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----------------------------------------------------------------------ABSTRACT---------------------------------------------------------- 

The introduction of various robotics technology has made it easier to apply these approaches to agricultural 

procedures. However, due to the enormous differences in shape, size, rate and type of growth, kind of yield, and 

environmental needs for different types of crops, implementing this technology on farms has proven difficult. 

Agricultural processes are a series of time-dependent, methodical, repeated actions. Tilling, soil analysis, seeding, 

transplanting, crop scouting, insect management, weed removal, and harvesting are all major processes in open 

arable farming, and robots can help with all of them. By shrinking the range of the search grayscale range, the 

new method efficiently shortens the algorithm's search speed and reduces computation processing time. The edge 

contour picture of the corn and weed targets is used as the study object, and we built an algorithm to achieve an 

accurate selection of the 2D coordinate points of the corn and weed targets in the field crop image. A quadratic 

traversal algorithm is proposed in this paper for selecting target 2D coordinate points in the pixel coordinate 

system, as well as the related traversal search box. To achieve real-time target recognition and complete 

automatic cut classification of targets, the Faster R-CNN deep network model based on the VGG-16 feature 

extraction network is deployed. The use and implementation of our ideas in this study can help intelligent 

weeding robots perform more precise weeding operations and increase their efficiency. 
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I. INTRODUCTION 

Weed management and control are critical for high-

yielding, high-quality crops, and developments in weed 

control technologies have had a significant impact on 

agricultural output. Any weed control method that is 

effective must be both durable and versatile. Despite the 

variety in field circumstances, robust weed control 

technologies will successfully manage weeds. Adaptable 

weed management technology can adapt its method in 

response to changing weed populations, genetics, and 

environmental circumstances [1]. 

 

Agricultural robotics focuses on crucial work in robotic 

weeder development, such as weed sensing systems and 

weed control methods. After a lengthy introduction, the 

chapter focuses on the issues of robotic weed 

management, including perception systems that can 

recognise and categorise weed plants from crop plants, as 

well as weed control strategies that include chemical and 

mechanical weed control. [2] Provides a case study of an 

automated weeding system. 

Agricultural robots have a lot of promise in terms of 

delivering weed control methods that are much more 

adaptive, even at the plant level. They might be able to 

target weed plants directly using chemical or horticultural 

instruments. These features can be seen in agricultural 

robots because they use current breakthroughs in artificial 

intelligence (AI) to the control of weeds in crop fields. 

Bringing AI and robotics technology to weed 

management, on the other hand, poses a number of 

obstacles that, at least in the current state of technology, 

may restrict the robustness of robotic weed control. Weeds 

are plants that are out of place or are harmful to the crop 

plants in the field. Crop plants are cultivated because they 

have a monetary worth to the grower. As a result, any 

plant that is not assisting the producer's management 

scheme, such as volunteer corn growing in a soybean field, 

might be considered a weed. Plants are classified as weeds 

based on their location and competition with agricultural 

plants. As a result, robotic weed control is an ill-posed 

problem until the agricultural producer's goals for a field 

are communicated to the robot, which will then recognise 

and make judgements about which plants are weeds that 

must be controlled [3-6]. 
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Another issue is that, while crop plants are manually 

planted in a structured manner compatible with 

agricultural machinery, weed plants emerge and flourish in 

patterns that are natural to their ecology. As a result, weed 

plants grow in haphazard patterns on a field. The plants 

that make up the weed collection in the field are diverse. 

At different scales, this variability varies as well. The 

appearance of weed plants varies on a meter-by-meter 

basis, as well as at larger scales: field, farm, county, state, 

region, and climatic zone [7]. 

Weed management solutions take this heterogeneity into 

account and apply weed control approaches that are both 

generic and robust enough to control weeds effectively. 

There are apparent obstacles to overcome in the 

development of robotic weed management technologies. 

These difficulties include instructing the robot which 

plants must be controlled and identifying the unique 

characteristics of those plants. To keep weed plants under 

control, their growth must be slowed or stopped without 

harming surrounding agricultural plants [8]. 

While there are numerous approaches to weed 

management, the majority of weed control machines use 

mechanical or chemical weed control methods. For many 

years, these methods have been utilised in traditional 

mechanised agriculture, and they have lately been 

combined with automation technology to either reduce 

inputs or impose more accurate control of weed plants. 

Other weed control strategies exist, such as flame, hot 

water or steam, or high voltage, but their adoption has 

been modest, and no study on automating them has been 

recorded. As a result, only chemical and mechanical weed 

control strategies will be discussed in this section [9]. 

