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ABSTRACT 

The aim of this research is to study the machinability aspects of hardened AISI 4340 High Strength Low Alloy 

(HSLA) steel (50 ± 2 HRC (Hardness Rockwell C)). The experimental investigation using coated carbide inserts 

is carried out during the dry hard milling process in a sustainable environment. The input parameters in the 

study are speed, feed rate and depth of cut and the responses are Average surface Roughness (Ra) and Material 

Removal Rate (MRR) that are selected through screening. Central Composite Design (CCD) in response 

surface methodology has been utilized as the experimental design technique with twenty experiments. Analysis 

of variance has been employed to examine the momentous machining parameters and responses. A 

mathematical model has been developed to optimize the surface roughness and material removal rate. It has 

been observed that the most significant factor for Ra is feed rate while for MRR depth of cut is the most 

significant factor. The results show that the minimum value of Ra ~ 0.098 µm is achieved at speed ~ 1000 RPM, 

feed rate ~ 300 mm/min and depth of cut ~ 0.2 mm while the maximum value of MRR ~ 6.35 cm3/min is attained 

at feed rate ~ 500mm/min and depth of cut ~ 0.4 mm regarding less or no effect of speed ~ 500-1000 RPM. The 

average forecast error for the validation information has been observed to be 3.35%. for Ra and 3.2% for 

MRR. Further, it is investigated that good surface finish like grinding and dimensional accuracy can be 

achieved with coated carbide tools.  

 

Keywords:  High Strength Low Alloy Steel, Material Removal Rate, Multi-Objective Optimization, 

Sustainable Dry Machining, Surface Roughness. 

 

 

1. INTRODUCTION 
 

ISI 4340 is a medium carbon low alloy steel 

in which the combined proportion of all the 

alloying elements by weight is less than 5 % 

(HSLA). It has the ability to attain high toughness and 

strength in the heat-treated condition. It is mostly used 

in the aviation industry and aeronautical applications 

due to very good corrosion, wear and fatigue 

resistance [1]. The functional performance such as 

corrosion resistance, fatigue strength and tribological 
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properties of the machined components is determined 

by surface characteristics. The quality is determined 

by the surface finish and integrity attained after 

machining. The fatigue life of the machined parts is 

decreased by higher surface roughness values [2]. To 

accomplish quality products, certain aspects essential 

to be under control include process parameters, cutting 

tools and cutting liquids. Researchers have studied the 

influence of these control variables on the surface 

finish, material removal rate and tool wear [3-9]. For 

the experimental design and analysis most of the 
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authors have been using the statistical techniques in 

their experimentation. 

 

Numerous researchers described the facts regarding 

the influence of process parameters on surface 

roughness and material removal rate during machining 

of AISI 4340 HSLA steel. Chakraborty et al. [10] 

suggested a combined effects model on end milling of 

AISI 4340 steel (26 HRC) under dry and minimum 

quantity lubrication environments using the Physical 

Vapour Deposition) (PVD) coated carbide inserted by 

selecting input machining parameters i.e feed rate (fr), 

depth of cut (d) and cutting speed (V) for the analysis 

of longitudinal data attained from a designed 

experiment. A tool wear progression model was 

developed. The lower tool life and greater tool wear 

was revealed at higher cutting speed and lesser tool 

wear and higher tool life was observed at the lower 

cutting speed under Minimum Quantity Lubrication 

(MQL) system. The depth of cut was an insignificant 

parameter to tool wear as followed by cutting speed 

and feed. Gopalsamy et al. [11] investigated the 

optimal milling parameters such as width of cut, V, d 

and fr for rough and finishing machining with 

deliberation of multiple responses, i.e. surface finish, 

MRR, tool life and tool wear of hardened tool steel (55  

HRC) by Grey Relational Analysis (GRA) and 

compared the outcomes with ANOVA. It was 

analyzed that width of cut and cutting depth are 

significant factors for rough machining while to finish 

machining the important factor is cutting speed. Ding 

et al. [12] examined the impacts of radial and axial 

depth of cut, cutting rate and feed in hard processing 

of AISI H13 steel (50 HRC) utilizing coated carbide 

tools on Ra and cutting force by performing ANOVA 

and range analysis. It was examined that cutting force 

has been frustrated by two principal aspects: feed rate 

and axial depth of cut. The Ra achieved is less than 

0.25 µm which indicates that hard milling may 

substitute grinding. Suresh et al. [13] studied the 

impact of machining parameters during turning of 

AISI 4340 HSLA steel using coated carbide inserts to 

optimize V, d, fr, machining time and Ra. Machining 

force and tool wear were output parameters. The 

Response Surface Methodology (RSM) was used for 

the development of a mathematical model and full 

factorial design was used as a design of experiments. 

