
Int. J. Advanced Networking and Applications

Volume: 13 Issue: 03 Pages: 4988-4992(2021) ISSN: 0975-0290

4988

OTA Secure Update System for IoT Fleets
Laurentiu-CristianDuca

Department of Computer Science, University Politehnica of Bucharest

Email: laurentiu.duca@upb.ro

Anton Duca

Department of Electrical Engineering, University Politehnica of Bucharest

Email: anton.duca@upb.ro

Cornel Popescu

Department of Computer Science, University Politehnica of Bucharest

Email: cornel.popescu@upb.ro

---ABSTRACT---

In this paper, the authors present an Over-The-Air secure and scalable update system for Internet of Things fleets

which run embedded Linux. The system uses the SWUpdate Linux update agent and Eclipse hawkBit framework

to offer a scalable and server and client fault tolerant update mechanism for IoT fleets where no physical access is

available. Security is achieved using the Linux OpenSSL library. By using Buildroot we implement a complete

automated build system.

Keywords - Embedded, Eclipse hawkBit, IoT, Linux, OpenSSL, SWUpdate, U-boot.

--- --------------------

Date of Submission: Oct 05, 2021 Date of Acceptance: Nov 11, 2021

--- --------------------

I. INTRODUCTION

It is clear that embedded devices need software updates.

This is especially needed in systems like [1] to solve bugs,

to add new features or for security upgrades. There are

multiple programs that need to be updated: the n stage

boot loader, the operating system’s kernel, the device tree

blob that describes the hardware and the root file system

which contains the applications.

The classic way to update a system is the manually update,

made by the system administrator, either by simply

copying the new files or using the distribution’s package

manager. OTA software updates are remote updates and

they are especially needed when is hard to get access to

the device to be updated. In this case, the target devices

are clients and they connect to the server to check for

updates. In case of multiple devices, the overall update

process can be eased by automating it.

Regarding the system organization for updating, classified

by the method used to recover the system in the event of a

failure, there are the so called symmetric and asymmetric

systems [2].

Asymmetric systems have one recovery partition which

allows the user to replace the main OS partition in case of

a failure; the most common example is the Android

operating system.

Symmetric systems have dual main operating system

partitions: the active one and the inactive one. To make a

system update, the inactive partition is updated and will

became the active one; in case of a failure, the fall back

can be made by the boot loader, which boots the system

from the inactive partition. The asymmetric and symmetric

system representations are shown in Fig. 1 and Fig. 2. The

fall back can be done by using a watchdog in the boot

loader. The symmetric representation has advantage of

less system downtime in case of a failure, so, if space is

not an issue this variant is more adequate to be chosen [3].

In our implementation we chose the symmetric

representation.

Fig. 1.Asymmetric systems.

Fig. 2. Symmetric systems

II. LINUX UPDATE TOOLS – STATE OF THE

ART

Among the most famous open source tools for embedded

Linux update [4], [5], we find Mender, RAUC and

SWUpdate.

Mender is described as being secure, risk tolerant and

efficient Over-The-Air up-date system for all device

software [6]. It is written in the Go language and is free for

individuals and “do it yourself” projects, but for teams the

price varies from 29 to 249 dollars per month.

Bootloader Main OS (inactive)

Main OS (active)

Bootloader Rescue OS Main OS

Int. J. Advanced Networking and Applications

Volume: 13 Issue: 03 Pages: 4988-4992(2021) ISSN: 0975-0290

4989

RAUC stands for “Robust Auto-Update Controller”.
RAUC can be a target application which runs the update

client on the embedded device, and can also be a host

application that manages the installation artifacts [7]. It is

written in C and is designed to be a lightweight update

tool.

SWUpdate is an acronym for “Software Update for

Embedded Linux Devices” [8]. Its goal is to provide a safe

and efficient Linux update mechanism for embedded

systems [9] at no charge, being completely free. It is

written in C, is highly configurable and has security

features, so we have chosen it in our IoT OTA secure

update system.

III. IMPLEMENTATION AND

CONFIGURATION

The project consists in one server which run Eclipse

hawkBit and multiple clients which compose the IoT fleet.

Each client runs a Buildroot Linux distribution which use

the SWUpdate program tool. The clients repeatedly try to

connect to the server and verify if an upgrade is available,

and, if so, they will update their Linux system image.