 

When the weeds are growing close to the agricultural 

plants, it's even more difficult to control them. Figure 1 

depicts the five key tasks performed by task-based 

agricultural robots, 

Figure 1. Task-based agricultural robots [10] 

II. LITERATURE SURVEY 
 

Scholz et al. [16] an automatic soil penetrometer was built 

and integrated into an autonomous mobile robot named 

Bonirob. The soil penetrometer features a probing rod with 

a force sensor that uses a linear actuator to penetrate the 

soil to a depth of 80 cm. This robot also has surface 

moisture and temperature sensors, as well as the ability to 

measure the soil's physical qualities. Their findings 

demonstrated a significant similarity to data from a 

commercial penetrologger, with RMSEs of 0.185, 0.145, 

and 0.120 MPa for loamy sand, sand, and silt soil textures, 

respectively.  

Pobkrut & Kercharoen et al. [17] To assess specific 

chemical qualities of soil, researchers created a soil-

sensing survey robot based on an electronic nose. TGS 

825 for hydrogen sulphide; MQ2 for combustible gas; 

MQ5 for LPG and natural gas; MQ135 for ammonia, 

benzene, and carbon dioxide; TGS 2600 for air pollutants; 

and TGS 2602 for volatile organic compound (VOCs) and 

odorous gases. To receive data from the sensors and 

manage the entire system, an Arduino Mega 256 controller 

was used. 

Chapman et al. [18] A pheno-copter, or autonomous 

robotic helicopter for plant phenotyping, was developed. 

To evaluate images in numerous spectra, this equipment 

was fitted with two digital cameras and one far infrared 

camera. One of the tests used a pheno-copter at a height of 

60 metres to estimate the ground cover of hybrid sorghum 

and investigate the link between the number of plants per 

plot and the green cover for 100 plots. Using data from 

visible and thermal cameras, the canopy temperature and 

relative transpiration index in sugarcane were calculated 

under various irrigation settings. Approximation was used 

to calculate the prospective transpiration index for 40 

sugarcane clones based on green cover and relative crop 

temperature. Images from an NIR filtered camera were 

combined with information on longitude, latitude, 

elevation, and flight log to create a point cloud elevation 

model, from which the canopy height was calculated. 

Polder et al. [19] A totally enclosed, manually propelled 

platform with a diffused fluorescent lamp and a multi-

spectral camera was designed (RGB & NIR). As an image 

of each tulip plant is obtained, the platform is manually 

moved over the plant. Images in the near-infrared region 

aid in segmenting the image and distinguishing the plant 

from the dirt. Fisher's linear discriminant classification 

techniques are used to identify diseased plants amid 

healthy plants. The outcome is then compared to the 

results of an enzyme-linked immunosorbent assay 

(ELISA) and an expert survey. The findings of this study 

revealed that agricultural experts correctly recognized 80 

percent of ill plants and misclassified healthy plants 10% 

of the time. The machine vision system, on the other hand, 

accurately recognized over 90% of the infected plants and 

misclassified 10% of the healthy plants as diseased. The 

author also made suggestions about how to improve this 

platform for robotics. 

Griepentrog et al. [20] To construct an autonomous 

mechanisation system, a Hakotrac 3000 was equipped 
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with a GNSS for navigation and an electro-hydraulic valve 

for steering (AMS). Interfacing with a data logging system 

that maintained maps for seeding using a grid seeder and 

punch plater was used to establish crops. The GNSS 

system was utilised to precisely place seeds in the field. 

The experimental results revealed a mean standard 

deviation of 2.53 mm, with 95 percent of the data falling 

within 5.1 mm based on a normal distribution. 

Hossain and Ferdous et al. [21] The bacterial foraging 

optimization (BFO) technique was used to create a new 

algorithm. They also looked at how BFO could be used in 

mobile robot navigation to find the shortest path between 

the present position and the goal position in an unknown 

environment with moving obstacles.  

Contrerascruz et al. [22] To overcome the problem of 

mobile robot path planning, an evolutionary strategy was 

presented. The suggested method combines the artificial 

bee colony algorithm as a local search operation with the 

evolutionary programming algorithm to refine the feasible 

path discovered by a series of local procedures. The 

approaches they presented above are mostly for robotic 

path design, and the majority of them overlooked the fact 

that weed eradication also necessitates path planning. 

 Xu et al. [23] For row crops, researchers developed a 

real-time weed location and variable-speed herbicide 

spraying (VRHS) system. They suggested an improved 

particle swarm optimization (IPSO) approach for 

segmenting wild cornfield weed photos, which improves 

on the traditional particle swarm optimization algorithm to 

fulfil field management's real-time data processing needs. 

