
Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN: 0975-0290

4644

Abstraction of UML Class Diagram from the

Input Java Program
Dr. R.N. Kulkarni,

Professor and Head, Dept. of C.S.E, BITM, Ballari.

rn_kulkarni@rediffmail.com

P. Pani Rama Prasad
2

 Asst. Professor, Dept. of C.S.E, BITM, Ballari and Research Scholar, VTU Belagavi.

phanirama75@gmail.com

--ABSTRACT---

The Unified Modeling Language (UML) is a design tool developed by IBM and today it is most commonly used in

all software industries for design of software systems. The UML comprises thirteen different diagrams out of

which the class diagram is one. The class diagram represents the static behavior of the software system, which

comprises the class name, attributes, operations and relationships such as generalization, Aggregation,

Association, composition and Interfaces. In this paper, we are proposing a novel approach and developed the tool

for the abstraction of the class diagram from the input executable java program. The abstraction of class diagram

comprises steps such as restructuring the input program, identifying the reusable components and finally

representing the class diagram in the form of a table.

Keywords – Unified Modeling Language (UML), ‘C’ Program.

-- --------------------------

Date of Submission: Jan 19, 2021 Date of Acceptance: Feb 18, 2021

-- --------------------------

I. INTRODUCTION

Nowadays many organizations are using java

programming language for the development of software

applications, because of its naturalness. It supports major

features like inheritance, polymorphism, information

hiding, object oriented and platform independent. These

features are not supported in the procedural oriented

programming languages.

Unified Modeling Language (UML) is one of the design

tool kit to design any software system. These design

diagrams are independent of programming language used

for software development. It comprises of thirteen

different diagrams which represents either static or

dynamic behavior of the system. The class diagram

represents the static behavior of the application system.

This diagram represents the details such as class name,

attributes, operations, visibility and association. Other than

that the class diagram also represents generalization,

interfaces, and aggregation and composition relationships

among the classes present in the class diagram.

2. LITERATURE SURVEY
In paper [1], the authors proposed a methodology for

abstraction of functionalities from the legacy ‘C’ program

using the technique of program slicing. The proposed

approach is appropriately modified and used in our work

for the restructuring of java program.

In paper [2], authors discussed about restructuring the java

program by converting multiline to the single statement,

multiline statement to single statement line, Removing

comment lines and blank lines. However, the author has

not addressed the issues related to the files which are

externally linked to the existing file using the import

directive. In our proposed work, we are addressing the

issues related to linking of external files.

In the paper[3], the author explained the software metrics

tool benefits of extraction of UML diagrams. The software

metrics tool collects the information after parsing the

XML format generated by UML tool. The class diagram

and its XML representation are helpful in the proposed

work.

In paper [4], authors proposed tool which takes the UML

class diagram as an input and represent it in a table format.

This approach discussed in this paper may be helpful in

representing the class components in a tabular format.

In paper [5], the author discussed about the diagrammatic

description of the class diagram that includes flows of

attributes, thus providing a basic representation for

specifying behavior and control flow from program. The

methodology proposed in the paper is appropriately

modified to identify the attributes and operations from the

program.
In paper [6], the authors study the metrics for UML

structural and behavioral diagrams from different

viewpoints, relationships, types of metric values, and their

validations. This work is useful in abstraction of

relationships of a class.
In paper [7], authors argue that the philosophies behind

object-oriented programming are and the claims of

Languages that support object-oriented ontology. Since

Java is an object-oriented programming language, the

topics discussed in the paper are useful in abstraction of

class components from java program.
In paper [8], authors developed an application which

would convert the given code into UML diagrams class

diagram and package diagram and also measure coupling

in java object oriented software. The process discussed in

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN: 0975-0290

4645

this article is useful to understand conversion process from

java program to class diagram.
In paper [9], authors present an approach to automatically

generate structural and behavioral code from UML class

and sequence diagrams. This approach is useful in

realizing the static behavior of the class diagram
In paper [10], the authors developed a tool for automatic

generation of UML class diagrams from Java byte-code.

To detect the class diagram elements such association

multiplicities, compositions and query methods. This

concept is useful in extracting class relationships from

java program.
In Paper [11], authors present a discussion on problematic

stages and possible element transformations into software

components. Several conclusions are drawn on potential

usage of the class diagram in industry. From this work we

can analyze the reusable components from the class

diagram.
In paper [12], the authors used UML class graph (UCG)

method is used to represent the class diagram for the

structural similarity between other classes. This work is

useful in depicting the static features of classes inside the

class diagram.

In paper [13], authors discussed about restructuring the C

program by removing comment lines and blank lines

converting multi-line to the single statement, multiline

statement to single statement line. This approach is useful

for restructuring java program.

