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Abstract. A 1-parameter initial boundary value problem for the linear homogeneous
degenerate wave equation utt(t, x;α)−(a(x;α)ux(t, x;α))x = 0 (JODEA, 28(1), 1 – 42)
in the space-time rectangle [0, T ]×[−1,+1], where a(x;α) vanishes as |x̄|α in the subseg-
ment [−c,+c] b [−1,+1], x = cx̄, and α ∈ (0, 2), is considered. The IBVP is splitted
into three auxiliary IBVPs, involving two undetermined functions h1(t;α) and h2(t;α).
The auxiliary IBVPs are solved using the method of separation of variables. The matching
conditions to gain continuity of the solution u(t, x;α) to the IBVP and its flux are imposed
on the solutions u1(t, x;α), u2(t, x;α), and u3(t, x;α) to the auxiliary IBVPs to derive
a linear convolution integro-differential system with respect to h1(t;α) and h2(t;α).

Key words: degenerate wave equation, separation of variables, linear convolution integro-
differential system.
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1. Introduction and the problem formulation

The current study is a sequel to our previous publications [1,2] on the subject
dealing with the following 1-parameter initial boundary value problem (IBVP)
for the degenerate wave equation in the space-time rectangle [0, T ]× [−1,+1]



∂2u(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u(t, x;α)

∂x

)
, (t, x) ∈ (0, T )×(−1,+1) ,

u(t,−1;α) = h3(t) , t ∈ [0, T ] ,

u(t,+1;α) = h0(t) , t ∈ [0, T ] ,

u(0, x;α) = 0 , x ∈ [−1,+1] ,

∂u(0, x;α)

∂t
= 0 , x ∈ (−1,+1) ,

(1.1)
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where h0, h3∈C2 ([0, T ]) are known control functions, and the 1-parameter x-de-
pendent coefficient function is defined as follows

a(x;α) =

{
a∗|x|α ≡ |x̄|α, 0 6 |x| 6 c ,

1 , c 6 |x| 6 1 ,
(1.2)

α ∈ (0, 2), a∗c
α=1, x=c x̄, and all the (dependent and independent) variables are

non-dimensional. One should refer to [2] to find out more details on the problem
formulation.

We also used the following dependent variables

p :=
∂u

∂t
, q :=

∂u

∂x
,

to simplify notation, and the notion of the flux f = −aq, to treat the degenerate
wave equation as a conservation law

∂p

∂t
+
∂f

∂x
= 0 .

Here we remind in brief the main results of [2], used in the current study.
I. We found the one-sided (i. e., valid separately for x<0 and x>0 and marked

with the upper indices ∓ respectively) power series solutions of the degenerate
wave equation using the Frobenius method [6,8]. The only one-sided power series
solutions bounded uniformly on α are

u∓(t, x;α) = U∓α,0(t) + U∓α,1(t) |x|θ + U∓α,2(t) |x|2θ + U∓α,3(t) |x|3θ + . . . , (1.3)

where θ = θ(α) = 2−α and the time-dependent coefficient functions obey the re-
currence relations

U∓ ′′α,µ−1(t) = µθ [(µ− 1) θ + 1] a∗U
∓
α,µ(t) , µ ∈ N . (1.4)

Imposing the constraints U∓α,µ(t) ≡ Uα,µ(t) on the above coefficient functions
we obtained the following recurrence relations

U ′′α,µ−1(t) = µθ [(µ− 1) θ + 1] a∗Uα,µ(t) , µ ∈ N , (1.5)

and the two-sided series solution

u(t, x;α) = Uα,0(t) + Uα,1(t) |x|θ + Uα,2(t) |x|2θ + Uα,3(t) |x|3θ + . . . (1.6)

The flux for the series solution (1.6) was proved to be f ∈ C(2,1) ([0, T ]× [−1,+1])
and is given as follows

f(t, x;α) = −a∗θ x
(
Uα,1(t) + 2Uα,2(t) |x|θ + 3Uα,3(t) |x|2θ + . . .

)
. (1.7)
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A shroud reader could notice that it was sufficient to equate the first two
one-sided coefficient functions U∓α,1(t) and U∓α,2(t) of the series (1.3) to obtain
the following series solution and its flux

u(t, x;α) = Uα,0(t) + Uα,1(t) |x|θ + U∓α,2(t) |x|2θ + U∓α,3(t) |x|3θ + . . . ,

−f(t, x;α) = a∗θ x
(
Uα,1(t) + 2U∓α,2(t) |x|θ + 3U∓α,3(t) |x|2θ + . . .