Using typical machine learning methods, the 

aforementioned researchers were able to recognise and 

segment weeds. They did not, however, provide a method 

for accurately locating weeds. In order to shorten the 

length of the trip and the time it takes to complete it.  

Liu et al. [24] to identify crop and weed targets, an on-site 

image spectrometer system was created. Using a small 

number of spectral bands, multicategory differentiation 

between weeds or crops and weeds can be achieved. In 

general, several of the algorithms or specialised systems 

created above have produced useful experimental findings, 

but none of them have qualitatively assessed and 

quantified the distance between crops and weeds, as well 

as weeds and weeds. Furthermore, the above research was 

missing the weed eradication path planning guidelines for 

protecting target crops. This study presents an effective 

quadratic traversal method for the field weeding robot to 

tackle the aforesaid challenges as well as provide efficient 

and accurate weed removal guidance.  

 

III. METHODOLOGY 
 

The system structure for agricultural mobile robots for 

cornfield weeding is depicted in Figure 1. The proposed 

system's detailed function introduction is as follows. The 

depth camera is used to extract real-time RGB colour 

images from the video stream. It's also used to achieve 

multitarget depth range and path planning for a weeding 

path that's as efficient as possible. Target recognition and 

grayscale image processing are two of the most important 

aspects of data preprocessing. Target recognition and 

automatic cutting are utilised for corn and weed images, 

respectively, and grayscale image processing is based on 

the EXG approach to generate grayscale images in the 

RGB colour space. 

 

Figure 2. Overview of the system framework 

 

Using our improved OTSU algorithm can achieve the 

generation and optimization of binary images. Compared 

with the traditional OTSU algorithm, the algorithm 

compresses the range of the search grayscale interval. The 

search speed of the algorithm is effectively improved, and 

the proposed path planning calculation is time efficient. It 

meets the demand of the real-time data processing 

requirements, which allows that our method can be further 

applied to the mobile agricultural weeding robot in the 

field. 

 

IV. QUADRATIC TRAVERSAL ALGORITHM 
 

The edge contour picture of the corn and weed targets is 

used as the research object in order to achieve an accurate 

selection of the 2D coordinate points of the corn and weed 

targets in the field crop image. A quadratic traversal 

algorithm is proposed in this paper for selecting target 2D 

coordinate points in the pixel coordinate system, as well as 

the related traversal search box. The following are the 

main phases in implementing the algorithm: 

Step I: Define a traversal search box size of pi pixels, a 

row step size of qj pixels, and a row step size of pi pixels. 

In the target contour edge picture of size M N, calculate the 

number of row direction traversal search boxes and the 

number of column direction traversal search boxes.  
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Step II: The priority row traversal method is used to 

explore the edge contour image of corn and weed objects 

using the traversal search box. Store the number of pixels 

that fulfil the set conditions in the database C in order for 

the traversal search box.  

Step III: Obtain the serial number for the traversal search 

box in the database with the maximum number of pixels 

that matches the stated conditions. It's worth noting that 

the serial number is a positive integer that starts at one. 

Step IV: Using the appropriate serial number of the 

traversal search box, calculate the position information of 

the traversal search box on the edge contour image of the 

target. 

 

V. EXPERIMENTAL SETUP 
 

The global positioning system is abbreviated as GPS. It is 

an omnidirectional, all-weather, all-time, high-precision 

satellite navigation system capable of providing low-cost, 

high-precision three-dimensional position, speed, and 

accurate timing navigation information to users all over the 

world. The Lidar (VLP-16) is in charge of creating a real-

time 2D or 3D navigation map of the cornfield at close 

range, as well as giving real-time 3D point cloud 

information around it, which may be used to offer precise 

navigation information for the cornfield mobile robotics 

platform. A pair of left-eye and right-eye stereo infrared 

cameras, infrared dot-matrix laser emitters, and RGB 

cameras make up the RGB-D depth camera [25]. 

The size is 90mm 25mm 25mm and is suitable for 

both indoor and outdoor use. The depth camera is based on 

the triangulation method for binocular stereo distance 

measurement, in which a pair of stereo infrared cameras 

collect depth information from the target and a dot-matrix 

infrared laser emitter projects certain structural features of 

light on the target in the visual scene. Color image data is 

collected using an RGB camera, which can align colour 

image video streams and depth image video streams. The 

maximum distance that can be covered is ten metres [26]. 

It's widely used in research fields like drones, robots, and 

augmented reality/virtual reality. 