We started from [5], a simple and not secure, one target

board only, update system. To this project, we added the

following features: allow multiple clients (targets),

scalability, security using OpenSSL, rollback mechanism

if the client update fails, reduced server uptime – the

clients try to repeatedly connect to the server at discrete

time intervals, and we ported our software on the cheap

and handy Raspberry Pi Zero W.

The sources of our project are free and open, being

available on the Internet [10].

III.1. Server configuration

For the update server we used Eclipse hawkBit. Eclipse

hawkBit is a program which allows admin triggered

software updates to the remote connected embedded

targets [11]. It is written in Java, being platform

independent. The server can be run on http or https.

In order to enable secure updates, we used https and a

login username and password. To enable https, we must

first generate the private and public keys, then we create a

self signed certificate (for proof of concept, we use

“laurPC-100”, the development hostname) and finally we

store the cryptography objects in a single PKCS #12 file.

The commands are listed in Listing 1.

$ opensslgenrsa -aes128 -out jetty.key
passwd: admin12
$ opensslreq -new -x509 -days 3650 -sha256 -key
jetty.key -out jetty.crt -subj
"/C=RO/L=Bucharest/CN=laurPC-100"
$ openssl pkcs12 -inkeyjetty.key -in jetty.crt -
export -out jetty.pkcs12
export passwd: admin12

Listing 1.Generating the cryptography objects for https.

We used the default Docker image with hawkBit server in

order to deploy our server application. We start the Docker

container with the script shown in Listing 2. Here we use

the cryptographic objects that we have generated and

install them in the container file system; we establish the

username and password credentials to login; we set up the

server port and set the polling time; and finally we set TLS

as the SSL protocol. The last line is commented out and

we kept it because was useful to check that the server was

functioning with the Eclipse hawkBit device simulator.

The upgrade can be triggered by the system administrator.

The hawkBit server allows selecting the embedded devices

by using filters (for example for filtering by name we use

“name =ge= ddi2” to select the devices which names are

greater or equal to “ddi2” string). The most important

thing is that the upgrade can also be done by using the

rollout function that applies to devices of a specified filter,

and these devices can be grouped. The system starts to

upgrade the first group, and, after it had upgraded a

specified percentage of targets from this group (for

example 50%), it starts upgrading the next group and so

on. This way the system is scalable and does not hang

when it has many targets to upgrade.

sudodocker run -p 8443:8443 \
–v "$PWD/jetty.pkcs12:/opt/hawkbit/jetty.pkcs12"
\
hawkbit/hawkbit-update-server:latest \
--security.user.name=admin \
--security.user.password=admin
--spring.main.allow-bean-definition-
overriding=true \
--
hawkbit.server.ddi.security.authentication.target
token.enabled=true \
--hawkbit.server.repository.publish-target-poll-
event=false \
--hawkbit.controller.pollingTime=00:00:30 \
--hawkbit.dmf.rabbitmq.enabled=false \
--hawkbit.artifact.url.protocols.download-
http.protocol=https \
--hawkbit.artifact.url.protocols.download-
http.port=8443 \
--security.require-ssl=true \
--server.use-forward-headers=true \
--server.port=8443 \
--server.ssl.key-store=jetty.pkcs12 \
--server.ssl.key-store-password=admin12 \
--server.ssl.key-password=admin12 \
--server.ssl.protocol=TLS \
--server.ssl.enabled-
protocols=TLSv1,TLSv1.1,TLSv1.2,TLSv1.3

Listing 2.hawkBit starting script.

The IoT fleet update time (SN) is a linear function of the

time to update a single board (S1) multiplied with the

number of boards (N) and divided by the number of

parallel updates (Np):

p

N
N

NS
OS

 1

(1)

Building the effective upgrade file is shown in the section

“The target system” because is dependent of the

SWUpdate tool.

III.2. The build system

The build system used in this implementation is Buildroot,

version 2020.11.3. We choosedBuildroot because is an

efficient tool which can be used to generate embedded

Int. J. Advanced Networking and Applications

Volume: 13 Issue: 03 Pages: 4988-4992(2021) ISSN: 0975-0290

4990

Linux systems from boot loader to kernel and root file

system through cross compilation [12]. After downloading

and extracting the Buildroot archive, the user can build the

system by using three commands listed in Listing 3.

make raspberrypi0w_defconfig
make menuconfig
make

Listing 3.Buildroot commands

Here we will focus on the Raspberry Pi Zero W board
which we have used to implement our update system. First
command sets up the default configuration in Buildroot for
our board, the second is used to make specific
configuration and the third simply builds the Linux system.