3. METHODOLOGY
The proposed methodology to abstract the design

information from the input java program is as shown in the

fig 3.1.

Fig3.1 Block Diagram to abstract the design information

from the java program

The figure 3.1 illustrates the process of

abstracting the design information from the java program.

The executable java program is act as input to the

restructuring process, which generates a restructured java

program. From this restructured program, the class

information is abstracted and represented in the in tabular

form called as a class table. The class table consists of

class name, attributes present in the class, operations and

relationships of the class.

3.1 The block diagram contains three important stages

such as:

1. Restructuring of input java program.

2. Abstraction of reusable class components from

java program

3. Representation of class diagram in tabular form.

Step 1: Restructuring of input java program

Restructuring is a process of making changes to the

program at the same abstraction level without changing its

functionality. During the restructuring the following tasks

are performed on the input java program [1].

It involves the steps such as

 (i) Converting multi-statement line to the single

statement,

 (ii) Multiline statement to single statement line,

 (iii) Removing comment lines and blank lines from the

 java program.

 (iv) Inserting the line number to each executable

 statement in the program.

 (v) Minimization of attributes used in a class.

If the java program has external linked classes imported

from other packages, the corresponding classes are

processed and included in the existing program [1].

Step 2: Abstraction of reusable class components from

java program.

Each line of the restructured java program is scanned from

first line to last line. This process includes six steps:-

Step 2.1: When the key word class is encountered in a

line, identify the word next to class as a class name. The

attributes can be identified, when line beings with data

type read all the corresponding elements until it is

encountered with semicolon. Here each element present in

 that line is considered as an attribute. If the attribute is

declared inside the class and it is accessed in its

operations, then such attribute is considered as valuable

and hence store them in the format <visibility

type><attribute>:<data-type> inside the class table.

Otherwise eliminate the attribute and it is not part of

class table. The visibility type is private(-), public(+),

protected(#) and package(~) are considered for attributes

and operations. When the scanned line is encountered with

data-type operation name along with braces without semi-

colon, it is to be considered as a function name. Store them

as operations in the format <data-

type><operation_name>:return_type inside the class

table.

Step 2.2: Inside the class definition, when we encountered

another class name in the linewith keyword list<another

class_name> object. Then identify this relationship as

Association between the classes. Store the association

relationship in the format An: another class_name inside

the class table, where An indicates Association and integer

value of n will be in the range from 1..n.

Step 2.3: Inside the class definition, when we encountered

another class name in the line with keyword

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN: 0975-0290

4646

private<another class_name> object; then identify this

relationship as an Aggregation between the classes. An

Aggregation relationship represents the weak assembly

of the classes. Store the aggregation relationship as AGn:

another class_name inside the class table, where AGn

indicates Aggregation and integer value of n will be in the

range from 1..n.

Step 2.4: In this step Inside the class definition, we

encountered another class name in the line with
keyword private final <another class_name>

object1andif theobject1 is declared inside the

constructor of existing class, then identify this

relationship as Composition between the classes.

Composition represents the strong assembly of the classes.

Store the association relationship as Cn: another

class_name inside the class table, where Cn indicates

composition relationship and integer value of n will be in

the range 1..n.

Step 2.5: When the scanned line in a program is

encountered with keyword class along with class name
and another keyword extends with sub class name in the

same line. Then identify this relationship as an

generalization between the classes. The generalization

 relationship represents the super-sub class relationship.

Store the generalization relationship as Gn: sub class

name inside the class table, where Gn indicates

 generalization relationship and integer value of n will

be in the range 1..n.

Step 2.6: When the scanned line in a program is

encountered with keyword class along with class name

and another keyword implements with interface name in

the same line, then identify it as an interface

relationship. The interface relationship represents

interface name with declaration of operation. Store the

interface relationship as In: interface name inside the

class table, where In indicates Interface relationship and

integer value of n will be in the range 1..n.

Step 3: Representation of class diagram in Tabular

form.

The class information is abstracted and represented in the

in tabular form called as a class table. The class table

consists of class name, attributes present in the class,

operations and relationships of the class as shown in fig

3.2.

fig 3.2 class table

4. RESULTS & DISCUSSION

The methodology proposed in this paper is

applied to an input java program and abstracted class

components are represented in tabular form.

Table 4.1 Attributes Minimization Table.

4.1. Step1: Restructuring of input java program

Consider the employee java program as shown in fig 4.1.

Fig 4.1. Employee java program

The Restructured student java program is as

shown in figure 4.2. Restructuring of java program

involves the steps such as

(i) Removing the blank lines and comment lines.

(ii) Converting multiple statements in a single line to a

multiple statement,.