Universal robots (UR5) have six rotary joints 

(degrees of freedom) and can perform automated tasks with 

a maximum load of 5 kg as a collaborative robotic arm. It 

has a maximum working radius of 850 mm. The cornfield 

mobile robotics platform's mobile carrier is a robotic 

mobile base (Husky A200). It works with four-wheel drive. 

The maximum payload is 75 kilograms, and the top speed 

is 1 metre per second. The workstation is essentially an 

industrial personal computer because it is a high-

performance processing unit [27]. On the one hand, it's 

used to run the algorithm programme that we created. It is, 

on the other hand, used to communicate with the key 

devices mentioned above [11-13].  

Run the supporting software development 

programme based on camera on a Windows 10 workstation 

and compile and generate image acquisition and target 

ranging software again. The camera's driver is included in 

the image acquisition and target ranging software, allowing 

the depth camera to collect image depth and RGB 

information at a rate of not less than 20 frames per second 

(fps). The pixels of the collected image are converted to 

640 480 pixels at the same time. Its goal is to calculate the 

distance between corn and weeds, as well as between 

weeds and weeds, using the image depth information 

currently available, and then plan the shortest weeding 

path. Figure 3 depicts the specifics. 

 

 

Figure 3. Schematic design of the overall structure with 
the weeding robot for corn-weed detection. 

 

Data Collection and Preprocessing: The corn field data for 

this experiment was collected, and our data collection days 

in 2020 are June 5 to June 9. This is based on the time of 

seeding and corn growth. Our collection time was 

dependent on a strong visibility, which was for 03 hours in 

the morning and afternoon, in order to ensure a clear image 

collection. Images of corn and weeds in natural settings 

were taken in three directions: head-up, top-view, and 45-

degree squint, with the collection steps strictly followed. A 

high-definition digital camera was used to collect image 

data [28]. A total of 4102 corns were collected with weed 

images. All of the images are JPEGs with a resolution of 

54723648 pixels. Some of the corn and weed images 

collected in the agricultural experimental field for various 

numbers of corn and weeds [14-15]. 

 

VI. EXPERIMENTAL RESULTS AND 

EVALUATION 
 

Data Preprocessing Results Figure 4 shows the results of 

corn and weed recognition, as well as automatic weed 

removal, in data preprocessing. 
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Figure 4. Schematic diagram of corn and weed 

recognition as well as automatic weed removing. 

 

Novelty of the proposed method and unique feature 

 Using our quadratic traversal algorithm which can 

achieve the generation and optimization of binary 

images. The search speed of the algorithm is 

effectively improved, and the proposed path planning 

calculation is time efficient. 

 Lidar (VLP-16) is responsible for constructing a real-

time 2D or 3D navigation map of the cornfield at close 

range and providing real-time 3D point cloud 

information around it, which can further provide 

precise navigation information for the cornfield mobile 

robotics platform. 

 Therefore, the various performances of our proposed 

method can basically meet the real-time processing 

requirements of agricultural weeding robots using our 

proposed quadratic traversal algorithm. 
 

Comparison between the proposed and the existing one 

Algorithms Number 

of targets 

Running 

time (s) 

Diversity 

rate (%) 

Path planning 

algorithm 

7 8.63 32.4 

Quadratic 

traversal 

algorithm 

7 9.10 3.90 

Genetic algorithm 7 4.20 18.3 

 

RCNN is considered, though others are available 

Thee Faster R-CNN deep network model based on the 

VGG-16 feature extraction network is used to realize real-

time target recognition and complete automatic cut 

classification of targets. By returning the predicted 

parameter information of the border regression and the 

color of the prediction border, the target category in the 

image can be accurately determined. 

 

 

VII. CONCLUSION 
 

The task of weed one-time removal operations in 

cornfields is investigated in this study. To achieve real-

time target recognition and complete automatic cut 

classification of targets, the Faster R-CNN deep network 

model based on the VGG-16 feature extraction network is 

deployed. The target category in the image can be 

accurately determined by returning the predicted 

parameter information of the border regression and the 

color of the prediction border, and we realized the data 

connection between deep learning and traditional 

algorithms. The use and implementation of our ideas in 

this study can help intelligent weeding robots perform 

more precise weeding operations and increase their 

efficiency. In the meantime, it has significant practical 

implications for promoting the use of intelligent weeding 

robots in the field. 

 

VIII. FUTURE ENHANCEMENT 
 

The following are two aspects of our future work: (1) A 

quantitative analysis of the robot's power consumption. (2) 

Take into account the impact of outdoor dynamic 

environmental factors. 
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