For analyzing and selection of best machining 

parameters ANOVA was used. It was concluded that 

for the minimum value of Ra and machining force, 

lower feed rate and depth of cut with high cutting 

speed was required. Further, they recommended that 

lower feed rate and cutting speed can be used for 

minimum tool wear. Das et al. [14] investigated the 

dry turning process of 4340 HSLA steel (C 0.39%, 47 

HRC) and checked the impact of fr, V and d on Ra with 

Chemical Vapour Deposition  (CVD) multilayer 

coated carbide inserts. For experimental planning, a 

full factorial design of the experiment was carried-out, 

and ANOVA was utilized to inspect the substantial 

process parameters on roughness. The association 

among the process parameters and response multiple 

regression analysis was used for modeling of Ra. It 

was concluded that at 95% confidence level feed was 

the most influencing process parameter followed by 

cutting speed. 

 

An et al. [15] studied hard dry milling of 

30Cr3SiNiMoVA (30Cr3) high strength steel 

regarding tool wear, cutting force, chip formation and 

surface roughness individually using coated cemented 

carbide tool. Taguchi L16 was selected as the 

experimental design technique with V, fr and radial 

depth of cut as the process parameters. A decrease in 

cutting forces and improvement in the surface finish 

was reported with the rise of cutting speed, whilst both 

depths of cut and feed had an adverse influence on 

surface finish. Senthilkumar et al. [16] performed 

optimization of process parameters i.e V, fr and d for 

Ra, MRR and flank wear during turning of AISI 1045 

HSLA steel using CCD in RSM and compared the 

results with firefly algorithm. It was revealed that the 

substantial factor for Ra and flank wear is feed rate  

while cutting speed for MRR. Azam et al. [17] studied 

the impact of cutting conditions on AISI 4340 HSLA 

steel during turning operation using multilayer coated 

carbide tool and established a surface roughness 

model. A sequence of examinations using RSM had 

been carried out to mature a connection among Ra and 

turning process parameters i.e. V, d, and fr. The results 

indicated that feed was a significant parameter that 

influenced the Ra. A mathematical model was 

developed and it was found that the surface roughness 

was influenced by a feed as a core parameter. Lauro et 

al. [18] examined  the minimum force and torque by 

selecting the best machining parameters combination 
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(grain size, V and fr) with the combination of both 

genetic optimization algorithm and the least squares 

model. The optimization of micro-milling utilizing 

hardened DIN 1.2344 chromium type tool steel was 

completed by applying the NSGA II algorithm. It was 

investigated that for the minimization of Force and 

Torque, the feed rate was the utmost substantial 

aspect. Hassanpour et al. [19] analyzed the hard 

milling of 4340 alloy steel using MQL system and 

explored the relationship between milling parameters 

i.e. V, radial and axial depth of cut, machined surface 

integrity and cutting speed. The possessions of these 

milling parameters on chemical composition, white 

layer thickness, microhardness, roughness, and 

topography were considered through RSM. The 

ANOVA results showed that the linear model was 

suitable to assess the white layer thickness and the 

quadratic polynomial model was suitable to govern the 

microhardness and surface roughness.  Further, they 

investigated that minimum Ra was attained at 

minimum feed and depth with maximum cutting 

speed.  

 

Abbas et al. [20] examined the process parameters fr, 

d and spindle speed on Ra and MRR for milling 

process of high strength steel using full factorial 

design technique. They established a mathematical 

relationship amongst the process parameters and 

responses using the least squares technique and a 

second-order regression model was constructed. 

ANOVA was used to check the significant machining 

parameters and it was observed that the feed rate had 

a maximum impact on Ra. Antony et al. [21] 

scrutinized the impacts of process parameters V, d, fr 

and nose radius on quality and productivity during 

turning of  EN-24 alloy steel using RSM technique. 