)
,

manifesting the set of required properties: 1) u(·, ·;α) ∈ C(2,0) ([0, T ]× [−1,+1]);
2) f(·, ·;α) ∈ C(2,1) ([0, T ]× [−1,+1]). Nevertheless, the recurrence relations (1.4)
improved in this way

U ′′α,0(t) = θa∗Uα,1(t) ,

U ′′α,1(t) = 2θ [θ + 1] a∗U
∓
α,2(t) ,

U∓ ′′α,µ (t) = (µ+ 1) θ [µθ + 1] a∗U
∓
α,µ+1(t) , µ = 2, 3, . . .

lead to the two-sided series solution (1.6) again.
II. We used the standard ansatz of the method of separation of variables (SV)

u(t, x;α) = O(t;α)X(x;α), (t, x) ∈ [0, T ]× [−c,+c] , (1.8)

to find the particular solutions of the degenerate wave equation. The only 2-pa-
rameter family of functions X(x;α) that allows particular solutions (1.8) to have
the properties of the series solution (1.6) was found to be

X(x;α) = |x|
δ
2J%

(
λΩ |x|

θ
2

)
, |x| 6 c , (1.9)

where δ = δ(α) = 1− α,
√
a∗ θΩ = 2, λ is a free parameter,

% = %(α) = −δ
θ

= −1− α
2− α

, − 1

2
< % < +∞ ,

J%(s) is the 1-parameter family of the Bessel functions of the first kind [7, 10]
defined as particular solutions to the following second order ordinary differential
equation

s2 J ′′% (s) + s J ′%(s) =
(
%2 − s2

)
J%(s) (1.10)

and having the following power series representation

J%(s) =
(s

2

)% ∞∑
γ=0

(−1)γ

γ! Γ(γ + %+ 1)

(s
2

)2γ
. (1.11)

Substituting the argument of J% in (1.9) into the series (1.11) proves that
the 2-parameter family (1.9) includes the same power terms |x|µθ as the two-
sided series solution (1.6) of the degenerate wave equation (for the details one
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should refer to the proof of Proposition 2.2 at p. 7). For comparison, we also refer
to the recent paper [3], where the Sturm–Liouville problem associated with the
degenerate diffusion operator u 7→ − (|x|αu′)′ has been studied in details.

The current study is aimed at obtaining the 1-parameter family of the exact so-
lutions u(t, x;α) to the IBVP (1.1) with continuous and continuously differentiable
flux by the method of SV and is arranged as follows.

In Section 2 we give an outline of SV applied to the IBVP. Implementing SV
reduces the original IBVP to three auxiliary ones, referred to as IBVP1, IBVP2,
and IBVP3. The boundary conditions for the auxiliary problems involve two
undetermined functions h1(t;α) and h2(t;α) used to match the solutions u1(t, x;α),
u2(t, x;α), and u3(t, x;α) to the IBVP1, IBVP2, and IBVP3, and considered as
a part of the required solution u(t, x;α).

In Section 3, 4, and 5 we find solutions u1(t, x;α), u2(t, x;α), and u3(t, x;α),
and then, in Section 6, to find the required functions h1(t;α) and h2(t;α), we
impose the matching conditions of Section 2 on the pairs u1(t, x;α), u2(t, x;α)
and u2(t, x;α), u3(t, x;α).

Finally, in Sections 7, we treat the resulting matching equations of Sect. 6 as
a linear convolution integro-differential system to find the functions h1(t;α) and
h2(t;α), nevertheless we postpone solving the integro-differential system to our
next publication on the subject.

2. Implementing SV to the IBVP

The piecewise representation (1.2) of the coefficient function a(x;α) promts us
to replace the IBVP (1.1) posed in the space-time rectangle [0, T ]×[−1,+1] with
three auxiliary IBVPs posed in the space-time rectangles: 1) [0, T ]× [−1,−c];
2) [0, T ]×[−c,+c]; 3) [0, T ]×[+c,+1], overlapping along the space-time segments
[0, T ]×{−c} and [0, T ]×{+c}. The auxiliary problems are referred to as IBVP1,
IBVP2, and IBVP3 and posed for the same homogeneous degenerate wave equa-
tion. The solutions u1(t, x;α), u2(t, x;α), and u3(t, x;α) to the auxiliary IBVPs
satisfy the same zero initial conditions and the following boundary conditions{

u1(t,+c;α) = h1(t;α) ,

u1(t,+1;α) = h0(t) ,
t ∈ [0, T ] , (2.1)

{
u2(t,−c;α) = h2(t;α) ,

u2(t,+c;α) = h1(t;α) ,
t ∈ [0, T ] , (2.2)

{
u3(t,−1;α) = h3(t) ,

u3(t,−c;α) = h2(t;α) ,
t ∈ [0, T ] . (2.3)

The undetermined functions h1(t;α) and h2(t;α) satisfy zero initial conditions

hk(0;α) = 0 , h ′k(0;α) = 0 , k = 1, 2, (2.4)
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and ensure continuous matching the solutions u1(t, x;α), u2(t, x;α), and u3(t, x;α).
The supplementary conditions imposed on the solutions u1(t, x;α), u2(t, x;α),

and u3(t, x;α) are as follows{
q2(t,+c;α) = q1(t,+c;α) ,

q3(t,−c;α) = q2(t,−c;α) ,
t ∈ [0, T ] , (2.5)

and ensure continuity of the flux.
The following auxiliary propositions help us to continue the outline of SV

applied to the IBVP.

