0,−(−x1(t))βn , x1(t)αn)
. . . . . . . . . . . . . . . . . . . . .

+bnnpiecewise(xn(t) < 0,−(−xn(t))βn , xn(t)αn)

(5.1)

with initial values xi(0) = xi0. Here αi ≥ 0, βi ≥ 0; ci, aij , bij ∈ R; i, j = 1, ..., n.
Let aij = 0, ci = 0. In this case we rewrite system (5.1) in the following form

ẋ1(t) = b11f1(x1) + b12f1(x2) + ...+ b1nf1(xn),
. . . . . . . . . . . . . . . .

ẋn(t) = bn1fn(x1) + bn2fn(x2) + ...+ bnnfn(xn),
(5.2)

where fi(xj) = piecewise(xj(t) < 0,−(−xj(t))βi , xj(t)αi); i, j = 1, ..., n. Thus,
each right-hand side of the equations of system (5.1) is composed only of odd
functions.

Let n be an even number. We will assume that all equations of system (5.2)
are composed of antisymmetric odd functions fi(xj): αi = βi = γi; i, j = 1, ..., n.
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Introduce the following function

V (x1, ..., xn) =
[
x1f2(x1)f3(x1) · ... · fn(x1)︸ ︷︷ ︸

n

+x2f1(x2)f3(x2) · ... · fn(x2)︸ ︷︷ ︸
n

+...+ xnf1(xn)f2(xn) · ... · fn−1(xn)︸ ︷︷ ︸
n

]
. (5.3)

Then, we have the following derivative: V ′t (x1, ..., xn) =

=
[
(b11f1(x1)+ b12f1(x2)+ ...+b1nf1(xn))(1+γ2+ ...+γn)f2(x1)f3(x1)· ... ·fn(x1)

+(b21f2(x1)+b22f2(x2)+...+b2nf2(xn))(1+γ1+γ3+...+γn)f1(x2)f3(x2)·...·fn(x2)

+...+(bn1fn(x1)+bn2fn(x2)+...+bnnfn(xn))(1+γ1+...+γn−1)f1(xn)·...·fn−1(xn)
]

=
[
b11(1 + γ2 + ...+ γn)f1(x1)f2(x1) · ... · fn(x1)

+b22(1 + γ1 + γ3 + ...+ γn)f1(x2)f2(x2) · ... · fn(x2)

+...+ bnn(1 + γ1 + ...+ γn−1)f1(xn)f2(xn) · ... · fn(xn)

+
∑

1≤i1,...,in≤n
hi1,...,in(bij , γ1, ..., γn) · f1(xi1)f2(xi2) · ... · fn(xin)

]
, (5.4)

where indices i1, ..., in take only two values: i1 = ... = in−1 = i, in = j;
hi1,...,in(bij , γ1, ..., γn) ∈ R; 1 ≤ i ≤ j ≤ n.

From the method of constructing the function V
′
t (x1, ..., xn) it follows that

V
′
t (x1, ..., xn) is a homogeneous function of degree γ1 + γ2 + ...+ γn.

Theorem 5.1. Let in system (5.2) n = 2 and functions f1(x1), f1(x2), f2(x1), and
f2(x2) are antisymmetric odd. Assume also that b11 < 0, b22 < 0, γ1 ≥ 1, γ2 ≥ 1,
and

|b12(1 + γ2) + b21(1 + γ1)|

[−b11(1 + γ2)]
γ2

γ1+γ2 · [−b22(1 + γ1)]
γ1

γ1+γ2

< 2. (5.5)

Then system (5.2) is a globally asymptotically stable.

Proof. We introduce a positive definite function

V (x1, x2) = x1f2(x1) + x2f1(x2) = x1+γ2
1 + x1+γ1

2 .

Then from here it follows that

V
′
t (x1, x2) = x

′
1f2(x1) + x1f

′
2(x1) + x

′
2f1(x2) + x2f

′
1(x2)

= b11(1 + γ2)xγ1+γ2
1 + (b12(1 + γ2) + b21(1 + γ1))xγ12 x

γ2
1 + b22(1 + γ1)xγ1+γ2

2 .
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Let b11 < 0, b22 < 0. Further, we have

V
′
t (x1, x2) ≤b11(1+γ2)xγ1+γ2

1 +b22(1+γ1)xγ1+γ2
2 +|b12(1+γ2)+b21(1+γ1)||x2|γ1 |x1|γ2 .