Significant parameters were patterned by ANOVA 

and suggested that feed rate and depth of cut were 

substantial for MRR and cutting speed and nose radius 

were the significant parameters for Ra. They 

established an empirical relationship for calculating 

the Ra and MRR values at any parameter value. Kumar 

et al. [22] examined the impact of MQL  and process 

parameters V, fr and nose radius on surface quality by 

turning of AISI 4340 hardened steel with CBN cutting 

tool at different hardness levels i.e. 40, 45, 50, 55 and 

60 HRC. The significance of machining parameters 

was checked by ANOVA and for the development of 

a mathematical model, the second-order regression 

technique was used for the optimum value of surface 

roughness. The results showed that turning of dry and 

wet conditions had rough surface quality as compared 

to MQL and 7-10% improvement in surface quality 

had been achieved. Khan and Bhivsane [23] evaluated 

the consequences of machining parameters i.e. V, d, fr 

and nose radius on hardened AISI 4340 steel (47-50 

HRC)  to optimize the tool wear and Ra as response 

parameters. Multiple regression technique was used 

for turning parameters to optimize Ra value and L9 

Taguchi’s method was applied as an experimental 

method. The results indicated that the depth of cut and 

feed rate had a lower impact on Ra than the cutting 

speed and nose radius.  

 

Recently, Muaz and Choudhary [24] studied the 

machinability aspects of AISI 4340 steel using coated 

carbide tool and MQL technique. Milling process 

parameters (speed, MQL type, and feed rate) with 

responses force and surface roughness were optimized 

using Taguchi and Taguchi-GRA method 

respectively. It was investigated that feed rate was the 

most significant variable that affected the force 

followed by MQL type and speed while for surface 

roughness MQL type was the most significant variable 

followed by feed rate and speed. Benedicto et al. [25] 

explored that dry machining was the best 

environmental substitute and sustainable process 

which entirely eliminated the use of cutting fluids and 

ensured a clean environment and protection. As 

indicated by Brundtland report (1987) sustainable 

development is characterized as development that 

addresses the issues of the present generation without 

negotiating the capacity of future generation to address 

their own issues [26]. Sustainable manufacturing 

expects to create appropriate strategies to change over 

materials into completed items by diminishing 

utilization of earth's characteristic assets and energy, 

declining natural emissions and pollution, decreasing 

health and safety dangers, and delivering less waste, 

while holding the objective of better execution and 

economy to the clients and leaving a superior planet 

for our future cohort [27]. The sustainable machining 

model comprises eco-friendly, cost savings, energy-

efficient, increased tool life, waste-free, operational 

safety, and personal health as shown in Fig. 1.  
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In the current research dry machining of AISI 4340 

HSLA steel has been reported to save the future 

generation in the perception of sustainability that 

covers the three dimensions i.e. economic, social and 

environment. Dry machining takes out the utilization 

of cutting liquids and reduces 16-17% of the total 

machining cost (economic impact) [28, 29]. Dry 

machining can successfully dispense with the comfort 

perils like dermatitis, skin contaminations, respiratory 

infections, and malignancy, related to cutting liquids 

(social impact), and in the meantime enhance the 

general execution of cutting activities and there will be 

no need for disposal of cutting fluids (save 

environment) because of dry machining. 

 

Economic

Cost Saving

Energy Efficient

Operational Safety

Increased Tool Life

Environmental

Eco-Friendly

Waste Free
Social

Personal Health

Sustainability 

Aspects

 
Fig. 1: Sustainable Dry Machining Model 

It can be determined from the literature review that 

process parameters have a direct impact on surface 

roughness and material removal rate. It can also be 

inspected that by changing alloy composition and a 

hardness value of 4340 steel the influence of process 

parameters combination feed, speed and depth of cut 

also changed. It is ostensible from the literature that 

limited work has been reported on AISI 4340 HSLA 

steel (50 ± 2 HRC) for dry hard milling operation.  

 

The aim of current research is to investigate the 

influence of process parameters, the evolution of the 

mathematical model, and their optimization through 

response surface methodology. The significance of the  

research is the optimal parameters combination such 

as feed rate, cutting speed and depth of cut for 

hardened AISI 4340 HSLA steel with alloy 

composition C 0.39%, Cr 0.81%, Ni 1.8%, Mo 0.24% 

having hardness value of 50 ± 2 HRC to achieve the 

better surface finish and higher material removal rate 

in perspective of sustainability. Analysis of variance 

has been applied to analyze the momentous machining 

parameters for dry hard milling operations. It is 

expected that this work would be beneficial and the 

contribution likely is in the field of manufacturing/ 

machining and for practitioning engineers.  

 

2. EXPERIMENTAL WORK 
 

This section presents the experimental details 

including material selection and specimen preparation, 

levels of process parameters and specimen machining. 

