
Int. J. Advanced Networking and Applications
Volume: 13 Issue: 02 Pages: 4919-4924(2021) ISSN: 0975-0290

4919

Operating Computer Cursor using Eye and Face
Movements

U. Chaitanya

Department of Information Technology, Mahatma Gandhi Institute of Technology, Hyderabad-75
Email: uchaitanya_it@mgit.ac.in

Hansika Garapati

Department of Information Technology, Mahatma Gandhi Institute of Technology, Hyderabad-75
Email : hansika.garapati@gmail.com

 S.Priyanka Raj

 Department of Information Technology, Mahatma Gandhi Institute of Technology, Hyderabad-75
Email : priyankaraj0223@gmail.com

--ABSTRACT---
The advent of modern human computer interfaces has seen a considerable progress in Hands-free Human

Computer Interaction (HCI) solutions. This project focuses on developing a methodology to facilitate computer

cursor control for people with physical disabilities such as Quadriplegics and amputees. The proposed

methodology takes real-time video input from the user using OpenCV and performs face recognition. The 68-

point landmark algorithm is used to locate the various facial features which can be used for cursor control.

Opening/closing the mouth based on Mouth Aspect Ratio (MAR) indicates activation/deactivation of the cursor

control. The nose tip is used for controlling and moving the cursor in all 4 directions by moving the head left,

right, up and down. Eye Aspect Ratio (EAR) is used to detect eyes and eye flickering. Left and right eye blinks

indicate left and right clicks respectively. Squinted eyes indicate scrolling of pages, which is beneficial while

working with PDFs and other such documents. The proposed system requires very basic requirements like

webcam and a few Python libraries such as OpenCV, Numpy, imutils, dlib and PyAutoGUI. Thus it would help

the physically disabled users to efficiently use the computer, thus eliminating the need of a physical mouse

interaction.

Keywords - Human Computer Interaction, face recognition, 68-point landmark algorithm, MAR, EAR.

-- -----------------------
Date of Submission: May 24, 2021 Date of Acceptance: June 22, 2021
-- -----------------------

1. INTRODUCTION

Computers have become an inevitable part of human life.

The traditional computer mouse is the basic approach to
move the cursor on the screen. But, these systems lose
their practicality when it comes to people who have lost
their arms, or those suffering from Locked-in syndrome
(LIS), Quadriplegia etc. There are systems in place that
allow users to communicate with the computer without the
need of physical contact such as Eyeball movement based
cursor system, but they are not efficient in terms of usage,
as the system will not be able to differentiate between
intentional and unintentional eyeball movement. Hence the
need for a practical and convenient hands-free cursor
control system was observed. Thus we have proposed a
methodology for operating computer cursor using eye and
face movements, which facilitates operations such as left
click, right click, move the cursor up, down, left, right,
scrolling up and down. The main objective of our project
is to overcome the difficulties faced by the disabled users
in operating the computer system and to provide a hassle-
free cursor control system that can be accessed without the
need for physical contact. Our project’s problem definition
focuses on improving the Human Computer Interaction for
users suffering from physical disabilities like
Quadriplegia, Locked-in Syndrome, amputations etc. Such
users face issues in interacting with a computer system.

Since only their neck and head muscles can move
properly, we can develop a cursor system that mainly
functions on eye and face movements, hence eliminating
the need to physically interact with the system.

Few technologies related to eye cursor have already been
developed such as the eyeball movement based cursor,
which uses an IP camera to capture the picture of an eye
frame for cursor movement. In this methodology,
Raspberry pi was used for pupil identification, which was
the control point for the cursor. OpenCV python module
was used to take snaps of the eye and it was compared
against the EAR (Eye Aspect Ratio) threshold. The cursor
will move on the screen depending on how the eye ball is
moving, i.e. by mimicking the movement of eye. But there
are few pitfalls to these existing systems, such as the
system assumes all eye movements to be intentional,
hence decreasing efficiency. It is difficult to move the
cursor towards the end of the screen (for example to the
full screen button).Another defect is the low practicality as
the cursor will keep moving even if the user wants to only
read the contents of the screen.To overcome these
drawbacks we have introduced a methodology for
Controlling the computer cursor using eye and face
movements. The concepts of EAR and MAR are widely
used for developing Driver Drowsiness Detection systems
[1]

