
Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4650-4655(2021) ISSN: 0975-0290

4650

A Model Vector Machine Tree Classification for

Software Fault Forecast Model (TSMO/TSVM)
First Author Maaz Rasheed Malik

Dept. of Information Communication Engineering, Guilin University of Electronic Technology, Guilin, China

Email: dr.maazmalik@outlook.com

Second Author Liu Yining

Dept. of Information Communication Engineering, Guilin University of Electronic Technology, Guilin, China

Email : ynliu@guet.edu.cn

Third Author Salahuddin Shaikh

School of Control & Computer Engineering, North China Electric Power University, Beijing, China

Email : engineersalahuddin@gmail.com

--ABSTRACT---
Many researchers have worked on the Software fault forecast model because the software fault forecast is very

important in software development projects. In terms of the Software fault forecast model, earlier researchers

have examined defective datasets models with the help of metrics and classification methods. Classification is

assuming an exceptionally major job in the software fault forecast model, which is an important issue in data

mining. The machine learning system as a finding way for the information securing or information extraction

issue has examined it widely. The contribution to a classifier is a training data set of precedents, every one of

which is labeled with a class name. Classification separates data tests into target classes. Software modules are

categorized as defected models or not defected models by classification draws near. In Classification, class

categories are known thus it is a supervised learning approach. In our research, software fault forecast datasets

models are examined with the help of tree vector machine classification. Our proposed model is a tree vector

machine, which is used for increasing the positive accuracy and efficiency of the software fault forecast model. We

have used multiple tree classifiers for getting more accurate results and compare them with each other. During

the analysis of the experiments, j48, random forest and random tree have increased their performance in accuracy

as well as efficiency. However, the performance of REP Tree, Hoeffding Tree and Decision Stump is not so good at

all measure rates. The experiment's analysis results showed that not every tree classifier could be good in all in

measure unit.

Keywords - Software, Fault Forecast, Classification, Defect prone, Support Vector Machine, J48, Random Tree.

Date of Submission: Feb 12, 2021 Date of Acceptance: Feb 26, 2021

-- -------------------------

I. INTRODUCTION

Software fault forecast is a quality confirmation strategy

in software building, where advanced methods (counting

machine learning) are utilized to anticipate future

deformities in PC programs. Such data can be utilized to

help optimal endeavors and assets allocation in the

software improvement ventures (for example to

concentrate quality confirmation exercises on software

classes, which are anticipated to be imperfection,

inclined). As huge software systems are created over a

time of several years, their structure will in general debase

and it turns out to be progressively hard to comprehend

and transform them.

Troublesome changes are unnecessarily exorbitant or

require a too much long interval to complete. Day by day

software efficiency and tools are developed in storage

capacity and intricacy. The software forecast consistency

assumes a fundamental job in the software expansion

method. During the runtime of the software system, an

error or bug is generated due to unambiguous and possible

violations of security rules as well as wrong detail and

unseemly advancement of setup which is known as a

software bug. As indicated by software analyzing and

anticipating imperfections are required for three

fundamental purposes, right off the bat, for evaluating

venture progress and plan deformity detection exercises

for the task execution and also, for evaluating item quality

and third in keep going to enhance the capacity and

evaluate development routine for large organizations. In

terms of software bug forecast, earlier researchers

examined defective datasets models in the presence of

particular metrics and classify the fault forecast models or

prone models. The most significant models are that these

prone models, number of bugs and imperfection prone are

removed for enhancement of software worth, excellence

and experiment analysis due to the update upcoming

generation of the software. During the software bug

forecast, there are two advantages, which are the

enhancement of the experiment model through

concentrating on defected modules and by recognizable

proof the refactoring competitors which are anticipated as

bug-inclined. To overcome the problem of software fault

forecast model, genetic programming, fuzzy logic, neural

network and so on multiple ways used. Probably metrics

are used and studies for software fault forecast but

defected datasets models before software free to assemble

software fault forecast models, which are famous as

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4650-4655(2021) ISSN: 0975-0290

4651

supervised learning study. This is the first stage procedure

approach utilized for software fault forecast and relies

upon two stages: training and test stage; after handling the

training stage, and their experiment results are known as

Model. A testing data have to-do few executions with the

help of this model. An unsupervised learning study is also

developed during the software fault forecast when there

are no past existing datasets models and a few different

ways similar to grouping, which could be utilized.