The specific configuration that we chose for Buildroot is
listed in Listing 4. The settings are self explanatory.

Build options
 Enable Compiler Cache (fast recompile)
Toolchain
Toolchain type ---> external toolchain
Toolchain (Bootlintoolchains)
Toolchain origin (Toolchain to be downloaded and
installed)
 C library (glibc)
System configuration
Init system
systemv
 /bin/sh bash
 Run a getty login prompt after boot
Kernel
Defconfig name (bcm2835_defconfig)
 In-tree Device Tree Source file names
(bcm2835-rpi-zero-w)
Target Packages
 Networking applications
wpa_supplicant - Enable 80211 support
dropbear
ntpd # for SWUpdatelibcurl
ntpdate
 Compression and decompression
zlib support #for SWUpdate
 Crypto
 libsha1
openssl support
ssl library (openssl)
openssl binary
openssl additional engines
 Hardware handling
 Firmware
rpi-firmware
rpi-wifi-firmware
rng-tools
 u-boot tools
mkimage
fw_printenv
 Networking
libcurl
 curl binary
 Shell and utilities
 bash
 System tools
SWUpdate
 (package/SWUpdate/SWUpdate.config)
SWUpdate configuration file
 watchdog
Filesystem images
 ext2/3/4
exactsize 300M
Boot loaders
 U-boot
 ((rpi_0_w_defconfig) Board defconfig

filename
 CONFIG_ENV_FAT_FILE="uboot.env" # default

Listing 4.Buildroot configuration.

Before issuing the “make” command in Buildroot, because
we use SWUpdate, we also must configure this tool by
entering the “make swupdate-menuconfig” command and
selecting the settings in Listing 5. Suricatta feature adds
support for hawkBit with SSL.

SSL implementation to use (OpenSSL)
Suricatta
 Features SSL support
 Server Type (hawkBit support)
Image handlers
 Raw

Listing 5.SWUpdate settings.

In the “board/raspberrypi0w” folder, the “genimage-
raspberrypi0w.cfg” was set such that we have a symmetric
update system with three partitions: one with boot loader
plus dtb, and two with rootfs (to which we’ll automatically
add kernel and dtb, by using a post build script). We have
downloaded from the device a U-boot saved environment
named “uboot.env” and made it available with the project
sources. A “rpi-firmware” folder must be built on Buildroot
“output/images” path and its contents set as shown in
Listing 6.

image boot.vfat {
vfat {
 files = {
 “bcm2835-rpi-zero-w.dtb”,
 “rpi-firmware/bootcode.bin”,
 “rpi-firmware/cmdline.txt”,
 “rpi-firmware/config.txt”,
 “rpi-firmware/fixup.dat”,
 “rpi-firmware/start.elf”,
 “rpi-firmware/overlays”,
 “u-boot.bin”,
 “uboot.env”
 }
 }
 size = 32M
}
image sdcard.img {
hdimage { }
 partition boot {
 partition-type = 0xC
 bootable = “true”
 image = “boot.vfat”
 }
 partition rootfs1 {
 partition-type = 0x83
 image = “rootfs.ext2”
 size = 1024M
 }
 partition rootfs2 {
 partition-type = 0x83
 image = “rootfs.ext2”
 size = 1024M
 }
}

Listing 6.The “genimage-raspberrypi0w.cfg” script

U-Boot (also written as Uboot) is an open source boot

loader. It is used in embedded systems to boot the target

operating system kernel [13]. Ue used version 2020.10. In

the same “board/raspberrypi0w” folder we wrote the

“uboot-fragment.config” file which defines variables in U-

boot boot loader at system build time. Its contents are

Int. J. Advanced Networking and Applications

Volume: 13 Issue: 03 Pages: 4988-4992(2021) ISSN: 0975-0290

4991

shown in Listing 7. The BOOTCOMMAND sets the

default partition to boot Linux, to the second partition.

Also, the watchdog is enabled with a maximum delay of

30 seconds; if Linux does not boot in 30 seconds, the

system will be reset. If the system will not boot well Linux

for 3 tries, then the ALTBOOTCOMMAND will be used

to set boot parameters for U-boot instead of

BOOTCOMMAND.