Proposition 2.1. Let the following Sturm-Liouville problems be given{
X ′′1 (x) + λ1X1(x) = 0 , +c < x < +1 ,

X1(+c) = 0 , X1(+1) = 0 ,
(2.6)

{
X ′′3 (x) + λ3X3(x) = 0 , −1 < x < −c ,

X3(−1) = 0 , X3(−c) = 0 ,
(2.7)

then: 1) the eigenvalues and the eigenfunctions of the problems are respectively

λ1,µ = λ3,µ =

(
µπ

1− c

)2

≡ ω2
µ , (2.8)

X1,µ(x) = sin
[
ωµ(1− x)

]
, (2.9)

X3,µ(x) = sin
[
ωµ(1 + x)

]
, (2.10)

2) the eigenfunctions are orthogonal in L2(+c,+1) and L2(−1,−c), respectively,
that is

ˆ +1

+c
X1,µ(x)X1,γ(x) dx =


0 , µ 6= γ ,

1− c
2
≡ ‖X1,µ‖2L2(+c,+1) , µ = γ ,

ˆ −c
−1

X3,µ(x)X3,γ(x) dx =


0 , µ 6= γ ,

1− c
2
≡ ‖X3,µ‖2L2(−1,−c) , µ = γ ,

where µ, γ ∈ N .
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Proposition 2.2. Let the following Sturm-Liouville problem be given


[
a(x;α)X ′2(x;α)

]′
+ λ2(α)X2(x;α) = 0 , −c < x < +c ,

X2(−c;α) = X2(+c;α) = 0 ,
(2.11)

then: 1) the eigenvalues and the bounded eigenfunctions of the problem are

λ2,µ(α) =

(
θ

2

s%,µ
c

)2

≡ σ2
%,µ , (2.12)

X2,µ(x;α) = |x|
δ
2 J%

(
s%,µ|x̄|

θ
2

)
, (2.13)

where
{
s%,µ

}
is the unbounded monotonically increasing sequence of the roots of

the equation J%(s) = 0, s > 0; 2) the eigenfunctions (2.13) are orthogonal in
L2(−c, c), that is

ˆ +c

−c
X2,µ(x;α)X2,γ(x;α) dx =


0 , µ 6= γ ,

2

θ
c θJ 2

%+1(s%,µ) ≡ ‖X2,µ‖2L2(−c,c) , µ = γ ,

where µ, γ ∈ N .

Proof. We start from proving boundedness of the functions (2.13). The Bessel
functions of the first kind (1.11) are known [10] to be analytic functions of s
except possibly for s = 0. Indeed, near s = 0 the Bessel functions (1.11) behave
as

J%(s) ∼
1

Γ(%+ 1)

(s
2

)%
.

If −1< 2%< 0 (0<α< 1), then J%(s) are unbounded, whereas if 0<%<+∞
(1<α<2), then J%(s) are bounded. Representing the functions (2.13) as follows

X2,µ(x;α) = |x|
δ
2 J%(s), s = s%,µ|x|

θ
2 , (2.14)

and accounting for the power series representation (1.11), we obtain for the func-
tions (2.14) the following representation

X2,µ(x;α) = |x|
δ
2

(s
2

)% ∞∑
γ=0

(−1)γ

γ! Γ(γ + %+ 1)

(s
2

)2γ
=

=
(s%,µ

2

)% ∞∑
γ=0

(−1)γ

γ! Γ(γ + %+ 1)

(s%,µ
2

)2γ

|x|γθ.

It is clear that near x = 0 the functions (2.14) behave as
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X2,µ(x;α) ∼ 1

Γ(%+ 1)

(s%,µ
2

)%
,

that is, they are bounded (see Fig. 2.1 and Fig. 2.2 to compare the Bessl func-
tions J0(s0,µ|x̄|) and the eigenfunctions X2,µ(x; 1) = J0

(
s0,µ|x̄|

1
2

)
, µ = 1, 5).

Successive differentiation of the functions (2.14) with respect to x gives

X ′2,µ(x;α) = ∓c
δ
2
−1

[
δ

2
|x̄|

δ
2
−1 J%(s) +

θ

2
s%,µ |x̄|

δ
2

+ θ
2
−1 J ′%(s)

]
,

a(x;α)X ′2,µ(x;α) = ∓c
δ
2
−1

[
δ

2
|x̄|−

δ
2 J%(s) +

θ

2
s%,µ |x̄|−

δ
2

+ θ
2 J ′%(s)

]
,

[
a(x;α)X ′2,µ(x;α)

]′
= c

δ
2
−2 |x̄|−

δ
2
−1

[
−
(
δ

2

)2

J%(s) +

(
θ

2

)2(
s2 J ′′% (s) + s J ′%(s)

)]

= c
δ
2
−2 |x̄|

δ
2

(
|x̄|−

θ
2

)2
[
−
(
δ

2

)2

+

(
θ

2

)2(
%2 − s2

)]
J%(s)

= −
(
θ

2

s%,µ
c

)2

|x|
δ
2 J%

(
s%,µ|x̄|

θ
2

)
= −σ2

%,µX2,µ(x;α) ,

wherefrom we conclude that the functions (2.14) satisfy the differential equation
of the problem (2.11). Then, the arguments of the functions (2.14) are augmented
in such a way that the boundary conditions of the problem (2.11) are satisfied
as well. This completes the proof of the first part of the proposition.