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 02 Pages: 4919-4924(2021) ISSN: 0975-0290

4920

The proposed system takes real-time video input using
OpenCV. Face detection is then performed on the input
using dlib’s built in detector, i.e., Histogram of Oriented
Gradients (HOG) based detector which is combined with
an image pyramid, a linear classifier, as well as a sliding
window detection scheme. Dlib’s 68 point landmark
estimation algorithm is used to detect the facial landmarks,
which are then used to calculate the EAR and MAR
values. If the MAR value goes up, it indicates activation.
If the EAR value is less than the specified threshold, it will
indicate a click or scroll based on the value. The actions
that can be performed using the proposed algorithm are :
squinting your eyes to activate scroll mode, winking for
left and right clicks, moving your head around (pitch and
yaw) to move the cursor and opening your mouth to
activate/deactivate cursor control. The benefit of using our
system is, it provides a Hands-free cursor for the
physically disabled. No external sensors or wearable
hardware is required for implementation, and the upper
hand is that the proposed system can be implemented on
laptops/desktop computers easily.

2. RELATED WORK

Vandana Khare, et al. proposed cursor control using eye
ball movement[2] . An eyeball based cursor system
developed on Raspberry Pi with the pupil as the main
point. The cursor moves according to the eyeball
movements. The Blinks are translated into clicks based on
EAR (Eye Aspect Ratio) value. For cursor movement, the
system employs an Internet protocol camera to capture a
picture of an eye frame.The cursor will move on the screen
depending on how the eye ball is moving, i.e. by
mimicking the movement of eye. The user has to move his
eyes and focus on where he wants the cursor to move, and
it will move accordingly. Clicks are performed by eye
winking.

Sukrit Mehta , et al. proposed real-time driver drowsiness
detection using eye aspect ratio and eye closure ratio[3]
.This device detects a driver's level of drowsiness and
sends an alert about it.. It makes use of dlib’s pre-trained
face detector and then captures facial landmarks. These
landmarks are used to calculate the EAR value, i.e., Eye
Aspect Ratio. If the EAR is lesser than the threshold value,
it would indicate a state of fatigue/drowsiness of the
driver. ECR value (Eye Closure Ratio) is calculate using
the sleep counter (number of times EAR is lesser than the
threshold value). If the ECR value exceeds the threshold
value, then an alarm is generated to indicate the
drowsiness state of the driver.

M. Vasanthan, et al. proposed a facial expression based
computer cursor control system for assisting physically
disabled person[4] .In this method, five facial gestures are
used to guide cursor movement in the left, right, up, and
down positions, as well as click. Four illuminated stickers
are applied to the user's cheeks, forehead, and mouth.
Movement of these markers is detected the coordinate
changes on the input video and each of the five

expressions is represented by five ASCII characters, which
are in turn represented by binary numbers.
Shruti Mohanty, et al. proposed the Design of Real-time
Drowsiness Detection System using dlib[5]. This paper
deals with driver drowsiness detection using Eye Aspect
Ratio (EAR) and Mouth Aspect Ratio (MAR). The
system makes use of Dlib library for face and landmark
detection. The values of the measured aspect ratios are
evaluated with the eye and mouth threshold values, i.e., if
the EAR value drops down , it is considered to be a state
of drowsiness. If the MAR value exceeds the threshold
value, it is taken as a yawn and the corresponding alarms
are fired.

3. METHODOLOGY

3.1 PROPOSED ARCHITECTURE

The proposed “Operating Computer Cursor using Eye and
Face Movements has a very straightforward and easy-to-
implement architecture. The overall architecture can
broadly be sectioned into five modules. The system takes
in real time input from the user, pre-processes it, performs
face detection and landmark detection, calculates the EAR
and MAR ratios and finally translates the gestures into
mouse actions on the screen.