Flow Chart 1: Software Fault Forecast Model Flow-Chart

II. RELATED WORK

There are different kinds of ways for Software Fault

Forecast models, for example, statistical way, machine-

learning way, etc. In any case, the pattern as of late is

moved from traditional statistical methods to machine

learning methods. In the year 2006, a specialist named

Zhou et al. depicted two types of research to defeat the

issue of Software Fault Forecast. He observed logistic

regression and machine learning methods, with the

assistance of these two types of research he analyzed how

object-oriented metrics and fault inclination are connected.

In the year of 2003, Shuji et al. with his group showed one

thought in regards to software fault forecast and they

construct a model to detect imperfection adjustment

exertion dependent on broadened affiliation rule mining.

They characterized deformity-fixing exertion as a variable

and fitting affiliation rule mining to treat with such factors.

The information utilized is upheld by Japan's Ministry of

Economy, Trade, and Industry (METI).

They use backing and certainty as evaluation factors. Their

methodology expressed outcomes as a mean of redress

exertion dependent on improvement level. For instance,

deserts detected in coding and unit levels will be anything

but difficult to address 7% of mean exertion when they are

accompanying validation of info information.

In the year of 2002 Gray et al. was presented static code

metrics. This metrics code utilized with an SVM classifier

for an accumulation of modules in NASA REPOSITORY

informational indexes. Rigorous et al. presented pre-

processing steps that were applied to information

preceding classification, including balancing the two

classes (blemished or non-damaged) and removal of many

rehashing occurrences. The SVM in this examination

yielded a normal of 70% exactness on previously

concealed information.

A comprehensive empirical investigation examining a

wide range of groups of feature ranking strategies

(rankers) including a couple of regular feature ranking

ways, signal-to-commotion channel strategy, and others

edge-based feature ranking procedures was presented by

Wang et al. This examination utilized 16 real-world

software estimation informational indexes of different

sizes and constructed 13,600 classification models. Results

showed that gatherings of a couple of rankers are

compelling with other rankers and better than those of

numerous rankers.

In the year of 2007, Mizuno and Kikuno announced that

about their systems and they contemplated, Orthogonal

Sparse Bigrams Markov models (OSB) are most

appropriate to fault forecast. In the year of 2006, Bibi et al.

revealed that software fault forecast can be defeated their

issue with the utilization of Regression via Classification

and did functions admirably.

In the year of 2005, Khoshgoftaar et al. detailed that

utilizing of decision tree strategy can be viably grouped

for those modules whose imperfection inclination is

predicted as dubious. In the year of 2012, Hall et al.

recommended that Naïve Bayes and Logistic regression

strategies are work best for his analysis of the outcomes

from 19 examinations.

III. MAJOR PRINCIPAL CLASSIFICATION STUDIES

Classification is assuming an exceptionally major job in

the software fault forecast model, which is an important

issue in data mining. The machine learning system as a

finding way for the information securing or information

extraction issue has examined it widely. The contribution

to a classifier is a training data set of precedents, every one

of which is labeled with a class name. Many attributes

esteem characterizes each record. Attributes with discrete

spaces are alluded to as categorical, while those with

ordered areas are alluded to as numeric. The objective is to

actuate a model or depiction for each class as far as the

attributes. The model is used for classifying future records

whose classes are obscure.

Further, Data classification is elaborated in the binary

method, a first method is that all encoded set of data

classes are explained. All database tuples are given details

through attribute and evaluate by this model. A class label

attribute is examined here where every tuple firm through

attribute and have a relation with existing, class. The data

tuples examined to construct the model altogether form the

training data. This procedure is called machine learning.