To prove the second part of the proposition, we make use of the change of
variables transformation ξ = x̄

θ
2

ˆ +c

−c
X2,µ(x;α)X2,γ(x;α) dx = c θ

ˆ +1

−1
|x̄|δ J%

(
s%,µ |x̄|

θ
2

)
J%

(
s%,γ |x̄|

θ
2

)
dx̄

= 2c θ
ˆ +1

0
x̄δ J%

(
s%,µ x̄

θ
2

)
J%

(
s%,γ x̄

θ
2

)
dx̄

=
4

θ
c θ
ˆ 1

0
ξ J%

(
s%,µ ξ

)
J%
(
s%,γ ξ

)
dξ .

The last integral is known [7,10] to equal

ˆ 1

0
ξ J%

(
s%,µ ξ

)
J%
(
s%,γ ξ

)
dξ =


0 , µ 6= γ ,

J2
%+1(s%,µ)

2
, µ = γ .

This completes the proof of the second part of the proposition.
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Fig. 2.1. The Bessel functions (1.11) with the augmented argument: J0(s0,1x̄) (dashed)
and J0(s0,5x̄) (solid) (a) and J

′
0(s0,1x̄) (dashed) and J

′
0(s0,5x̄) (solid) (b)

We continue the outline of SV applied to the IBVP with introducing the fol-
lowing representations for the required solutions u1(t, x;α), u2(t, x;α), u3(t, x;α)

u1(t, x;α) = v1(t, x;α) + w1(t, x;α) ,

u2(t, x;α) = v2(t, x;α) + w2(t, x;α) ,

u3(t, x;α) = v3(t, x;α) + w3(t, x;α) ,

(2.15)
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Fig. 2.2. The eigenfunctions (2.13): X2,1(x; 1) (dashed) and X2,5(x; 1) (solid) (a)
and the fluxes a(x; 1)X ′2,1(x; 1) (dashed) and a(x; 1)X ′2,5(x; 1) (solid) (b)

where the functions v1(t, x;α), v2(t, x;α), and v3(t, x;α) are unknown, whereas
the functions w1(t, x;α), w2(t, x;α), and w3(t, x;α) are fully determined as follows

w1(t, x;α) = φ1,1(x;α)h1(t;α) + φ1,0(x;α)h0(t) ,

w2(t, x;α) = φ2,2(x;α)h2(t;α) + φ2,1(x;α)h1(t;α) ,

w3(t, x;α) = φ3,3(x;α)h3(t) + φ3,2(x;α)h2(t;α) .

(2.16)
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The ‘blending’ functions

φ1,0(·;α), φ1,1(·;α) ∈ C2([+c,+1]) ,

φ2,1(·;α), φ2,2(·;α) ∈ C2([−c,+c]) ,

φ3,2(·;α), φ3,3(·;α) ∈ C2([−1,−c]) ,

are assumed to satisfy the following ‘natural’ boundary conditions

{
φ1,0(+c;α) = 0 , φ1,0(+1;α) = 1 ,

φ1,1(+c;α) = 1 , φ1,1(+1;α) = 0 ,
(2.17)

{
φ2,1(−c;α) = 0 , φ2,1(+c;α) = 1 ,

φ2,2(−c;α) = 1 , φ2,2(+c;α) = 0 ,
(2.18)

{
φ3,2(−1;α) = 0 , φ3,2(−c;α) = 1 ,

φ3,3(−1;α) = 1 , φ3,3(−c;α) = 0 .
(2.19)

The auxiliary IBVP1, IBVP2, and IBVP3 are easily reformulated for the func-
tions v1(t, x;α), v2(t, x;α), and v3(t, x;α) (see Sections 3, 4, 5), and for finding
each of these functions we use the standard ansatz of SV



v1(t, x;α) =
∞∑
µ=1

O1,µ(t;α)X1,µ(x) ,

v2(t, x;α) =
∞∑
µ=1

O2,µ(t;α)X2,µ(x;α) ,

v3(t, x;α) =
∞∑
µ=1

O3,µ(t;α)X3,µ(x) ,

(2.20)

where the functions O1,µ(t;α), O2,µ(t;α), O3,µ(t;α) are required.