Fig 3.1.1 System Architecture

Fig 3.1.1 shows the architecture of Operating Computer
Cursor using eye and Face Movements. The entire system
can be viewed as the flow of action between five modules.
The first module deals with taking the real time web
camera input from the user using OpenCV. This input is
then passed on to the next module, which pre-processes it
and then performs face detection using dlib’s HOG based
face detector. The input video with the detected faces is
now passed onto the next module which estimates facial
landmarks using the 68 point facial landmark estimator.
The EAR and MAR values are now calculated using the
landmarks around the eyes and mouth. These calculated
ratios are now sent to the next module, which compares
them against the threshold values, and translates them into
the corresponding mouse actions. The last module deals
with performing the mouse actions on the screen using
PyAutoGUI.

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 02 Pages: 4919-4924(2021) ISSN: 0975-0290

4921

3.2 METHODOLOGY

The following steps are to be followed in order to
implement the proposed system successfully:

 Real Time Video Input
 Image Pre-processing and Face Detection
 Facial Landmark Estimation
 Comparison of Threshold values
 Perform Mouse Action

3.2.1 Real Time Video Input

Real time video input is taken from the user with the use
of Python’s OpenCV library. VideoCapture() function is
used take the input from either the integrated camera or
web camera.

3.2.2 Image Pre-processing and Face Detection

The real time video input must be preprocessed before
moving on to the next step in the algorithm pipeline. Face
detection can then be performed on the preprocessed input.
Image pre-processing: The input needs to be pre-
processed, i.e., flipped, resized and converted to greyscale.
As the frame received from the web camera is
automatically flipped, we need to re-flip it using OpenCV
flip() function. Resizing is done using imutils’s resize()
function. We convert the input to greyscale using OpenCV
cvtColor(), as the complexity of dealing with greyscale
pixels is lesser than compared to the coloured ones.
Face Detection: Dlib’s HOG algorithm based face
recognition is implemented for detecting faces in the pre-
processed video input. In this algorithm, the gradient
orientation of the localized areas in an image are used to
build the histograms. HOG is favored because it is more
reliable than Haar cascades and has a lower false positive
percentage. It also ignores the movement of the user and
hence is more practical. A call to the
get_frontal_face_detector() function is enough to activate
the face detector.

3.2.3 Facial Landmark Estimation

Dlib library’s 68 point facial landmark algorithm based
predictor is used. This algorithm locates 68 distinct
landmarks around the face. We make use of the
shape_predictor() function in order to initialize it.

Fig 3.2.3.1 68 facial landmarks mapped on the face [6]

The 68 distinct landmarks estimated by dlib’s 68 point
landmark estimation algorithm are shown in Fig 3.2.3.1.
Out of these, we are interested in the landmarks around the
eyes mouth, and the nose

We Extract the left and right eye coordinates, mouth
coordinates and the nose pointer ,then draw contours
around eyes and mouth using OpenCV’s drawContours()
function.
Using the extracted landmarks, the Eye Aspect Ratio
(EAR) and Mouth Aspect Ratio (MAR) values are
calculated.

Fig 3.2.3.2 Landmarks around the eye [7]

Fig 3.2.3.2 depicts the 6 distinct landmarks around the
eyes which are used to calculate the EAR value. It has two
pairs of vertical landmarks and one pair of horizontal
landmarks.

Fig 3.2.3.3 Landmarks around the mouth [8]

Fig 3.2.3.3 depicts the 8 distinct landmarks around the
mouth which are used to calculate the MAR value. It has 3
pairs of vertical landmarks and 1 pair of horizontal
landmarks.
EAR can be calculated using the formula:
EAR = ||p2-p6||+||p3-p5|| / 2*||p1-p4||

Similarly, MAR can be calculated using the following
formula:
MAR=||p2-p8||+||p3-p7||+||p4-p6||/ 2*||p1-p5||

3.2.4 Comparison of Threshold values

The calculated MAR and EAR values are now compared
against the threshold values and the corresponding mouth
action is performed.
• If MAR is greater than the Mouth threshold value the

input is accepted by the system, i.e., the cursor control

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 02 Pages: 4919-4924(2021) ISSN: 0975-0290

4922

system is activated. The user’s facial gestures will
now be converted to mouse actions on the screen.