There are two learning and one is supervised learning and

the other one is unsupervised learning. In supervised

learning, every training sample of the class label is

offered. But on another side unsupervised learning where

every training sample of the class label is not identified

and a set of classes is also not identified in proceeds.

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4650-4655(2021) ISSN: 0975-0290

4652

Usually, attribute rule classification like rule classification

and decision rules are always explained the learning

model. These principles always used for superior

comprehension of the database model and classified in

future data models.

In the subsequent method, the classification is performed

by the model then initially, the prescient precision of the

model is assessed. The model is possible to evaluate for

classification future data tuples when the accuracy of the

model should be considered acceptable for the class label

which is not identified.

Classification separates data tests into target classes.

Software modules are categorized as defected models or

not defected models by classification draws near. In

Classification, class categories are known thus it is a

supervised learning approach. There are two classification

strategies: Binary and Multilevel. Parallel classification

separates a class into two categories; faulty data and not-

faulty data. While Multi-level classification is utilized

when there are more than two classes. It separates a class

as profoundly amazing, intricate or basic software

programs.

IV. PROPOSED STRATEGY VECTOR MACHINE

TREE CLASSIFICATION

We have proposed a vector machine tree classification

model for the software fault forecast model. This proposed

model will help to increase the positive accuracy and

efficiency of the software fault forecast model. The

proposed method called TSMO or TSVM, which based on

binary tree classification. This gives an improvement in

the capable computation of multiple trees and increases

the classification accuracy of the vector machine. This

proposed TSMO/TSVM has a structure of binary decision

trees, which depends on a sequential minimal optimization

decision tree. An origin is the starting point of this

procedure where minimal optimization selected binary

branches from one tree.

This process frequent performs until the final leaf of the

tree becomes visible when the final leaf appears which

usually characterized the classification of three. We have

used multiple trees for getting more accuracy and

efficiency.

V. RESEARCH PROPOSED TREE VECTOR

MACHINE MODEL

This is our proposed method flow chart for our research

where we have used multiple tree classification with the

help of a vector machine called TSMO/TSVM. We have

taken NASA MDP datasets in which data is classified into

the defective models and non-defective models. Our

datasets models are further defined in table1. We have

used WEKA 3.9 to analysis the efficiency and positive

accuracy of the datasets model. The analysis measure unit

is the area under cure, f-measure positive accuracy, TP-

Rate and correctly classifies instances accuracy.

TABLE I. NASA Datasets Model

S.NO Dataset Attribute Model Defective
Non

Defective
1 MC2 22 522 107 415

2 AR4 30 107 20 87

3 PC5 39 17186 516 16670

4 MC1 39 1988 46 1942

5 PC1 38 705 61 644

6 AR5 30 36 8 28

7 KC3 40 194 36 158

8 JM1 22 7782 1672 6110

9 KC2 22 522 107 415

10 AR1 30 121 9 112

11 AR6 30 101 115 86

12 MW1 38 253 27 226

13 AR3 30 63 8 55

14 CM1 38 327 42 285

Flow Chart 2: Research Propose Model

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4650-4655(2021) ISSN: 0975-0290

4653

VI. EXPERIMENTS & RESULTS

Fig. 1. Positive Accuracy TP-RATE, F-MEASURE &

ROC Curve

Fig. 2. Comparatively Analysis b/w tree vector & without-

tree vector.

TABLE II. COMPARATIVELY ANALYSIS IMPROVEMENT

Name of
Classifier

Tree Vector
Machine

Without Tree
Vector

Machine
Improvement

Decision Stump 82% 76% 6%

Hoeffding Tree 79% 77% 2%

J48 88% 83% 5%

LMT 83% 77% 6%

M5P 81% 78% 3%

Random Forest 90% 84.5% 5.5%

Random Tree 92.5% 86% 6.2%

REP Tree 77% 75% 2%

During the experiments of the proposed model, the results

are illustrated in fig 1& 2. In fig1, multiple tree

classification has performed here with a vector machine

model, where we have analyzed that J48, random forest

and random tree have a very high positive accuracy F-

Measure rate as compare to other trees. But the

performance of REP Tree, Hoeffding Tree, and Decision

Stump is not so good at all measure rates. The

experiment's analysis results showed that not every tree

classifier could be good in all in measure unit. Our

analysis depends on the accuracy of tree classification that

how much accuracy has increased in which tree classifier.