 

2.1 Material Selection and Specimen Preparation 

Steels are utilized monetarily in the aviation industry 

and aeronautical applications, establishing only 7-20 

% of the aggregate weight of commercial and military 

airplane [30, 31]. The steels utilized in commercial 

and military aircrafts are for the most part low-alloy 

steels, such as 4340 and 300M because of the higher 

tensile and yield strength. AISI 4340 HSLA steel is 

selected as a working material for the current study 

and alloy composition is given in Table 1 (Peoples 

Steel Mills Limited authenticated by QA department). 

The XRF analyzer and wet analysis method were used 

for confirmation of chemical composition before 

experimentation. 

 

Table 1: Chemical Composition (Wt %) of Aisi 4340 
HSLA Steel 

C Si P S Cr Mo Ni Cu Mn 

0.39 0.27 0.015 0.014 0.81 0.24 1.8 0.13 0.78 

 

To achieve the required hardness value (50±2 HRC) 

heat treatment of the specimens were conducted. The  

parameters used in heat treatment are given in Table 2. 

Rockwell hardness tester with diamond indenter was 

used to measure the hardness value. After achievement 

of hardness value (50±2 HRC), the specimens were cut 

to the desired size of 32mm x 32mm x 20mm from the 

bar of length 1000mm using a disk cutter. 

 

Table 2: Heat Treatment Parameters 
Austenzing Quenching Tempering 

Temperature (˚C) Time (min) Medium Temperature (˚C) Time (min) Temperature (˚C) Time (min) 

570 
700 
840 

40 
10 
60 

PSO  
Oil No. 10 

 
30 

 

 
30 
 

 
250 

 

 
120 
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2.2 Levels of Process Variables 
 

The input parameters in the study are speed (V, PM), 

feed rate (fr, mm/min) and depth of cut (d, mm) and 

responses fixed are average surface roughness (Ra, 

µm) and material removal rate (MRR,cm3/min). 

Similar studies using these inputs and responses have 

been cited in the literature [11, 16, 20, 21]. The 

objective is to optimize the input parameters to 

achieve desired response values. The level of input 

process parameters is given in Table 3.  

 

Table 3:  Levels of Input Process Parameters 

Factors 
Levels 

Low Middle High 

Speed, V (RPM) 500 750 1000 

Feed, fr (mm/min) 300 400 500 

Depth of cut, d (mm) 0.2 0.3 0.4 

 

2.3 Specimens Machining 

 

Dry hard milling tests have been performed on AISI 

4340 HSLA steel in the current study. Marking has 

been performed on the specimens from 1-20 and 

experiments as per the design matrix is carried out on 

a CNC milling machine (DAHLIH MCV-720) using 

coated carbide tool as shown in Fig. 2. Now, each 

specimen is faced down to get machine zero points in 

Z-axis for setting the depth of cut value. After that, 

each specimen is milled using the DOE values by 

following Climb Milling Operation for the better 

surface finish. After machining all the specimens were 

checked for surface roughness (Ra) value using the 

Mitutoyo SJ-410 surface finish measuring apparatus. 

The material removal rate was measured by finding 

the initial and final weights of specimen and 

machining time was also recorded with the help of 

stopwatch. Following expression [32] is used to 

compute the MRR response and results are given in 

Table 4. 

 

MRR �  Initial Weight of Specimen � Final Weight of Specimen
Density � Machining Time  

 

3. EXPERIMENTAL DESIGN 
 

Central composite design in RSM has been utilized for 
the selection of the best process parameters 
combinations. The RSM cartels the mathematical and 
statistical methods to establish the response when 
aspects are diverse coincidentally. The outcomes were 

 
Fig. 2:  Experimental Setup 

 

demonstrated to fit either a first or second-order model 

characterized by the following relations Eq. (2, 3) 

[17]: 

 

� �  �� � � ! � �"!" � #                                      (2) 

 

y �  β� �  % β&
&' 

 x&  �  % β&&  x&) �  % % β& j+,+-

./ 
 

�  ɛ                                                   133 
 

where β�, β&, β&& and β&. are called parameters of 

approximating functions, y is performance variable 

and xi is input variable. 