We apply Lemmas 2.1 and 2.2 (or 2.3) to the last inequality. Therefore, we
put x = x1, y = y1, α = γ1, β = γ2, A = −b11(1 + γ2), B = −b22(1 + γ1), p = 0,
and q = |b12(1 + γ2) + b21(1 + γ1)|. Then, according to Lemma 2.2, there must be

|b12(1+γ2)+b21(1+γ1)| = 2A
β

α+βB
α

α+β = 2[−b11(1+γ2)]
γ2

γ1+γ2 ·[−b22(1+γ1)]
γ1

γ1+γ2 .

Let
s =

|b12(1 + γ2) + b21(1 + γ1)|

[−b11(1 + γ2)]
γ2

γ1+γ2 · [−b22(1 + γ1)]
γ1

γ1+γ2

.

It is easy to verify that if s ≤ 2, then V ′t (x1, x2) is non-positive, and in case
s < 2 it will be negative definite. Thus, under the condition (5.5), the function
V (x1, x2) is the Lyapunov function. This statement completes the proof. �

Corollary. The assertion of Theorem 5.1 is preserved if condition (5.5) is replaced
by the inequality

b12b21 < 0.

Proof. We introduce new changes of variables in system (5.2) : x1 → d1x1, d1 > 0;
x2 → d2x2, d2 > 0. Then the coefficients b12 and b21 of this system are transformed
into:

b12 →
b12d

γ1
2

d1
, b21 →

b21d
γ2
1

d2
.

In this case, the coefficient b12(1 + γ2) + b21(1 + γ1) of function V
′
t (x1, x2) is

transformed into

b12(1 + γ2) + b21(1 + γ1)→ ∆(d1, d2) ≡ b12(1 + γ2)
dγ12

d1
+ b21(1 + γ1)

dγ21

d2
.

Since b12b21 < 0, there will always be numbers d∗1 > 0 and d∗2 > 0 such that
∆(d∗1, d

∗
2) = 0. This means that function

V
′
t (x1, x2)→ b11(1 + γ2)(d∗1)γ1−1xγ1+γ2

1 + b22(1 + γ1)(d∗2)γ2−1xγ1+γ2
2

is negative definite and function V (x1, x2)→ x1+γ2
1 + x1+γ1

2 (it will not change in
new variables) is the Lyapunov function. �

Theorem 5.2. Let r = γ1 + ...+γn. Assume that in system (5.2) the number n be
even and functions f1(x1), ..., f1(xn), ..., fn(x1), ..., and fn(xn) be antisymmetric
odd. Assume also that b11 < 0, b22 < 0, ..., bnn < 0, γ1 ≥ 1, γ2 ≥ 1, ..., γn ≥ 1, and

|bij | <
[−bii(r + 1− γi)]

r−γi
r [−bjj(r + 1− γj)]

γi
r

(n− 1)(r + 1− γi)
,

|bji| <
[−bii(r + 1− γi)]

γj
r [−bjj(r + 1− γj)]

r−γj
r

(n− 1)(r + 1− γj)
;

(5.6)

where 1 ≤ i < j ≤ n. Then system (5.2) is a globally asymptotically stable.
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Proof. Let n = 4. We introduce a positive definite function

V (x1, x2, x3, x4) = x1f2(x1)f3(x1)f4(x1) + x2f1(x2)f3(x2)f4(x2)

+x3f1(x3)f2(x3)f4(x4) + x4f1(x4)f2(x4)f3(x4).

Then
V
′
t (x1, x2, x3, x4)

=b11(r+1−γ1)xr1+b12(r+1−γ1)xr−γ11 xγ12 +b13(r+1−γ1)xr−γ11 xγ13 +b14(r+1−γ1)xr−γ11 xγ14

+b21(r+1−γ2)xγ21 x
r−γ2
2 +b22(r+1−γ2)xr2+b23(r+1−γ2)xr−γ22 xγ23 +b24(r+1−γ2)xr−γ22 xγ24

+b31(r+1−γ3)xγ31 x
r−γ3
3 +b32(r+1−γ3)xγ32 x

r−γ3
3 +b33(r+1−γ3)xr3+b34(r+1−γ3)xr−γ33 xγ34

+b41(r+1−γ4)xγ41 x
r−γ4
4 +b42(r+1−γ4)xγ42 x

r−γ4
4 +b43(r+1−γ4)xγ43 x

r−γ4
4 +b44(r+1−γ4)xr4.