In fig2, the efficiency of every classifier is measured in

terms of correctly classified instances rate, where an

experiment showed that the efficiency of overall classified

is increased with the proposed model as compare to

without using any method. The efficiency of j48, random

forest and the random tree is also in high-rate performance

rather than others.

VII. CONCLUSION

In our research paper, we have analyzed the software fault

forecast model, we have used 14 NASA MDP datasets

models. These models are defected and non-defected

datasets models. We have proposed a tree vector machine

model called TSMO/TSVM, where we have used multiple

tree classifiers with the help of the vector machine. We

have used WEKA 3.9 for analysis of the efficiency and

positive accuracy of the datasets model. During the

analysis of the experiment, j48, random forest and random

tree have increased their performance in accuracy as well

as efficiency. However, the performance of REP tree,

Hoeffding tree and Decision stump is not so good at all

measure rates.

REFERENCES

[1] Cortes, C., & Vapnik, V. (1995). Support-vector

networks. Machine learning,20(3), 273-297.

[2] Dietterich, T. G., & Bakiri, G. (1995). Solving

multiclass learning problems via error-correcting

output codes. arXiv preprint cs/9501101.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Analysis Tree Vector Machine

Accuracy

TP-RATE, ROC & F-MEASURE

TP-RATE ROC F-MEASURE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tree Vector Machine

Correctly Classified Instances

Effeciency

Tree Vector Machine without-tree vector machine

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4650-4655(2021) ISSN: 0975-0290

4654

[3] K.O. Elish, M.O. Elish, Predicting defect-prone

software modules using support vector machines,

Journal of Systems and Software 81 (2008) 649–660.

[4] L. Etzkorn, J. Bansiya, C. Davis, Design and code

complexity metrics for OO classes, Journal of Object-

Oriented Programming 12 (1999) 35–40.

[5] N. Fenton, S. Pfleeger, Software Metrics: A Rigorous

and Practical Approach, vol. 5, PWS Publishing

Company (An International Thomson Publishing

Company), 1997.

[6] F. Garcia, M. Bertoa, C. Calero, A. Vallecillo, F.

Ruiz, M. Piattini, M. Genero,Towards a consistent

terminology for software measurement, Information

and Software Technology 48 (2006) 631–644.

[7] Fenton, N. E., Marsh, W., Neil, M., Cates, P., Forey,

S. and Tailor, T. Making Resource Decisions for

Software Projects. In Proceedings of 26th

International Conference on Software Engineering

(ICSE 2004), (Edinburgh, United Kingdom, May

2004) IEEE Computer Society 2004, ISBN 0- 7695-

2163-0, 397-406

[8] Fenton, N. E. and Neil, M. A Critique of Software

Defect Prediction Models, IEEE Transactions on

Software Engineering, 25(5), 675-689, 1999.

[9] Alenezi, , et al, “Efficient bug triaging using text

mining. Journal of Software “8;2003. no. 9.

[10] Runeson, , et al, “Detection of duplicate defect reports

using natural language processing”, In Software

Engineering, 2007. ICSE 2007. 29th International

Conference on., IEEE ; 2007.pp. 499-510.

[11] S. Adiu , et al , “Classification of defects in software

using decision tree algorithm”, International Journal

of Engineering Science and Technology (IJEST), Vol.

5, Issue 6, pp. 1332-1340. 12.

[12] Murphy, Gail C., and D. Cubranic. Automatic bug

triage using text categorization. In Proceedings of the

Sixteenth International Conference on Software

Engineering & Knowledge Engineering; 2004.

[13] Anvik, et al, Who should fix this bug?. InProceedings

of the 28th international conference on Software

engineering,. ACM ;2006. pp. 361-370 .