CONFIG_BOOTCOUNT_LIMIT=y
CONFIG_BOOTCOUNT_BOOTLIMIT=3
CONFIG_SYS_BOOTCOUNT_MAGIC=0xB001C041
CONFIG_BOOTCOUNT_GENERIC=y
CONFIG_SYS_BOOTCOUNT_ADDR=0x7000A000
CONFIG_BOOTCOMMAND=”setenvbootargs
\”8250.nr_uarts=1 root=/dev/mmcblk0p2 rootwait
console=tty1 console=ttyS0,115200\”; load mmc 0:2
$kernel_addr_rzImage ; load mmc 0:2 $fdt_addr_r
bcm2835-rpi-zero-w.dtb ; bootz $kernel_addr_r -
$fdt_addr_r”
CONFIG_WATCHDOG_TIMEOUT_MSECS=30000
CONFIG_BCM2835_WATCHDOG=y

Listing 7. “uboot-fragment.config”.

In order for the watchdog to work in U-boot for Raspberry
Pi Zero W, we needed to apply the Paolo Pisati’s patch to
U-boot sources [14]. This was made by copying the
(slightly modified) patch to folder “boot/uboot/2020.10”
Buildroot folder.

In the Linux kernel the watchdog must also be enabled, by
setting CONFIG_WATCHDOG=y and
CONFIG_BCM2835_WDT=y. We also built a program
tool which will reset the U-boot’s BOOTCOUNT variable
when Linux successfully boots; this program uses
“fw_printenv” and “fw_setenv” commands to access U-
boot’s environment.

The “config.txt” file from the boot partition needs to
contain “enable_uart=1” to use the UART for debugging
and “dtparam=watchdog=on” in order to use the watchdog.

III.3 The client system

On the embedded Linux targets we use the SWUpdate tool

for remote software updates. In order to generate the

effective update file, a script named “SWUpdate-

image.sh” was written (see Listing 8) which creates a cpio

archive that SWUpdate will use to upgrade the system.

This script packs the “sw-description” file (see Listing 9),

which tells SWUpdate what are the updatable partitions,

along with the file used to install the new root file system

which is “rootfs.ext4.gz” and is generated by Buildroot.

IMG_FILES="sw-description rootfs.ext4.gz"
for f in ${IMG_FILES} ; do
 echo ${f}
done | cpio -ovL -H crc>buildroot.swu

Listing 8.The “swupdate-image.sh” script.

In the Buildroot folder “board/raspberrypi0w”, we wrote

the “post-build.sh” script and added a folder named

“overlay” which contains additional files to be written to

the target’s root file system.

In “post-build.sh” we made the following additions:

 wrote to “/etc/hosts” the IP of the “laurPC-100”
host which is used in OpenSSL;

 set the DAEMON_ARGS variable in
“/etc/default/rngd” to "-o /dev/random -r
/dev/urandom" (this is useful for developing
speed where we used rngd to get faster random
entropy);

 replaced in “config.txt” file of the boot partition
“zImage” with “u-boot.bin”, so the Raspberry Pi
Zero W will boot first the U-boot bootloader
instead of Linux;

 in “config.txt” we set “device_tree=bcm2835-rpi-
zero-w.dtb” such that U-boot can find this device
tree blob;

 copy “zImage” and “bcm2835-rpi-zero-w.dtb” to
the root file system;

 setup the path and length of “uboot.env” to
“/etc/fw_env.config” in order to have access to
the U-boot BOOTCOUNT variable from Linux;

 setting the Linux “watchdog-timeout” to 15
seconds in “/etc/watchdog.conf”.

In the Buildroot “overlay” folder various files were

created:

 “S30watchdog” and “S98swupdate” services
available in “/etc/init.d” on the target;

 “postupdate.sh”, “swupdate.cfg” and other files
available in “/etc/swupdate” on the target.

software = {
 version = "0.1.0";
rootfs = {
 rootfs-1: {
 images: (
 {
 filename = "rootfs.ext4.gz";
 compressed = "zlib";
 device = "/dev/mmcblk0p2";
 });
 }
 rootfs-2: {
 images: (
 {
 filename = "rootfs.ext4.gz";
 compressed = "zlib";
 device = "/dev/mmcblk0p3";
 });
 }
 }
}

Listing 9. The “sw-description” file.