3. Reformulating and solving IBVP1

The representations (2.15), (2.16) yields to the following reformulation of
the auxiliary IBVP1 with respect to v1(t, x;α)
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∂2v1

∂t2
− ∂

∂x

(
a
∂v1

∂x

)
= g1 , (t, x) ∈ (0, T )×(+c,+1) ,

v1(t,+c;α) = 0

v1(t,+1;α) = 0

}
, t ∈ [0, T ] ,

v1(0, x;α) = 0

∂v1(0, x;α)

∂t
= 0

 , x ∈ [+c,+1] ,

(3.1)

where the right-hand side of the nonhomogeneous degenerate wave equation is
expanded into the Fourier series [9] as follows

g1(t, x;α) = − ∂2w1

∂t2
+

∂

∂x

(
a
∂w1

∂x

)
= − φ1,1(x;α)h′′1(t;α)− φ1,0(x;α)h′′0(t)

+ φ ′′1,1(x;α)h1(t;α) + φ ′′1,0(x;α)h0(t)

=

∞∑
µ=1

g1,µ(t;α)X1,µ(x) .

(3.2)

The coefficients of the above expansion

g1,µ(t;α) = a1,µ(α)h′′1(t;α) + b1,µ(α)h′′0(t)

+ c1,µ(α)h1(t;α) + d1,µ(α)h0 (t)
(3.3)

are determined straightforwardly by integration

a1,µ(α) = − 1

‖X1,µ‖2L2(+c,+1)

ˆ +1

+c
φ1,1(x;α)X1,µ(x) dx ,

b1,µ(α) = − 1

‖X1,µ‖2L2(+c,+1)

ˆ +1

+c
φ1,0(x;α)X1,µ(x) dx ,

c1,µ(α) = +
1

‖X1,µ‖2L2(+c,+1)

ˆ +1

+c
φ ′′1,1(x;α)X1,µ(x) dx ,

d1,µ(α) = +
1

‖X1,µ‖2L2(+c,+1)

ˆ +1

+c
φ ′′1,0(x;α)X1,µ(x) dx .

(3.4)

Then, keeping in mind the ansatz (2.20)

v1(t, x;α) =
∞∑
µ=1

O1,µ(t;α)X1,µ(x) , (3.5)
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we can easily pose the proper Cauchy problems for finding the functions O1,µ(t;α){
O ′′1,µ(t;α) + ω2

µO1,µ(t;α) = g1,µ(t;α) ,

O1,µ(0;α) = 0 , O ′1,µ(0;α) = 0 .
(3.6)

Since the 2-parameter family of particular solutions of the homogeneous ordi-
nary differential equations

O ′′1,µ(t) + ω2
µO

′′
1,µ(t) = 0

is known to be

O1,µ(t) = A1,µ cos
(
ωµt
)

+B1,µ sin
(
ωµt
)
,

where A1,µ and B1,µ are undetermined constants (the parameters), we try to find
the 2-parameter family of particular solutions of the nonhomogeneous equations
of the problems (3.6) following the above solutions as the ansatz

O1,µ(t;α) = A1,µ(t;α) cos
(
ωµt
)

+B1,µ(t;α) sin
(
ωµt
)
,

where A1,µ and B1,µ are no longer constants but required t-dependent coeffici-
ent functions. Substituting the above representation into the ordinary differential
equations of the problems (3.6) yields to the systems of linear nonhomogeneous
algebraic equations with respect to the first derivatives of the required coefficient
functions

{
+ cos

(
ωµt
)
A ′1,µ(t;α) + sin

(
ωµt
)
B ′1,µ(t;α) = 0 ,

− sin
(
ωµt
)
A ′1,µ(t;α) + cos

(
ωµt
)
B ′1,µ(t;α) = ω−1

µ g1,µ(t;α) .

The determinants ∆1,µ = cos2
(
ωµt
)

+ sin2
(
ωµt
)
≡ 1 of the above systems

prove the systems to be unconditionally on α solvable and their solutions to read{
A ′1,µ(t;α) = − ω−1

µ sin
(
ωµt
)
g1,µ(t;α) ,

B ′1,µ(t;α) = + ω−1
µ cos

(
ωµt
)
g1,µ(t;α) .

After integration, we obtain
A1,µ(t;α) = A◦1,µ − ω−1

µ

ˆ t

0
sin

(
ωµτ

)
g1,µ(τ ;α) dτ ,

B1,µ(t;α) = B◦1,µ + ω−1
µ

ˆ t

0
cos

(
ωµτ

)
g1,µ(τ ;α) dτ ,

where A◦1,µ and B◦1,µ are undetermined constants. We take zero values of the cons-
tants to satisfy the initial conditions of the Cauchy problems (3.6) and to find
the required functions of the ansatz (3.5) as follows
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O1,µ(t;α) = ω−1
µ

ˆ t

0

{
− sin

(
ωµτ

)
cos

(
ωµt
)

+ cos
(
ωµτ

)
sin

(
ωµt
)}

g1,µ(τ ;α) dτ

= ω−1
µ

ˆ t

0
sin

[
ωµ(t− τ)

]
g1,µ(τ ;α) dτ .