 

Central composite design in RSM is the most 

prominent second-order design which was presented 

by Box and Wilson. The CCD  is a factorial outline 

with center and star points. The estimation of star 

points is indicated by curvature. The factorial plan is 

designated in CCD to contribute the approximation of 

the interaction terms. The axial points subsidize large 

to the estimation of quadratic terms. The aggregate of 

the quadratic relations can be evaluated without the 

axial points. The factorial focuses do not add to the 

approximation of quadratic relations. The middle runs 

to give an inside estimate of error and subsidize toward 

the assessment of quadratic relations. The regions of 

adaptability in the utilization of CCD reside in the 

determination of axial distance (α ~ 1.68) and the 

number of center runs (nc). The decision of nc 

frequently influences the distribution of variance in the 

region of intrigue. The axial distance esteem α is kept 

up rotatability and it relies upon the quantity of test 

keeps running in the factorial bit of the central 

composite design [33]. In this work, twenty 

experimental design points were considered according 

to design equation 2n + 2n + 2 nc (n is the number of 
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input parameters) including eight factorial points (2n), 

six axial points (2n) and six center points (2 nc) as 

shown in Fig. 3 [34, 35].  

 

Fig. 3: CCD Points Location for 3 Parameters  

 

4. RESULTS AND DISCUSSION  
 
Design of Experiment (DOE) matrix has been 
developed through design expert 7. The experimental 
results with complete DOE are given in Table 4. It has 

been observed that minimum value of Ra ~ 0.098 µm 
is achieved with process parameters combinations 
cutting speed ~ 1000 RPM, feed rate ~ 300 mm/min 
and depth of cut ~ 0.2 mm while maximum value of 
MRR ~  has been attained at feed rate ~ 500 mm/min, 
depth of cut ~ 0.4 mm and cutting speed ~ 500-1000 
RPM. 
 

4.1 Statistical Analysis 
 

The RSM has been performed to predict Ra and MRR 

in the dry hard milling of 4340 HSLA steel using a 

shell end mill type cutter with carbide inserts attached 

to it. Table 5 (a-b) delivers the statistical model 

summary for Ra and MRR. It is apparent from Table 5 

(a) that the quadratic model is best recommended for 

Ra and two-factor interaction model is best suited for 

MRR; along these lines, it has been utilized for 

advance examination. 

 

 

Table 5 (a): Model Summary Statistics for Ra 
Source Std. dev R-Squared Adjusted R-Squared Predicted R-Squared PRESS  

Linear 0.0159 0.8751 0.8516 0.7890 0.0068  

2FI 0.0139 0.9224 0.8865 0.8166 0.0059  

Quadratic 0.0074 0.9829 0.9676 0.9058 0.0030 Suggested 

Cubic 0.0056 0.9941 0.9813 0.9779 0.0007 Aliased 

 

Table 5(b): Model Summary Statistics for MRR 
Source Std. dev R-Squared Adjusted R-Squared Predicted R-Squared PRESS  

Linear 0.3612 0.9392 0.9278 0.8942 3.6304  

2FI 0.2153 0.9824 0.9743 0.9597 1.3811 Suggested 

Quadratic 0.2314 0.9844 0.9703 0.9425 1.9740  

Cubic 0.2385 0.9901 0.9685 0.9849 0.5175 Aliased 

Table 4: Design Matrix With Responses  
 

Standard 
 

Input machining parameters Responses 

Cutting Speed 
RPM 

Feed rate 
mm/min 

Depth of cut 
mm 

Ra 
µm 

MRR 
cm3/min 

1 500 300 0.2 0.169 1.83 

2 1000 300 0.2 0.098 1.96 

3 500 500 0.2 0.221 3.25 

4 1000 500 0.2 0.193 4.63 

5 500 300 0.4 0.196 4.92 

6 1000 300 0.4 0.148 3.87 

7 500 500 0.4 0.251 6.35 

8 1000 500 0.4 0.255 6.35 

9 329.5 400 0.3 0.227 4.31 

10 1170.4 400 0.3 0.147 3.84 

11 750 231.8 0.3 0.153 2.61 

12 750 568.2 0.3 0.265 5.91 

13 750 400 0.132 0.154 2.23 

14 750 400 0.468 0.203 5.91 

15 750 400 0.3 0.212 4.46 

16 750 400 0.3 0.209 4.35 

17 750 400 0.3 0.197 3.92 

18 750 400 0.3 0.213 3.91 

19 750 400 0.3 0.202 3.92 

20 750 400 0.3 0.207 3.87 
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4.2 Quadratic Model 

  
The CCD was utilized to develop the mathematical 

relationship for associating the surface roughness (Ra) 

as a response and process parameters (V, f, and d). 

Equation (4) is used to analyze the response at any 

value of the input parameter.  