Class

Name Attributes Operations Relationship
Class

name1

<visibility

type>
<attribute>:

<data-type>

<data-type>

<operation
name>: return

type

Relationship:

class name

Class name: Department

attribute project() putdept()

id id --

dept dept --

time -- --

cost -- --

Unused attributes time, cost

Import

Employee_info.empDetails;

class Employee {

 int empid; String name;

empDetails emp;

//Association relationship

 /*operations of employee

class*/

 private location <list> loc;

//Aggregation

void input_emp(){

loc.inlocation();
System. out.

 println(“Employee

details…”);
}

}

package
Employee_info;

class

empDetails {

 String Address,

mobileNo;

 void

empindata(){

 }
void

empoutdata(){

 }

 }

Class

Location {

 String addrs;

Location() {
final private

Department

<list> dept;

 }

//Composition
void

inlocatio(){

}

void

outlocation(){
}

}

class salaryDetails extends

Employee {

//Generalization
relationship

 float hra, da, gross;

voi

oi void putsal(){
}

oi void putsal(){

}

}

Class

Department

implements
project {

int id;

float cost, time;

string dept;

void project(){
Id=111;

Cost=”sales”;
}

void putdept(){

}
}

Interface

project{

//Interface
 int id;

 string name;

void

getproject(){

}
Void

putproject(){

}

}

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN: 0975-0290

4647

(iii) Multi line statement to a single line, (iv) Include line

numbers.

(v) Process the external linked classes into existing class

and

 (vi) Minimization of attributes used in a class.

Import Employee_info.empDetails;

1. Clas Employee {
2. int empid;

3. String name;

4. empDetails emp;

private location <list> loc;

5. void input_emp(){
6.loc.inlocation();

7.System.out.println(“Employee

details…”);
8.}

9.}

package Employee_info;

1. class empDetails {

2. String Address, mobileNo;
3. void empindata(){

4. }

5. void empoutdata(){

6. }

7. }

1. Class Location {

2. String addrs;

3. Location() {
4. final private Department <list>

 dept;

5. }

6. Void inlocatio(){

7. }
8. Void outlocation(){

9. }

10.}

1. class salaryDetails extends

Employee {

2. float hra, da, gross;

3. void getsal(){

4. {

5. Void putsal(){

6. }

7. }

1.Class Department

implements project {

2. int id;

3.float cost, time;
4. string dept;

5.void project(){

6. Id=111;

7. Cost=”sales”;
8. }
9.void putdept() {

10. }

11.}

1. Interface project{

2. int id;

3. string name;

4. void getproject(){

5. }

6. Void putproject(){

7. }

8. }

Fig 4.2. Restructured student java program

In case of minimization of attributes used in a class, the

attribute which is declared inside the class, must be

accessed in its operations, then such attribute is considered

as valuable attribute. Then only store the attribute inside

the class table. Otherwise do not include the attribute,

inside the class table. In this method, unused attributes are

eliminated from the class table. Consider the class

Department in the given java program as shown in fig 4.1.

The attribute minimization table is as shown table 4.1. The

class Table for department class will store attributes id and

dept

Table 4.2. Employee class table

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN: 0975-0290

4648

Fig 4.3. Output Screen shot of the tool

ii. Identification of Interface: Project is an interface

which is implemented inside an Employee class. The

interface relationship is represented in table 4.2.

iii. Identification of Association, Aggregation and

Composition Relationships

4.2. Step 2: Abstraction of class components and

storing in a class table

i. Identification of generalization: Represents

relationship between super class and sub classes.

Employee is the super class and salaryDetails is sub

class. The generalization relationship is represented in

table 4.2.

From the given java program as shown in fig 4.1, the

following relationships are identified.

a. Employee is the base class and empDetails is the

associated class .

b. Employee is the base class and location is an

aggregate class .

c. Location is the base class and Department is the

composition class .

All the three relationships are represented in table 4.2. The

output screen shot is as shown is as shown in fig 4.3

4.3 Step 3: Representation of class diagram in Tabular

form.

The class information is abstracted from the java program

and represented in the tabular form called as a class table.

The class table is an excel file and it is shown in table 4.2.

All the three relationships are represented in table 4.2. The

output screen shot is as shown is as shown in fig 4.3

5. CONCLUSION

In this paper we have presented an automated tool to

abstract the class diagram from the input executable java

program. The proposed tool performs restructuring of

input executable java program and the abstracts the

required components from the restructured program and

finally represents the class diagram in a tabular form. The

tool is tested for its completeness and correctness as an

input up to 500 lines of code by giving different java

programs.