We compose the following functions:

W1 =
1

3
(b11(r+1−γ1)xr1+b22(r+1−γ2)xr2)+b12(r+1−γ1)xr−γ11 xγ12 +b21(r+1−γ2)xγ21 x

r−γ2
2

W2 =
1

3
(b11(r+1−γ1)xr1+b33(r+1−γ3)xr3)+b13(r+1−γ1)xr−γ11 xγ13 +b31(r+1−γ3)xγ31 x

r−γ3
3

W3 =
1

3
(b11(r+1−γ1)xr1+b44(r+1−γ4)xr4)+b14(r+1−γ1)xr−γ11 xγ14 +b41(r+1−γ4)xγ41 x

r−γ4
4

W4 =
1

3
(b22(r+1−γ2)xr2+b33(r+1−γ3)xr3)+b23(r+1−γ2)xr−γ22 xγ23 +b32(r+1−γ3)xγ32 x

r−γ3
3

W5 =
1

3
(b22(r+1−γ2)xr2+b44(r+1−γ4)xr4)+b24(r+1−γ2)xr−γ22 xγ24 +b42(r+1−γ4)xγ42 x

r−γ4
4

W6 =
1

3
(b33(r+1−γ3)xr3+b44(r+1−γ4)xr4)+b34(r+1−γ3)xr−γ33 xγ34 +b43(r+1−γ4)xγ43 x

r−γ4
4 .

(It’s clear that V ′t (x1, x2, x3, x4) = W1 + ...+W6.)
Let b11 < 0, b22 < 0. We assume that W1 ≤ 0. Then we have

−1

3
(b11(r+1−γ1)xr1+b22(r+1−γ2)xr2) ≥ b12(r+1−γ1)xr−γ11 xγ12 +b21(r+1−γ2)xγ21 x

r−γ2
2 .

Let A = [−b11(r + 1− γ1)]
1
r , B = [−b22(r + 1− γ2)]

1
r . Consider the following

inequality:

xr1 + xr2 ≥
3|b12(r + 1− γ1)||xr−γ11 xγ12 |

[−b11(r + 1− γ1)]
r−γ1
r [−b22(r + 1− γ2)]

γ1
r

+
3|b21(r + 1− γ2)||xγ21 x

r−γ2
2 |

[−b11(r + 1− γ1)]
γ2
r [−b22(r + 1− γ2)]

r−γ2
r

. (5.7)

It is clear that inequality (5.7) follows from Lemma 2.2 (see (2.8)). In turn,
inequalities (5.6) follow from formulas (5.7) and (2.8).



44 V.Ye. Belozyorov, D.V. Dantsev

The proof of inequalities Wi ≤ 0, i = 2, ..., 6, is carried out in the same way
as the proof of inequality W1 ≤ 0. Thus, we obtain that under the conditions of
Theorem 5.2 the function V

′
t (x1, x2, x3, x4) is negative definite. Hence, V is the

Lyapunov function. The proof of Theorem 5.2 for the case of an arbitrary even n
now becomes obvious. �

Theorem 5.3. Let r = γ1 + ...+ γn. Assume that in system (5.2) the number n
be odd and functions f1(x1), ..., f1(xn), ..., fn(x1), ..., and fn(xn) be antisymmetric
odd. Assume also that b11 < 0, b22 < 0, ..., bnn < 0, γ1 ≥ 1, γ2 ≥ 1, ..., γn ≥ 1, and

|bij | <
[−bii(r + 2− γi)]

r+1−γi
r+1 [−bjj(r + 2− γj)]

γi
r+1

(n− 1)(r + 2− γi)
,

|bji| <
[−bii(r + 2− γi)]

γj
r+1 [−bjj(r + 2− γj)]

r+1−γj
r+1

(n− 1)(r + 2− γj)
;

(5.8)

where 1 ≤ i < j ≤ n. Then system (5.2) is a globally asymptotically stable.

Proof. Let n = 3. We introduce a positive definite function

V (x1, x2, x3) = x2
1f2(x1)f3(x1) + x2

2f1(x2)f3(x2) + x2
3f1(x3)f2(x3).

Then
V
′
t (x1, x2, x3)

= b11(r + 2− γ1)xr+1
1 + b12(r + 2− γ1)xr+1−γ1

1 xγ12 + b13(r + 2− γ1)xr+1−γ1
1 xγ13

+b21(r + 2− γ2)xγ21 x
r+1−γ2
2 + b22(r + 2− γ2)xr+1

2 + b23(r + 2− γ2)xr+1−γ2
2 xγ23

+b31(r + 2− γ3)xγ31 x
r+1−γ3
3 + b32(r + 2− γ3)xγ32 x

r+1−γ3
3 + b33(r + 2− γ3)xr+1

3 .