 

R4 � 0.16028 � 1.90940E � 4V � 1.27734E �
4f � 0.49028d � 4.75000E � 7Vf � 2.75000E �
4Vd � 1.87500E � 4fd � 1.08567E � 4Vd �
1.87500E � 4fd � 1.08567E � 7V) � 9.92725E �
8f ) � 0.97907d)                                                      (4) 

 

ANOVA for the response surface roughness quadratic 

model is given in Table 6. The p-value is less than 0.05 

shows the model is significant. The main significant 

terms are cutting speed, feed rate and depth of cut and 

interacting significant terms are AB (cutting 

speed�feed rate) and AC (cutting speed × depth of cut) 

and quadratic significant terms are A2 (cutting speed2) 

and C2 (depth of cut2) while values greater than 0.1000 

demonstrate the model terms are insignificant to have 

been avoided. Interaction effects signify the shared 

effects of input parameters on responses. During the 

interaction effect, the influence of one parameter 

depends on the level of the other parameter. It is the 

ability of ANOVA to estimate the interaction effects. 

It is obvious that the most significant factor 

influencing the Ra is feed rate followed by the cutting 

speed and depth of cut. The value of the R2 statistic i.e 

coefficient of determination illustrates that 98.3% of 

the total variations are described by the model. The 

estimation of R2 got in the wake of changing for the 

extent of the model is 96.7%. Examination of R2
adj = 

0.967 with R2
pre = 90.6% demonstrates that the two 

terms are in great concurrence with one another and 

model would be relied upon to clarify 90.6% 

variability in a new data. Enhanced accuracy and 

dependability of test outcomes is appeared by the low 

estimation of the coefficient of variety (C.V) which is 

3.8%. 

Table 6: ANOVA for Response Surface Roughness Quadratic Model 
Source Sum of Squares df Mean Square F Value  p-value Prob>F 

Model 0.0319 9 0.0035 63.9737 < 0.0001 

A-Cutting Speed 0.0056 1 0.0056 101.8669 < 0.0001 

B-Feed rate 0.0181 1 0.0181 327.1255 < 0.0001 

C-Depth of cut 0.0046 1 0.0046 83.5851 < 0.0001 

AB 0.0011 1 0.0011 20.3741 0.0011 

AC 0.0004 1 0.0004 6.8290 0.0259 

BC 2.8125E-05 1 2.8125E-05 0.5079 0.4923 

A2 0.0007 1 0.0007 11.9834 0.0061 

B2 1.42024E-05 1 1.42024E-05 0.2565 0.6235 

C2 0.0014 1 0.0014 24.9487 0.0005 

Residual 0.0006 10 5.53704E-05   

Lack of Fit 0.0004 5 7.28742E-05 1.9245 0.2449 

Pure Error 0.0002 5 3.78667E-05   

Cor Total 0.0324 19    

Std. Dev. 0.0074  R-Squared 0.9829  

Mean 0.196  Adj R-Squared 0.9675  

C.V. % 3.7965  Pred R-Squared 0.9058  

PRESS 0.0030  Adeq Precision 32.6254  

4.3 Two-Factor Interaction Model 

 

The material removal rate was significant at two-factor 

interaction (2F1) model with R2 = 0.9824 or close to 

1, indicating that the better the correlation between the 

observed and predicted values. The ANOVA for the 

model is shown in Table 7 and is expressed in the 

following equation.  

 

MRR �  �2.99279 �   8.56784E � 004V �
 1.97170E � 003f �  22.22232d �  1.15000E �
005Vf �  0.012800Vd �  2.25000E �
003fd                                                                               153  

 

From Table 7, it is apparent that the main significant 

terms are feed rate and depth of cut and interacting 

significant terms are AB (cutting speed × feed rate) 

and AC (cutting speed × depth of cut). Depth of cut is  
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Table 7: Anova For Material Removal Rate 2F1 Model 

Source Sum of squares df Mean Square F Value p-value Prob > F 

Model 33.7026 6 5.6171 121.2120 < 0.0001 

A-Cutting Speed 0.0080 1 0.0080 0.1725 0.6846 

B-Feed rate 13.4438 1 13.4438 290.1057 < 0.0001 

C-Depth of cut 18.7662 1 18.7662 404.9593 < 0.0001 

AB 0.6612 1 0.6612 14.2692 0.0023 

AC 0.8192 1 0.8192 17.6776 0.0010 

BC 0.0040 1 0.0040 0.0874 0.7722 

Residual 0.6024 13 0.0463   

Lack of Fit 0.2613 8 0.03267 0.4789 0.8306 

Pure Error 0.3411 5 0.06822   

Cor Total 34.305 19    

Std. Dev. 0.2153  R-Squared 0.9824  

Mean 4.12  Adj R-Squared 0.9743  

C.V. % 5.2250  Pred R-Squared 0.9597  

PRESS 1.3811  Adeq Precision 34.5003  

the most significant parameter that influence MRR 

followed by cutting speed and feed rate. Enhanced 

accuracy and consistency of test outcomes is shown by 

the low value of the Coefficient of Variation (C.V) 

which comes out to be 5.2%. 