6. REFERENCES

[1] Dr. R.N. Kulkarni, Padmapriya Patil, , “Abstraction of

Functional Modules from a Legacy ‘C’Program using

Program Slicing”, Perspectives in Communication,

Embedded-systems and Signal-processing-PiCES-2020,

4(4),p-39-44 , August 2020.

[2] Dr. R.N. Kulkarni, P. Pani Rama Prasad,

“Restructuring of Java Program to be amenable for

Reengineering”, Journal of Engineering Science and

Technology, Vol 02(06), May 2019.

[3] Daljeet Singh, “A scrutiny study of various unified

modeling language (UML) diagrams, software metrics tool

and program slicing technique”, Journal of Emerging

Technologies and Innovative Research (JETIR). Vol 5(6),

June 2018.

[4] Dr. R N Kulkarni, C K Srinivasa, “An Ameliorated

Approach to Represent UML Class Diagram in the Table

Format”, International Journal of Computer

Applications 182(7):5-9, August 2018.

[5] Sabah Al-Fedaghi, “Diagramming the Class Diagram:

Toward a Unified Modeling Methodology”, International

Journal of Computer Science and Information

Security(IJCSIS), Vol. 15(9), September 2017.

http://pices-journal.com/ojs/index.php/pices/article/view/246
http://pices-journal.com/ojs/index.php/pices/article/view/246
http://pices-journal.com/ojs/index.php/pices/article/view/246

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN: 0975-0290

4649

[6] Dr. Amit Kamra, “Measuring Software Design Metrics

of UML Structural and Behavioural Diagrams”,

ICRTESM-2017 at IETE, Erandwane, Pune, Maharashtra,

May 2017.

[7] Justin Joque, “The Invention of the Object: Object

Orientation and the Philosophical Development of

Programming Languages”, DOI 10.1007/s13347-016-

0223-5, Springer Science+Business Media Dordrecht,

2016, P-335–356.

[8] Shubhangi Sakore1 , Ravina Kudale, “Tool for

Converting Source Code to UML Diagrams & Measuring

Object Oriented Metrics in OO Java Software”,

International Journal of Science and Research (IJSR) Vol

5(4), April 2016, p-1797-1800

[9] Abilio G. Parada, Eliane Siegert, Lisane B. de

Brisolara, “Generating Java code from UML Class and

Sequence Diagrams”, DOI: 10.1109/SBESC.2011.22,

IEEE Explore, December 2014

[10] Martin Keschenau, “Reverse Engineering of UML

Specifications from Java Programs”, OOPSLA’14, Oct.

2428, 2014, Vancouver, British Columbia, Canada. ACM

1581138334/ 04 /0010. October 2014

[11] Oksana Nikiforova1, Janis Sejans, Antons Cernickins ,

“Role of UML Class Diagram in Object-Oriented

Software Development”, Scientific Journal of Riga

Technical University Computer Science. Applied

Computer Systems, DOI: 10.2478/v10143-

011-0023-4, vol(4) 44, 2011.

[12] Zhongchen Yuan, · Li Yan, Zongmin Ma, “Structural

similarity measure between UML class diagrams based

on UCG”, Vol(25) Requirement Engineering, Springer

Nature 2019, p 213–229.

[13] R.N.Kulkarni and Shivanand M. Handigund,

“Moulding The Legacy C Programs For Reengineering”,

International Conference on “Advances in Computer

Vision and Information Technology (ACVIT -07)”,

Aurangabad, India, November, 2007, p1531-1537.

[14] Rajkumar N Kulkarni, Padmapriya Patil,

“Restructuring of Legacy ‘C’Program to be Amenable for

Multicore Architecture”, ICRTEST Elsevier energy

procedia proceedings-2016, issue-1, p 201-207.

[15] Shaik Ismail, Sai Koparthi, “Automatically

restructuring of java comments”, Published in

conference’17, Washington D.C, U.S.A@2017 ACM PP-

1-4, july 2017.

[16] Core and Advanced Java Black Book”, edition 2017,

Dreamtech press, ISBN:978-93-5119-940-3.

[17] Mubarak Albarka Umar, Chen Zhanfang. A

Comparative study of Dynamic Software Testing

Techniques. Int. J. Advanced Networking and

Applications Volume: 12 Issue: 03 Pages: 4575-

4584(2020) ISSN: 0975-0290.

[18] Dr Vipin Saxena, Deepa Raj. Local Area Network

Performance Using UML. Int. J. of Advanced Networking

and Applications Volume: 02, Issue: 02, Pages:614-620

(2010).

https://scholar.google.co.in/scholar?oi=bibs&cluster=17638411279971640267&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=17638411279971640267&btnI=1&hl=en
mailto:U.S.A@2017

	I. introduction

