
Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4633-4638(2021) ISSN: 0975-0290

4633

Ameliorated Methodology to Meta Model UML

Sequence Diagram in the Table Format
 Dr. R. N. Kulkarni

Prof. & Head

Department of Computer Science, BITM, Ballari, India

 Email: rn_kulkarni@rediffmail.com

C. K. Srinivasa
Assistant Professor and Research Scholar, VTU Belagavi.

Department of Computer Science, BITM, Ballari, India

Email : srinivasck9@gmail.com

---ABSTRACT---
The unified modeling language (UML) consists of 13 diagrams. The sequence diagram is one of the UML

diagrams which captures the dynamic behavior of a system. It represents how the objects communicate to the

other objects using a message(s) such as simple, synchronous or asynchronous. These messages are executed in

time order from top to bottom and left to right. In this work, an automated tool is proposed which meta-models by

taking the UML sequence diagram as an input and then translate the diagram to XMI format using the available

whitestar tool and stored in the file. We abstract the various components such as objects, messages, activation,

loops (for, while), conditional statements alt (if, if-else), etc. The objects, messages, activation, loops, conditional

statements alt are abstracted from the file and are represented in first-order logic, and are stored in form of a

table. Finally, using the abstracted information an equivalent sequence diagram is generated.

Keywords- first-order logic, interactions, messages , Sequence diagram, sequence table.

-- ---------------------------

Date of Submission: Jan 19, 2021 Date of Acceptance: Feb 18, 2021

-- ---------------------------

1. INTRODUCTION

The Unified Modeling Language (UML) is a standard

toolkit which consists of an integrated set of thirteen

diagrams. These thirteen diagrams of UML are classified

into static and dynamic behavioral. The UML diagrams

are represented in visuals with objects, actors, actions,

artifacts in order to document the information about the

software systems. This UML aids the software developers

to understand, develop, modify or maintain the software

systems.

The sequence diagram is one of the important dynamic

behavioral UML diagrams. The UML sequence diagrams

enable the software architects to analyze and design the

flow of logic for developing software systems. The UML

sequence diagram shows the pictorial representation of

objects interaction with lifelines which gives valuable

information for developing software systems. The

sequence diagram mainly focuses on identifying the

interaction of objects within the software system.

The sequence diagram is one of the UML diagrams which

captures the dynamic behavior of a usecase. The sequence

diagram consists of an activation box, objects, messages,

and lifelines. The objects or actors are represented in the

boxes on the top of the diagram. The interaction between

the objects is done with named messages the messages in

the sequence diagram flow horizontal from top left to right

corner. The order of the next message in the sequence

diagram appears below the just one. The lifelines of the

sequence diagram are the vertical dashed lines that

represent the object's existence over time.

In this work, an automated tool is proposed which

takes a sequence diagram in xmi format as input and

abstracts the objects and messages. The tool extracts the

interaction between the objects and identifies the types of

messages such as synchronous, asynchronous, and self or

response and combined fragment loops and alt. Further,

the abstracted messages and objects are represented in

first-order logic and are stored in a table format. Finally,

using the abstracted information an equivalent sequence

diagram is generated.

2. LITERATURE SURVEY

In paper [1], the author described the abstraction of

messages by parsing the sequence diagram, store the

abstracted messages as scenarios and translate it into user

requirements. This paper helped us to parse the sequence

diagram and extract the objects, messages, and

interactions.

In paper [2], the author addressed a mechanism which

tracks the execution state of object interactions and formal

verification of UML 2.0 sequence diagrams. This paper

confines us to represent the sequence diagrams with a rich

framework in first-order logic.

 In paper [3], the author presented a methodology for

transforming sequence diagram’s combined fragments into

Z language. This paper helped us to analyze combined

fragments such as loop and alt of sequence diagrams and

transform into Z specification.

.

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4633-4638(2021) ISSN: 0975-0290

4634

In paper [4], the author presented an automatic tool which

abstracts the design information from the Java source code

and constructs the UML diagrams. This paper motivated

us to extract design information and generate UML

sequence diagram.

In paper [5], a rule based approach was proposed by the

author to derive parameter values and related information

from sequence diagrams. This paper helped us to analyze

the loops and alt in the sequence diagram.

In paper [6], the author discussed a framework to generate

the sequence diagrams statically from an object oriented

programming code by using a query refinement system.

This paper helped us to abstract flow of messages between

the object interactions.

In paper [7], an automated analysis was presented by the

author to identify the instances of sequence diagram and

represented in form of an infinite tree. This paper

facilitated us to trace the sequence diagram and store in

form of a table.