The above formulas are nothing but the convolutions between trigonometrical
sines and the Fourier coefficients (3.3) of the right-hand side of the nonhomoge-
neous equation of the reformulated IBVP1 (3.1), therefore, hereinafter, we use
the following convenient notation for the solutions of the Cauchy problems (3.6)

O1,µ(t;α) = ω−1
µ sin

(
ωµt
)
∗ g1,µ(t;α) , (3.7)

then the required solution to the reformulated IBVP1 (3.1) reads as follows

v1(t, x;α) =

∞∑
µ=1

ω−1
µ sin

(
ωµt
)
∗ g1,µ(t;α) X1,µ(x) . (3.8)

4. Reformulating and solving IBVP2

The representations (2.15), (2.16) yields to the following reformulation of
the auxiliary IBVP2 with respect to v2(t, x;α)

∂2v2

∂t2
− ∂

∂x

(
a
∂v2

∂x

)
= g2 , (t, x) ∈ (0, T )×(−c,+c) ,

v2(t,−c;α) = 0

v2(t,+c;α) = 0

}
, t ∈ [0, T ] ,

v2(0, x;α) = 0

∂v2(0, x;α)

∂t
= 0

 , x ∈ [−c,+c] ,

(4.1)

where the right-hand side of the nonhomogeneous degenerate wave equation is given
in the form of the Fourier –Bessel series expansion [7, 10] as follows

g2(t, x;α) = − ∂2w2

∂t2
+

∂

∂x

(
a
∂w2

∂x

)
= − φ2,2(x;α)h′′2(t;α)− φ2,1(x;α)h′′1(t;α)

+
[
a(x;α)φ ′2,2(x;α)

]′
h2(t;α) +

[
a(x;α)φ ′2,1(x;α)

]′
h1(t;α)

=
∞∑
µ=1

g2,µ(t;α)X2,µ(x;α) .

(4.2)
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The coefficients of the above expansion

g2,µ(t;α) = a2,µ(α)h′′2(t;α) + b2,µ(α)h′′1(t;α)

+ c2,µ(α)h2(t;α) + d2,µ(α)h1(t;α)
(4.3)

are determined straightforwardly by integration



a2,µ(α) = − 1

‖X2,µ‖2L2(−c,+c)

ˆ +c

−c
φ2,2(x;α)X2,µ(x;α) dx ,

b2,µ(α) = − 1

‖X2,µ‖2L2(−c,+c)

ˆ +c

−c
φ2,1(x;α)X2,µ(x;α) dx ,

c2,µ(α) = +
1

‖X2,µ‖2L2(−c,+c)

ˆ +c

−c

[
a(x;α)φ ′2,2(x;α)

]′
X2,µ(x;α) dx ,

d2,µ(α) = +
1

‖X2,µ‖2L2(−c,+c)

ˆ +c

−c

[
a(x;α)φ ′2,1(x;α)

]′
X2,µ(x;α) dx .

(4.4)

The required solution to the reformulated IBVP2 (4.1) reads immediately
as follows

v2(t, x;α) =
∞∑
µ=1

σ−1
%,µ sin

(
σ%,µt

)
∗ g2,µ(t;α) X2,µ(x;α) . (4.5)

5. Reformulating and solving IBVP3

Reformulation of the auxiliary IBVP3 with respect to v3(t, x;α) now is clear

∂2v3

∂t2
− ∂

∂x

(
a
∂v3

∂x

)
= g3 , (t, x) ∈ (0, T )×(−1,−c) ,

v3(t,−1;α) = 0

v3(t,−c;α) = 0

}
, t ∈ [0, T ] ,

v3(0, x;α) = 0

∂v3(0, x;α)

∂t
= 0

 , x ∈ [−1,−c] .

(5.1)

The right-hand side of the nonhomogeneous degenerate wave equation is ex-
panded into the Fourier series [9] as follows
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g3(t, x;α) = − ∂2w3

∂t2
+

∂

∂x

(
a
∂w3

∂x

)
= − φ3,3(x;α)h′′3(t)− φ3,2(x;α)h′′2(t;α)

+ φ ′′3,3(x;α)h3(t) + φ ′′3,2(x;α)h2(t;α)

=
∞∑
µ=1

g3,µ(t;α)X3,µ(x) ,

(5.2)

where the coefficients of the expansion

g3,µ(t;α) = a3,µ(α)h′′3(t) + b3,µ(α)h′′2(t;α)

+ c3,µ(α)h3(t) + d3,µ(α)h2(t;α)
(5.3)

are determined similarly to those of Sect. 3



a3,µ(α) = − 1

‖X3,µ‖2L2(−1,−c)

ˆ −c
−1

φ3,3(x;α)X3,µ(x) dx ,

b3,µ(α) = − 1

‖X3,µ‖2L2(−1,−c)

ˆ −c
−1

φ3,2(x;α)X3,µ(x) dx ,

c3,µ(α) = +
1

‖X3,µ‖2L2(−1,−c)

ˆ −c
−1

φ ′′3,3(x;α)X3,µ(x) dx ,

d3,µ(α) = +
1

‖X3,µ‖2L2(−1,−c)

ˆ −c
−1

φ ′′3,2(x;α)X3,µ(x) dx .