The “S98swupdate” service does the following:

 saves to a file “/root/mmc-part-id” the id of the
partition which Linux booted;

 gets and saves the target machine id (every
Raspberry Pi board has associated a unique id,
see Listing 10);

 starts the effective swupdate daemon and
specifies it the target id, target token, hawkBit
URL and the partition that booted Linux;

Int. J. Advanced Networking and Applications

Volume: 13 Issue: 03 Pages: 4988-4992(2021) ISSN: 0975-0290

4992

 runs “/etc/swupdate/connect.sh” that will try to
login to hawkBit - using username and password
that are stored encrypted on disk, every 5
minutes, to be server fail safe;

 if the file “/update-ok” exists then will
acknowledge to the hawkBit server that the
update was successful (and then delete “/update-
ok”).

BOARD_ID=`cat /proc/cpuinfo | grep Serial | awk -
F': ' '{print $2}'`

Listing 10.Extracting the Raspberry Pi Zero W board identifier.

After the administrator ordered an upgrade and the

SWUpdate tool has finished installing it, the

“/etc/swupdate/postupdate.sh” bash script specified in

“/etc/swupdate/swupdate.cfg” will be run. This one sets up

the U-boot environment and Linux kernel command line

such that the upgraded partition will become the boot

partition, then creates the file “/update-ok” and reboots the

target. The upgraded partition is the one different from

“/root/mmc-part-id”.

IV. CONCLUSION

In this paper we presented our free and open source

implementation of an OTA secure update system for IoT

fleets. The target system runs Linux and uses the

SWUpdate tool. The server hawkBit that we used from

Eclipse is platform independent.

The update system is scalable by allowing a theoretically

unlimited number of targets in the IoT fleet, by using the

hawkBit’s rollout feature for fleet upgrade.

The system is target fail safe, by being a symmetric update

system and using the U-boot’s BOOTCOUNT mechanism.

The server can be started only when the upgrade is

available, because the clients try to login to the server at

discrete time intervals (5 minutes).

The IoT fleet used to test the update system is handy and

cheap being composed by Raspberry Pi Zero W boards.

REFERENCES

[1] A. Sharif, J.P. Li, M.A. Saleem, “Internet of

Things Enabled Vehicular and Ad Hoc Networks for

Smart City Traffic Monitoring and Controlling: A

Review”, International Journal of Advanced

Networking and Applications, Volume 13, Issue 02,

pp. 4925-4930, 2021.

[2] M. Krak, The ultimate guide to software updates on

embedded Linux devices, pp. 12-18, FOSS-North

conference, 2018.

[3] V. Baillie, OTA updates for Embedded Linux, part 1

– Fundamentals and implementation,

https://www.embedded.com/ota-updates-for-

embedded-linux-part-1-fundamentals-and-

implementation, last accessed 2021/09/31.

[4] V. Baillie, “OTA updates for Embedded Linux, part

2 – A comparison of off-the-shelf update systems”,
https://www.embedded.com/ota-updates-for-

embedded-linux-part-2-a-comparison-of-off-the-

shelf-update-systems, last accessed 2021/09/31.

[5] T. Petazzoni, Building a Linux system for the

STM32MP1: remote firmware updates,

https://bootlin.com/blog/tag/SWUpdate, last

accessed 2021/09/31.

[6] Mender update system web page, mender.io, last

accessed 2021/09/31.

[7] RAUC update system web page,

https://github.com/rauc/rauc, last accessed

2021/09/31.

[8] SWUpdate update system web page,

https://sbabic.github.io/SWUpdate, last accessed

2021/09/31.

[9] S. Babic, Software Update on Embedded Systems,

pp. 18-28, Embedded Linux Conference Europe,

2014.

[10] L.-C. Duca: IoT OTA secure update system sources,

https://github.com/laurentiuduca/iot-ota-sus, last

accessed 2021/09/31.

[11] Eclipse hawkBit web page,

https://eclipse.org/hawkbit, last accessed

2021/09/31.

[12] Buildroot build system web page,

https://buildroot.org, last accessed 2021/09/31.

[13] U-boot boot loader web page,

https://www.denx.de/wiki/U-Boot, last accessed

2021/09/31.

[14] P. Pisati, U-boot patch – support for the

BCM2835/2836 watchdog,

https://lists.denx.de/pipermail/u-boot/2017-

January/279573.html, last accessed 2021/09/31.

	I. INTRODUCTION
	II. LINUX UPDATE TOOLS – STATE OF THE ART
	III. IMPLEMENTATION AND CONFIGURATION
	IV. Conclusion
	References