3. PROPOSED METHODOLOGY

3.1 The methodology proposed in this work is discussed

in the following two steps:
Step 1: Extraction of Objects and Messages

In this step, the proposed tool takes the sequence diagram

in XML form generated by whitestar UML as input. Every

object and message in an XMI file contains a unique ID

(xmi:id). These XMI IDs were used to extract the object,

messages, and interactions. Figure 3.1 shows the sequence

diagram rendered by whitestar UML and figure 3.2 shows

the transformed sequence diagram in XMI format.

Figure 3.1: Sequence diagram with two objects

The sequence diagram shown in figure 3.1 depicts the

interaction between two objects (object1 & object2) with

synchronous message m1() and a response message m2().

These messages and objects are extracted from the

equivalent XML form of a sequence diagram generated by

whitestar tool shown in figure 3.2.

Transformed sequence diagram in xml format

<XMI>

 </UML:Model>

 <UML:Message xmi.id="UMLStimulus.14" name="M1" sender="UMLObject.18" receiver="UMLObject.19"

interaction="UMLInteractionInstanceSet.8">

 <UML:Message.action>

 <UML:CallAction xmi.id="UMLCallAction.15" name isAsynchronous="false" stimulus="UMLStimulus.14"/>

 </UML:Message.action>

 <UML:Message xmi.id="UMLStimulus.16" name="M2" sender="UMLObject.19" receiver="UMLObject.18"

interaction="UMLInteractionInstanceSet.8">

 <UML:Message.action>

 <UML:ReturnAction xmi.id="UMLReturnAction.17" name="" isAsynchronous="false" stimulus="UMLStimulus.16"/>

 </UML:Message.action>

 <UML:ClassifierRole xmi.id="UMLObject.18" name="Object1 message2="UMLStimulus.14" message1="UMLStimulus.16"

isRoot="false" isLeaf="false" isAbstract="false">

 </UML:ClassifierRole>

 <UML:ClassifierRole xmi.id="UMLObject.19" name="Object2" message2="UMLStimulus.16" message1="UMLStimulus.14" >

 <UML:Multiplicity xmi.id="X.25">

 <UML:Stereotype xmi.id="X.22" name="return" extendedElement="UMLStimulus.16"/>

 </UML:Model>

</XMI>

Figure 3.2: Transformed sequence diagram in xml format

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4633-4638(2021) ISSN: 0975-0290

4635

Step 2: Identifying Message types, Loops and Alt

In this step, the extracted objects and messages from the

xml form are represented in the first order logic. The first-

order logic of the sequence diagram is composed of

objects, messages, and guard conditions such as loop and

alt. Based on the interaction of objects the type of

messages are identified. For example, figure 3.3 depicts

the sequence diagram with two objects. Here the object1

interacts with object2 with message M1 and the object2

responds to object1 with message M2. In this case, the

object1 will not interact with object2 until it receives the

response from object2, i.e. the sequence of interaction is

12 and 21 such messages are referred to as

synchronous message and denoted with a thick line and a

solid arrow. The asynchronous messages are denoted with

a line and an open arrow. Here the sender object does not

wait for a response from the receiver object. This message

type has an interaction 12 and 12. Each and every

interaction between the sender object and receiver object

are tracked and recorded in a table format as shown in

table 3.1.

The loops are identified where there is a continuous

interaction between objects with guard conditions. The alt

works like if-else fashion. The alt is identified where there

is an operation call and more response from other objects.

These interactions are stored and represented in first order

logic by our proposed tool along with objects and

messages.

 Figure 3.3: Synchronous sequence diagram with two objects

Table 3.1: First order logic for Synchronous sequence diagram with two objects

3.2 Block diagram to generate sequence diagram from

the specification Table

Figure 3.4: Block diagram to generate sequence diagram

and Specification Table

The above block diagram figure 3.4 depicts the

methodology to generate the sequence diagram and

specification table. Firstly, the objects and messages are

extracted from the sequence diagram in xml form. For

each interaction between the objects, the tool identifies the

types of message such as synchronous, asynchronous, and

simple. The tool automatically identifies the loops and alt

conditions and are transformed into amenable first-order

logic called specification table. Later sequence diagram is

generated as an output.

3.3 Procedure to generate sequence diagram and

amenable First-Order Logic of a sequence

diagram

The following stages are carried out to generate a

sequence diagram and amenable First-Order Logic of

sequence diagram

Stage 1: In this stage, a generic tool whitestar UML is

used to draw the UML sequence diagram and is exported

to XMI format. Now our proposed tool scans the

generated XMI and abstracts the related information such

as objects, messages, and guard conditions.