(5.4)

The required solution to the reformulated IBVP3 (5.1) reads exactly as (3.8)

v3(t, x;α) =
∞∑
µ=1

ω−1
µ sin

(
ωµt
)
∗ g3,µ(t;α) X3,µ(x) . (5.5)

6. Matching the solutions to the IBVPs

In this section we gather the known solutions (3.8), (4.5), (5.5) to the reformu-
lated auxiliary IBVPs (3.1), (4.1), (5.1) and following the representations (2.15),
(2.16) of Section 2 obtain the required solutions to the original auxiliary IBVPs
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u1(t, x;α) =
∞∑
µ=1

ω−1
µ sin

(
ωµt
)
∗ g1,µ(t;α) X1,µ(x)

+ φ1,1(x;α)h1(t;α) + φ1,0(x;α)h0(t) ,

u2(t, x;α) =
∞∑
µ=1

σ−1
%,µ sin

(
σ%,µt

)
∗ g2,µ(t;α) X2,µ(x;α)

+ φ2,2(x;α)h2(t;α) + φ2,1(x;α)h1(t;α) ,

u3(t, x;α) =
∞∑
µ=1

ω−1
µ sin

(
ωµt
)
∗ g3,µ(t;α) X3,µ(x)

+ φ3,3(x;α)h3(t) + φ3,2(x;α)h2(t;α) .

(6.1)

Then we find the quantities q for the above solutions



q1(t, x;α) =
∞∑
µ=1

ω−1
µ sin

(
ωµt
)
∗ g1,µ(t;α) X ′1,µ(x)

+ φ ′1,1(x;α)h1(t;α) + φ ′1,0(x;α)h0(t) ,

q2(t, x;α) =
∞∑
µ=1

σ−1
%,µ sin

(
σ%,µt

)
∗ g2,µ(t;α) X ′2,µ(x;α)

+ φ ′2,2(x;α)h2(t;α) + φ ′2,1(x;α)h1(t;α) ,

q3(t, x;α) =
∞∑
µ=1

ω−1
µ sin

(
ωµt
)
∗ g3,µ(t;α) X ′3,µ(x)

+ φ ′3,3(x;α)h3(t) + φ ′3,2(x;α)h2(t;α) ,

(6.2)

accounting for the derivatives of the eigenfunctions X1,µ(x) (2.9), X3,µ(x) (2.10),
and X2,µ(x;α) (2.13) at the points x = ∓c (see the proof of Proposition 2.2)

X ′1,µ(+c) = −(−1)µ ωµ ,

X ′3,µ(−c) = +(−1)µ ωµ ,

X ′2,µ(∓c;α) = ∓c
δ
2σ%,µ J

′
%(s%,µ) .

Substituting the above values into the expressions for the quantities (6.2) and
using the matching conditions (2.5), we obtain the following equalities
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q1(t,+c;α) = −
∞∑
µ=1

(−1)µ sin
(
ωµt
)
∗ g1,µ(t;α)

+ φ ′1,1(+c;α)h1(t;α) + φ ′1,0(+c;α)h0(t)

= +
∞∑
µ=1

c
δ
2 sin

(
σ%,µt

)
∗ g2,µ(t;α) J ′%(s%,µ)

+ φ ′2,2(+c;α)h2(t;α) + φ ′2,1(+c;α)h1(t;α) = q2(t,+c;α) ,

q2(t,−c;α) = −
∞∑
µ=1

c
δ
2 sin

(
σ%,µt

)
∗ g2,µ(t;α) J ′%(s%,µ)

+ φ ′2,2(−c;α)h2(t;α) + φ ′2,1(−c;α)h1(t;α)

= +

∞∑
µ=1

(−1)µ sin
(
ωµt
)
∗ g3,µ(t;α)

+ φ ′3,3(−c;α)h3(t) + φ ′3,2(−c;α)h2(t;α) = q3(t,−c;α) ,

to find the functions h1(t;α) and h2(t;α).
To make the structure of the above equalities clear, we substitute expres-

sions (3.3), (5.3), and (4.3) for the Fourier coefficients g1,µ(t;α), g3,µ(t;α), and
for the Fourier –Bessel coefficients g2,µ(t;α) to obtain