 

4.4 Residual Analysis      

 

Residual analysis is the principal investigative tool to 

check the suitability of the proposed model [36]. The 

normal plot of the residuals, internally studentized 

residuals vs normal % probability and actual vs 

predicted values of Ra and MRR are shown in Fig. 4 

(a-b) and Fig.5 (a-b) respectively. It is obvious from 

Fig. 2 that values lie near a straight line which 

demonstrates that mistakes are freely and typically 

dispersed, and presumptions are not damaged. Figure 

3 demonstrates that errors are distributed regularly 

because points lie on a straight line in actual versus 

predicted plot. It is found that the model best fit the 

desired outcomes. 

 

4.5  Optimization of Surface Roughness 

 

Three-dimension response and contour plot of surface 

roughness versus cutting speed and feed rate is shown 

in Fig. 6. It is imperative that the Ra of the specimen 

is increased by increasing the feed rate and decreased 

by increasing the cutting speed. Further, it has been 

investigated that at origin value of feed rate with 

increasing  cutting speed  the Ra value  decreased and 

 
(a) 

 
(b) 

Fig. 4: Normal Plot of Residuals for (a) Ra and (b) 
MRR 

 

 
                                                             (a) 
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(b) 

Fig. 5: The plot of Predicted Vs Actual for (a) Ra and 

(b) MRR 

 

the initial value of cutting speed with increasing feed 

rate the Ra value increases. But at higher values of 

feed rate and cutting speed the Ra value is greater it is 

concluded that at a higher value of cutting speed and 

lower value of feed rate the Ra is minimum as shown 

in the contour plot of Ra versus feed rate and cutting 

speed. From the contour plot, the minimum Ra value 

is 0.152 µm is attained at a cutting speed of 925 RPM 

and feed rate of 316 mm/min. The Ra value is useful 

for the machining of landing gear shafts.  

 

Fig. 6: 3D Response and Contour plot of Surface 
Roughness Vs Cutting Speed and Feed Rate 

 

Fig. 7 shows the 3D response and contour plot of Ra 

versus cutting speed and depth of cut. It is analyzed 

that as cutting speed increases Ra decreases 

significantly and when the depth of cut increases Ra 

value also increases. Further investigated that at a 

lower value of the depth of cut with the increasing 

cutting speed the Ra decreases and at a lower value of 

cutting speed with increasing depth of cut Ra increases 

but at higher values of cutting speed and depth of cut 

Ra value also increases. It is concluded that at a lower 

value of the depth of cut with the increasing cutting 

speed the Ra decreases. Contour plot of Ra versus 

cutting speed and depth of cut shows that minimum Ra 

value of 0.152 µm is achieved at cutting speed of 985 

RPM with the depth of cut 0.21 mm. 

 

Three-dimension response and contour plot of Ra 

versus feed rate and depth of cut is shown in Fig. 8. It 

shows the increasing trend of surface roughness value 

either increasing feed rate or depth of cut. Further, it 

has been investigated that at a lower value of feed rate 

and depth of cut Ra is minimum. The contour plot of 

Ra versus feed rate and depth of cut shows that 

minimum Ra value of 0.152 µm is attained at a feed 

rate of 310 mm/min with the depth of cut 0.21 mm. 

 

 
Fig. 7: 3D Response and Contour Plot of Surface 
Roughness Vs Cutting Speed and Depth of Cut 

 

 
Fig. 8: 3D Response and Contour plot of Surface 

Roughness Vs Feed Rate and Depth of Cut 

 

The results of the current study are compared by 

Muhammad Muaz and Sounak Kumar Choudhary’s 

study [24], it is concluded that better results were 

achieved using dry machining then MQL technique. 
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4.6 Optimization of Material Removal Rate 

 

Three-dimension response and contour plot of 

material removal rate versus cutting speed and feed 

rate are shown in Fig. 9. It shows when the cutting 

speed increases with the initial value of the feed rate 

the MRR will be decreased negligibly. Further 

investigated that by increasing the feed rate with the 

initial value of cutting speed the MRR increases 

significantly. When both cutting speed and feed rate 

increases MRR will also be increased most 

significantly. The contour plot of MRR versus cutting 

speed and feed rate shows that the maximum value of 

4.95 cm3/min MRR is attained at cutting speed of 784 

RPM with a feed rate of 481 mm/min. 