• If left_EAR < right_EAR, then left click is performed.
Similarly, if left_EAR > right_EAR, then right click is
performed.

• If the aspect ratio of both the left and right eye
together is less than the threshold value, i.e., if the
user squints his/her eyes, the scroll mode is
implemented. The user can now bend their head down
or lift their head up to scroll the document down and
up respectively.

• Pitch and Yaw movements of the head will result in
moving the nose pointer, and eventually the cursor in
all 4 directions.

3.2.5 Perform Mouse Action

The eye and face movements performed by the user are
translated into the corresponding mouse actions on the

screen using PyAutoGUI library.

4. PROPOSED ALGORITHM

The main aim of this project is to bridge the gap between a
disabled user and the computer system, by providing a
hands-free computer cursor control system. In order to
develop the proposed algorithm, the following steps are to
be followed:

• Let “np” be the nose point and “ap” be the anchor

point.
• “w” is width , ‘h’ is the height
• Mar is the MOUTH ASPECT RATIO and ear is the

EYE ASPECT RATIO
• A,B,C are the distances between the mouth’s vertical

landmarks, D is the distance between the mouth
horizontal landmarks. M,N are the Euclidean distances
between the eye vertical landmarks and P is the
Euclidean distance between the eye’s horizontal
landmarks

/*Real time Video Input*/

video=cv2.VideoCapture(0)
/*Image Preprocessing*/

frame=cv2.flip(frame)
frame=resize()
gray=cvtColor(frame)
/*Face Detection*/

Detector= dlib. Get_frontal_face_detector()
/* Landmark Estimation */

predictor = dlib.shape_predictor()
/*Aspect Ratio Calculation*/

mar= A+B+C/2D
ear=M+N/2P
/* Activating Cursor Control*/

if mar> MOUTH_AR_THRESHOLD:
 then cursor_control_activated
 if
MOUTH_COUNTER>=MAR_CONSECUTIVE_FRAM
ES
 then deactivate_cursor_control

/*Comparison with threshold values and mouse

action*/

if leftEAR < rightEAR:
then click(button=’left’)
else if leftEAR> rightEAR:
then click(button=’right’)
dir= direction(np,ap,w,h)
if dir== ‘right’:
then move right
else if dir==’left’:
then move left
else if dir==’up’:
 if SCROLL_MODE:
 then scroll up
 else move up
else if dir==’down’:
 if SCROLL_MODE:
 then scroll down

else move down

5. RESULTS

Fig 5.1 Reading Input

Fig 5.1 depicts activating the cursor by opening the mouth
widely. The system is now ready to read input .If mouth is
opened for the second time, the cursor will be deactivated.

Fig 5.2 Moving cursor to the left

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 02 Pages: 4919-4924(2021) ISSN: 0975-0290

4923

Fig 5.2 depicts moving the cursor towards left. If head is
slightly moved left, the distance between nose pointer and
anchor pointer increases and the cursor starts moving left.

Fig 5.3 Moving cursor to the right

Fig 5.3 depicts moving the cursor towards right. If head is
slightly moved right, the distance between nose pointer
and anchor pointer increases and the cursor starts moving
right

Fig 5.4 Scrolling Down

Fig 5.4 depicts scroll action. To activate scroll mode,
user’s eyes have to be squinted. Now scrolling down is
performed by moving head downwards.

Fig 5.5 Scrolling up

Fig5.5 depicts scroll up action. While scroll mode is on,
user must move their head upwards to scroll up. To
deactivate scrolling user must squint their eyes again

Fig 5.6 Scrolling right

Fig 5.6 depicts scrolling right. When scroll mode is on,
user must move their head towards right to scroll right the
document. User can similarly move their head towards left
for scrolling left

Fig 5.7 Right Click

Fig 5.7 depicts performing right click action. To perform
click action user must slightly tilt their head left and wink
right eye for right click and left eye for left click

Fig 5.8 Operating cursor control system in dim light

Int. J. Advanced Networking and Applications
Volume: 13 Issue: 02 Pages: 4919-4924(2021) ISSN: 0975-0290

4924

Fig 5.8 depicts operating the proposed system in a dim
light condition. The system is able to successfully operate
and perform the required actions

Fig 5.9 Operating cursor control system by a user

wearing glasses

Fig 5.9 demonstrates operating the proposed system when
the user is wearing glasses. The system is able to precisely
locate the landmarks and perform the required action.