[14] Cathrin et al, 2007, “How Long will it Take to Fix

This Bug? Intl. conf. on software engineering”, IEEE

Computer Society Wanshington, DC, USA, pp. 1-8.

[15] Cathrin et al, “Predicting Effort to Fix Software

Bugs”, Proceedings of the 9th Workshop Software

Reengineering,2007.

[16] Sunghun Kim, Kai Pan, E. James Whitehead, Jr.,

2006, Memories of Bug Fixes, SIGSOFT'06/FSE-14,

November 5–11, Portland, Oregon, USA.

[17] Menzies, et al, “Automated severity assessment of

software defect reports in Software Maintenance”,

2008. ICSM 2008. IEEE International Conference on,

IEEE; 2008.pp. 346-355.

[18] T. Gyim´othy, R. Ferenc, and I. Siket. Empirical

validation of objectoriented metrics on open source

software for fault prediction. IEEE Transactions on

Software Engineering (TSE), 31(10):897–910, 2005.

[19] M. A. Hall. Correlation-based feature selection for

machine learning.1999.

[20] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.

Counsell. A systematic literature review on fault

prediction performance in software engineering. IEEE

Transactions on Software Engineering, 38(6):1276–

1304, 2012.

[21] J. A. Hanley and B. J. McNeil. The meaning and use

of the area under a receiver operating characteristic

(roc) curve. Radiology, 143(1):29–36, 1982.

[22] A. E. Hassan. Predicting faults using the complexity

of code changes. In ICSE, pages 78–88, Vancouver,

Canada, 2009. IEEE Press.

[23] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction

based on finegrained module histories. In Proceedings

of the 34th International Conference on Software

Engineering, pages 200–210. IEEE Press, 2012.

[24] C. Huang, L. Davis, and J. Townshend. An

assessment of support vector machines for land cover

classification. International Journal of remote sensing,

23(4):725–749, 2002.

[25] Q. Huang, X. Xia, and D. Lo. Supervised vs

unsupervised models: A holistic look at effort-aware

just-in-time defect prediction. In Software

Maintenance and Evolution (ICSME), 2017 IEEE

International Conference on, pages 159–170. IEEE,

2017.

[26] Z. Jiang and S. Sarkar. Free software offer and

software diffusion: The monopolist case. ICIS 2003

proceedings, page 81, 2003.

[27] Y. Kamei, S. Matsumoto, A. Monden, K.-i.

Matsumoto, B. Adams, and A. E. Hassan. Revisiting

common bug prediction findings using effort-aware

models. In Software Maintenance (ICSM), 2010 IEEE

International Conference on, pages 1–10. IEEE, 2010.

[28] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A.

Mockus, A. Sinha, and N. Ubayashi. A large-scale

empirical study of just-in-time quality assurance.

IEEE Transactions on Software Engineering,

39(6):757–773, 2013.

[29] W. M. Khaled El Emam and J. C. Machado. The

prediction of faulty classes using object-oriented

design metrics. Journal of Systems and Software,

56(1):63–75, 2001.

[30] F. Khomh, M. Di Penta, Y.-G. Gu´eh´eneuc, and G.

Antoniol. An exploratory study of the impact of

antipatterns on class change-and faultproneness.

Empirical Software Engineering, 17(3):243–275,

2012.

[31] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying

software changes: Clean or buggy? IEEE Transactions

on Software Engineering, 34(2):181–196, 2008.

[32] J. Kittler et al. Pattern recognition. a statistical

approach. 1982.

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4650-4655(2021) ISSN: 0975-0290

4655

[33] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G.

Gu´eh´eneuc, and G. Antoniol. Design evolution

metrics for defect prediction in object oriented

systems. Empirical Software Engineering, 16(1):141–
175, 2011.

[34] K. Krippendorff. Content analysis: An introduction to

its methodology. Sage, 2004.

[35] M. Lanza, A. Mocci, and L. Ponzanelli. The tragedy

of defect prediction, prince of empirical software

engineering research. IEEE Software, 33(6):102–105,

2016.