We compose the following functions:

W1 =
1

2
(b11(r + 2− γ1)xr+1

1 + b22(r + 2− γ2)xr+1
2 ) + b12(r + 2− γ1)xr+1−γ1

1 xγ12

+b21(r + 2− γ2)xγ21 x
r+1−γ2
2 ;W2 =

1

2
(b11(r + 2− γ1)xr+1

1 + b33(r + 2− γ3)xr+1
3 )

+b13(r+2−γ1)xr+1−γ1
1 xγ13 +b31(r+2−γ3)xγ31 x

r+1−γ3
3 ;W3 =

1

2
(b22(r+2−γ2)xr+1

2

+b33(r + 2− γ3)xr+1
3 ) + b23(r + 2− γ2)xr+1−γ2

2 xγ23 + b32(r + 2− γ3)xγ32 x
r+1−γ3
3 .

(It’s clear that V ′t (x1, x2, x3) = W1 +W2 +W3.)
Let b11 < 0, b22 < 0. We assume that W1 ≤ 0. Then we have −1

2(b11(r +

2 − γ1)xr+1
1 +b22(r + 2 − γ2)xr+1

2 ) ≥ b12(r + 2 − γ1)xr+1−γ1
1 xγ12 + b21(r + 2 −

γ2)xγ21 x
r+1−γ2
2 . Now you can use Lemma 2.2.
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Let A = [−b11(r+2−γ1)]
1
r+1 , B = [−b22(r+2−γ2)]

1
r+1 . Consider the following

inequality:

xr+1
1 + xr+1

2 ≥ 2|b12(r + 2− γ1)||xr+1−γ1
1 xγ12 |

[−b11(r + 2− γ1)]
r+1−γ1
r+1 [−b22(r + 2− γ2)]

γ1
r+1

+
2|b21(r + 2− γ2)||xγ21 x

r+1−γ2
2 |

[−b11(r + 2− γ1)]
γ2
r+1 [−b22(r + 2− γ2)]

r+1−γ2
r+1

. (5.9)

Now the proof of inequalities (5.8) for Theorem 5.3 follows from inequalities
(5.9) and (2.8). (See the end of the proof of Theorem 5.2.) �

The following corollary to Theorems 5.2 and 5.3 has a very convenient practical
meaning.

Corollary. Suppose that under the conditions of Theorem 5.3 all diagonal elements
bii of matrix B are approximately equal to each other: bii ≈ −∆, where ∆ > 0.
We will also consider that all degrees of activation functions are greater than or
equal to 1 and they are also approximately equal to each other. Then system (5.2)
is stable. Moreover, we have |bij | < ∆/(n− 1); i, j = 1, ..., n; i 6= j.

5.1. Boundedness conditions of solutions for system (5.1)

Let c = 0 and γ1 > 1, ..., γn > 1. Introduce for system (5.1) the positive
definite function Q(x1, ..., xn) = x2

1 + ...+x2
n+V (x1, ..., xn), where V (x1, ..., xn) is

defined by the relation (5.3). Then Q′t = W (A, x1, ..., xn) + V
′
t (x1, ..., xn), where

W (A, x1, ..., xn) and V ′t (x1, ..., xn) are polynomials of x1, ..., xn; in addition, the
function V ′t (x1, ..., xn) does not depend on A and is defined by formula (5.4).

Let us turn to the inequality (4.4). Note that inequality degW (A, x1, ..., xn) <
deg V

′
t (x1, ..., xn) = r holds. By the condition of Theorem 5.1, function V ′t (x1, ...,

xn) is negative definite. Therefore, inequality (4.4) can be rewritten as

d

dt
Q(x1(t), ..., xn(t)) ≤ |W (A, x1(t), ..., xn(t))| − |V ′t (x1(t), ..., xn(t))|. (5.10)

Further investigation of inequality (5.10) repeats a similar study of inequality
(4.4) at t → ∞. In this case, inequality degW (A, x1, ..., xn) < deg V

′
t (x1, ..., xn)

= r plays a key role in this study.
Thus, under the conditions of Theorems 5.2, 5.3 (with a change γi ≥ 1→ γi >

1; i = 1, ..., n), all solutions of system (5.1) in case A 6= 0 will be bounded.

6. Conclusion

Two variants of neural ODEs with power nonlinearities corresponding to two
different architectures of a recurrent neural network are considered. Sufficient
conditions for the global stability of the mentioned neural ODEs are found. Note
that the obtained stability conditions can be interesting by themselves. For the
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first type of neural ODEs, these conditions are reduced to the study of the positive
and negative definiteness of square matrices. For the second type of neural ODEs,
there is no analog of these conditions known earlier.
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