 
Fig. 9: 3D Response and Contour plot of Material 
Removal Rate Vs Cutting Speed and Feed Rate 

 

Fig. 10 depicts the 3D response and contour plot of 

MRR versus cutting speed and depth of cut. It is 

explored that at an initial value of the depth of cut with 

increasing cutting speed, MRR increases and at an 

initial value of cutting speed with the increase of depth 

of cut, MRR increases most significantly. It is also 

investigated that by increasing cutting speed and depth 

of cut, MRR will also be increased but the maximum 

value of MRR is achieved at a lower value of cutting 

speed and higher value of the depth of cut. The contour 

plot of MRR versus cutting speed and depth of cut 

shows that the maximum value of 5.14 cm3/min is 

achieved at the cutting speed of 693 RPM and depth 

of cut of 0.38 mm. 

 

Three-dimension response and contour plot of 

material removal rate versus feed rate and depth of cut 

are shown in Fig. 11.  It is examined that an initial 

value of the depth  

 

 
Fig. 10: 3D Response and Contour pot of Material Removal Rate 

Vs Cutting Speed and Depth of Cut 
 

value of the depth of cut with increasing feed rate the 

MRR will be increased suggestively and vice versa. 

Further concluded that when both feed rate and depth 

of cut increases MRR will increase most significantly 

and the maximum value of MRR is achieved at higher 

values of feed rate and depth of cut. The contour plot 

of material removal rate versus feed rate and depth of 

cut shows that maximum value of 5.54 cm3/min is 

achieved at the feed rate of 463 mm/min and depth of 

cut of 0.37 mm. 
 

 
Fig. 11: 3D Response and Contour plot of Material 

Removal Rate Vs Feed Rate and Depth of Cut 
 

4.7  Validation of Model 

 

The model has been validated by an additional eight 

experiments. These trial runs do not have a place with 

the CCD informational index. The correctness of the 

model is determined through the connection given by 

Azam et al. [17] as given in Eq. (6). Table 8 

demonstrates the experimental and predicted qualities 

for Ra and MRR of examinations. It is obvious from 

Table 8 that both experimental and predicted values 

coordinate intimately with one another.  
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∆ �   ��
C  ∑ EF,,HIJHK,LHMNOP  Q   F,,JKHR,SNHR

F,,JKHR,SNHR
EC&'                     (6) 

 

The average forecast error for the validation 

information has been observed to be 3.35%. for Ra and 

3.2% for MRR be a good technical database for the 

aviation industry and aeronautical applications in 

machining perspectives. 

 

Finally, it will be concluded that using model 

equations it will be possible to predict the Ra and MRR 

value of any input before conducting machining. The 

optimal values of the current study for Ra and MRR 

are given in Table 9. 

 

5. CONCLUSION 

The study of AISI 4340 HSLA medium carbon steel 

(C = 0.39 % with 50 ± 2 HRC) has been explored to 

discover the optimum value of Ra and MRR by using 

the multi insert shell end mill type cutter. The 

conclusions pinched from the series of 

experimentations and consequent investigation of 

results are as follows. 

 

(i) The outcomes specify that the quadratic model is 

better for Ra and 2FI model is better for MRR 

with maximum prediction accuracy and is 

confirmed through further experimentations. 

(ii) After experimentation and analysis, it is 

investigated that Ra = 0.098 µm value is 

minimum at highest cutting speed with the 

combination of lowest feed rate and depth of cut 

i.e 1000 RPM, 300 mm/min and 0.2 mm. Further, 

investigated that production rate will be 

maximum MRR = 6.35 cm3/min at the highest 

value of feed rate 500mm/min and depth of cut 0.4 

mm regarding less or no effect of cutting speed 

500-1000 RPM. 

 

The results achieved mainly helpful for the 

practitioner in the aviation and aeronautical 

applications to select the appropriate process 

parameters for achieving better quality and higher 

productivity. The evolutionary techniques can be 

explored further for investigation of AISI 4340 steel. 
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