−
∞∑
µ=1

(−1)µ sin
(
ωµt
)
∗
(
a1,µh

′′
1 + b1,µh

′′
0 + c1,µh1 + d1,µh0

)
+ φ ′1,1(+c;α)h1 + φ ′1,0(+c;α)h0 = φ ′2,2(+c;α)h2 + φ ′2,1(+c;α)h1

+
∞∑
µ=1

c
δ
2 sin

(
σ%,µt

)
∗
(
a2,µh

′′
2 + b2,µh

′′
1 + c2,µh2 + d2,µh1

)
J ′%(s%,µ) ,

(6.3)

−
∞∑
µ=1

c
δ
2 sin

(
σ%,µt

)
∗
(
a2,µh

′′
2 + b2,µh

′′
1 + c2,µh2 + d2,µh1

)
J ′%(s%,µ)

+ φ ′2,2(−c;α)h2 + φ ′2,1(−c;α)h1 = φ ′3,3(−c;α)h3 + φ ′3,2(−c;α)h2

+
∞∑
µ=1

(−1)µ sin
(
ωµt
)
∗
(
a3,µh

′′
3 + b3,µh

′′
2 + c3,µh3 + d3,µh2

)
,

(6.4)
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where the arguments of the functions h0(t), h1(t;α), h2(t;α), h3(t;α), h′′0(t),
h′′1(t;α), h′′2(t;α), and h′′3(t) are not shown, to keep these equalities as simple
as possible.

7. Treating the matching equations

The equalities (6.3), (6.4) constitute a linear convolution integro-differential
system with respect to the required functions h1(t;α) and h2(t;α) of the form



P1,0(α)h′′1(t;α) + P1,2(α)h1(t;α) +Q1,0(α)h′′2(t;α) +Q1,2(α)h2(t;α)

+ k1,1(t;α) ∗
(
R1,0(α)h′′1(t;α) +R1,2(α)h1(t;α)

)
+ k1,2(t;α) ∗

(
S1,0(α) h′′2(t;α) + S1,2(α) h2(t;α)

)
= T1(t;α) ,

P2,0(α)h′′1(t;α) + P2,2(α)h1(t;α) +Q2,0(α)h′′2(t;α) +Q2,2(α)h2(t;α)

+ k2,1(t;α) ∗
(
R2,0(α)h′′1(t;α) +R2,2(α)h1(t;α)

)
+ k2,2(t;α) ∗

(
S2,0(α) h′′2(t;α) + S2,2(α) h2(t;α)

)
= T2(t;α) ,

where k1,1(t;α), k1,2(t;α), k2,1(t;α), and k2,1(t;α) are known kernels.
A very effective tool for solving such systems is known to be the Laplace

transformation [4, 5].

8. Conclusions

1. Using the previously obtained results [2] concerning the particular solutions
of the degenerate wave equation being under consideration, we succeeded
in splitting the original IBVP for the degenerate wave equation into three
auxiliary IBVPs involving the undetermined functions h1(t;α) and h2(t;α).

2. Using the method of separation of variables, we solved the auxuliary IBVPs.

3. Matching the solutions u1(t, x;α), u2(t, x;α), and u3(t, x;α) to the auxiliary
IBVPs, to gain continuity of the required solution u(t, x;α) to the IBVP and
its flux f(t, x;α), yields to a linear convolution integro-differential system
with respect to the functions h1(t;α) and h2(t;α).

4. Solving the obtained system will be published elsewhere.

References

1. V.L. Borsch, On initial boundary value problems for the degenerate 1D wave
equation, Journal of Optimization, Differential Equations, and their Applications
(JODEA), 27(2) (2019), 27–44.



20 V. L. Borsch, P. I. Kogut

2. V.L. Borsch, P. I. Kogut,G. Leugering, On an initial boundary-value problem
for 1D hyperbolic equation with interior degeneracy: series solutions with the
continuously differentiable fluxes, Journal of Optimization, Differential Equations,
and their Applications (JODEA), 28(1) (2020), 1 – 42.

3. P. Cannarsa, R. Ferretti, P. Martinez, Null controllability for parabolic
operators with interior degeneracy and one-side control, SIAM J. Control and
Optimiz., 57(2) (2019), 900 – 924.

4. G. Doetsch, Introduction to the Theory and Application of the Laplace Transfor-
mation, Springer, Berlin, 1974.

5. D.G. Duffy, Transform Methods for Solving Partial Differential Equations, Chap-
man & Hall/CRC, Boca Raton, London, 2000.

6. A.R. Forsyth, Theory of Differential Equations, Part III Ordinary Differential
Equations, Vol. IV, University Press, Cambridge, 1902.

7. F. Gray, G.B. Mathews, A Treatise on Bessel Functions and their Applications
to Physics, MacMillan & Co, London, 1895.

8. E. L. Ince, Ordinary Differential Equations, Longman, London, 1927.
9. G.P. Tolstov, Fourier Series, Dover, NY, 1962.
10. G.N. Watson, A Treatise on the Theory of Bessel Functions, University Press,

Cambridge, 1922.

Received 31.10.2020