Fig 5.10 Playing a simple online game

Fig 5.10 depicts operating the proposed system in a simple
online video game. The system was able to perform all the
required actions successfully

6. CONCLUSION

The proposed “Operating Computer Cursor using Eye and
Face movements” is a solid and practical system to offer
computer cursor control for the physically disabled user.
To conclude, we have built an efficient, practical and
accurate cursor system which overcomes the challenges of
the existing systems. This project is devised to replace the
conventional computer cursor devices for the use of
disabled users, which promotes operational independence.
The future work could be to enhance the system to
facilitate controlling the home appliances such as lights,
fans, TV sets etc. This system can be infused with speech
recognition technology to further increase the field of

usage. The proposed system could also play a major role
in virtual reality and gaming applications in the future.

REFERENCES

[1] Yuvan.M, Varun Ramesh Kumar, et.al. Real Time
Driver Drowsiness Detection Using Open CV,
International Journal Of Advanced Networking &
Applications (IJANA), 2019, special issue - 2019 : 96-99.

[2]V. Khare, S. G. Krishna and S. K. Sanisetty, "Cursor
Control Using Eye Ball Movement," 2019 Fifth
International Conference on Science Technology
Engineering and Mathematics (ICONSTEM), 2019, pp.
232-235, doi: 10.1109/ICONSTEM.2019.8918780.

[3]Maruthapillai, Vasanthan & M, Murugappan &
Nagarajan, R. & Ilias, Bukhari & Letchumikanth, J..
(2012). Facial expression based computer cursor control
system for assisting physically disabled person.
Proceeding - COMNETSAT 2012: 2012 IEEE
International Conference on Communication, Networks
and Satellite. 172-176.
10.1109/ComNetSat.2012.6380800.

[4] Mehta, Sukrit and Dadhich, Sharad and Gumber, Sahil
and Jadhav Bhatt, Arpita, Real-Time Driver Drowsiness
Detection System Using Eye Aspect Ratio and Eye
Closure Ratio (March 20, 2019). Proceedings of
International Conference on Sustainable Computing in
Science, Technology and Management (SUSCOM), Amity
University Rajasthan, Jaipur - India, February 26-28, 2019

[5] S. Mohanty, S. V. Hegde, S. Prasad and J.
Manikandan, "Design of Real-time Drowsiness Detection
System using Dlib," 2019 IEEE International WIE
Conference on Electrical and Computer Engineering
(WIECON-ECE), 2019, pp. 1-4, doi: 10.1109/WIECON-
ECE48653.2019.9019910.

[6] A. ROSEBROCK, FACIAL LANDMARKS WITH DLIB,
OPENCV, AND PYTHON, APRIL 2017, AVAILABLE:
HTTPS://WWW.PYIMAGESEARCH.COM/2017/04/03/FACIAL-
LANDMARKS-DLIB-OPENCV-PYTHON/

[7] How to detect eye blinking in videos using dlib and
OpenCV in Python, June 2020, Available:
http://datahacker.rs/011-how-to-detect-eye-blinking-in-
videos-using-dlib-and-opencv-in-python/

[8] Relangi S.P.K., Nilesh M., Kumar K.P., Naveen A.
(2020) Full Length Driver Drowsiness Detection
Model—Utilising Driver Specific Judging Parameters.
In: Reddy A., Marla D., Simic M., Favorskaya M.,
Satapathy S. (eds) Intelligent Manufacturing and
Energy Sustainability. Smart Innovation, Systems and
Technologies, vol 169. Springer, Singapore.
https://doi.org/10.1007/978-981-15-1616-0_77

	1. introduction
	3. METHODOLOGY
	4. PROPOSED ALGORITHM
	5. RESULTS
	6. CONCLUSION
	References
	[6] A. Rosebrock, Facial Landmarks with dlib, OpenCV, and Python, April 2017, Available: https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/