[36] M. M. Lehman and L. A. Belady. Program evolution:

processes of software change. Academic Press

Professional, Inc., 1985.

[37] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E.

J. Whitehead Jr. Does bug prediction support human

developers? Findings from a Google case study. In

Proceedings of the 2013 International Conference on

Software Engineering, ICSE 2013, pages 372–381.

IEEE Press, 2013.

[38] Fenton, N. E. and Neil, M. SCULLY: Scaling up

Bayesian Nets for Software Risk Assessment, Queen

Mary University of London,

www.dcs.qmul.ac.uk/research/radar/Projects, 2001.

[39] Fenton, N. E. and Pfleeger, S.L. Software Metrics: A

Rigorous and Practical Approach (2nd Edition), PWS,

ISBN: 0534-95429-1, 1998.

[40] Jensen, F.V. An Introduction to Bayesian Networks,

UCL Press, 1996.

[41] Jones, C. Programmer Productivity, McGraw Hill,

1986.

[42] Jones, C. Software sizing, IEE Review 45(4), 165-

167, 1999.

[43] Koller, D., Lerner, U. and Angelov, D. A General

Algorithm for Approximate Inference and its

Application to Hybrid Bayes Nets, In Proceedings of

the 15th Annual Conference on Uncertainty in AI

(UAI), Stockholm, Sweden, August 1999, pages

324—333

[44] Kozlov, A.V. and Koller, D. Nonuniform dynamic

discretization in hybrid networks, Proceedings of the

13th Annual Conference on Uncertainty in AI (UAI),

Providence, Rhode Island, August 1997, pages 314--

325.

[45] I. Gondra, Applying machine learning to software

fault-proneness prediction, Journal of Systems and

Software 81 (2008) 186–195.

[46] L.A. Goodman, Snowball sampling, The Annals of

Mathematical Statistics 32 (1961) 148–170.

[47] G.a. Hall, J.C. Munson, Software evolution: code

delta and code churn, Journal of Systems and

Software 54 (2000) 111–118.

[48] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell,

A systematic literature review on fault prediction

performance in software engineering, IEEE

Transactions on Software Engineering (2011) 1–31.

[49] M.H. Halstead, Elements of Software Science,

Elsevier Science Inc., New York, NY, USA, 1977.

[50] B. Henderson-Sellers, Software Metrics, Prentice-

Hall, Hemel Hempstaed, UK, 1996.

[51] M. Hitz, B. Montazeri, Measuring coupling and

cohesion in object-oriented systems, in: Proceedings

of the International Symposium on Applied Corporate

Computing, vol. 50, 1995, pp. 75–76.

[52] J.K. Methew ISO/IEC, IEEE, ISO/IEC 12207:2008

systems and software engineering software life cycle

processes, 2008.

[53] J.M. Juran, F.M. Gryna, Juran’s Quality Control

Handbook, McGraw-Hill, 1988.

[54] S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan, P.

Thambidurai, Objectoriented software fault prediction

using neural networks, Information and Software

Technology 49 (2007) 483–492.

[55] T.M. Khoshgoftaar, N. Seliya, Comparative

assessment of software quality classification

techniques: an empirical case study, Empirical

Software Engineering 9 (2004) 229–257.

[56] Gnanambal, Thangaraj. Classification algorithm with

attribute selction: an evaluation study WEKA. Int. J.

Advanced Networking and Applications Volume: 09

Issue: 06 Pages: 3640-3644 (2018) ISSN: 0975-0290.

[57] Raghavendra B. K., Dr. Jay B. Simha. Evaluation of

Feature Selection Methods for Predictive Modeling

Using Neural Networks in Credits Scoring. Int. J.

Advanced Networking and Applications Volume:02,

Issue: 03, Pages: 714-718 (2010).

	I. introduction
	II. Related Work
	III. Major Principal Classification Studies
	IV. Proposed Strategy Vector Machine Tree Classification
	V. Research Proposed Tree Vector Machine Model
	VI. Experiments & Results
	VII. Conclusion
	References