Stage 2: In this stage based on interactions of objects our

proposed tool identifies the types of messages.

For synchronous message types, the interactions are

(sender  receiver) and (receiver  sender). For

SENDER RECEIVER SCHEMA

1 2 [∃(Object1∧Object2) ⇒ Interaction (M1, Synchronous)]

2 1 [∃(Object2∧Object1) ⇒ Interaction (M2, Response)]

Input

Sequence diagram in XML form

Output

Display Specification Table

and Sequence Diagram

Identify Message types, Loops and Alt

Generate Sequence Diagram

Represent objects and message types in

predicate Logic

Extract Sequence Diagram Objects

and Messages

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4633-4638(2021) ISSN: 0975-0290

4636

asynchronous message type the interactions are (sender 

receiver), (sender  receiver). For self-message type the

interaction is (sender  sender). For response message

type the interaction is (receiver  sender). For loops the

interactions is N times where N>0 [(sender  receiver)

and (receiver  sender)]. or is [(sender  receiver),

(sender  receiver)].

For alts the interactions is [(sender  receiver) and

(receiver  sender), (receiver  sender)].

Stage 3: In this stage, our proposed automated tool

writes the abstracted objects and messages. For simple

message in the first order logic as Ǝ (Sender ˄ Receiver)

→ Interaction (Message, message type) and for loops and

alt as Ǝ (Sender ˄ Receiver) → Interaction (Message,

message type) ˄ Sequence (Loop, Guard) and for alt as Ǝ
(Sender ˄ Receiver) → Interaction (Message, message

type) ˄ Sequence (ALT, Guard). Finally, the automated
tool abstracts the needful information from the

specification table and generates the sequence diagram as

an output. The tool also provides a feature to save the

abstracted information in a Microsoft Excel sheet.

4. Results and Discussion

In this section, we illustrate with examples about the

generation of the sequence table and sequence diagram by

our proposed tool. Figure 4.1 shows the sequence diagram

with three objects (User, DataControl, DataSource)

interacting with each other with messages. Here the object

DataControl interacts N times, (N>0) synchronously with

object DataSource. The object DataSource responds to

object DataControl until the guard condition is reached.

The proposed tool automatically identifies the above order

of messages, looping objects with guard conditions, and

generates an amenable sequence table with a sequence

diagram. The XMI of figure 4.1 is the input and table 4.1

is the output generated by our tool.

Figure 4.1: Sequence diagram with 3 objects interacting

synchronously in loop

Table 4.1 First order logic for Sequence diagram with

3 objects interacting synchronously in loop

In some possible situations, the objects continuously

interact with each other either synchronously or

asynchronously. This continuous interaction of objects is

said to be in the loop. Figure 4.2 shows the sequence

diagram with two objects (Object1, Object2) interacting

with messages (M1, M2, M3, M4, M5, M6)

synchronously. Our proposed tool identifies these type of

continuous interactions ([12 21], [12 21], [12

21]). and renders as a loop as shown in table 4.2.

Figure 4.2: Sequence diagram with 2 objects interacting
continually with synchronous messages

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4633-4638(2021) ISSN: 0975-0290

4637

Table4.2: First order logic for Sequence diagram with 2 objects interacting synchronous

5. CONCLUSION

In this work, we have presented a semi-automatic tool

which takes the UML sequence diagram in xmi format as

an input and then generates a sequence diagram with a

specification table as an output. the proposed tool extracts

the objects, messages, interaction, and few combined

fragments such as loops and alt. the message types and

combined fragments are identified by our tool based on the

interaction of objects. the tool then stores the abstracted

information and represents in first-order logic in a table

format. Finally, the tool renders the sequence diagram.

6. REFERENCES

[1] Dr. R. N Kulkarni et.al, Reverse Engineering of

UML sequence diagram for the Abstraction of

Requirements, International Journal of

Combined Research & Development (IJCRD)

eISSN: 2321-225X; pISSN: 2321-2241 Volume:

4; Issue: 4; April -2015.

[2] V.Lima, C. Talhi, D. Mouheb, M. Debbabi, and

L. Wang,” Formal Verification and Validation of

UML 2.0 Sequence Diagrams using Source and

Destination of Messages, Elsever Electronic

Notes in Theoretical Computer Science 254

(2009) 143–160

[3] Nazir Ahmad Zafar, Formal Specification and

Verification of Few Combined Fragments of

UML Sequence Diagram, Arab J SciEng (2016)

41:2975–2986, DOI 10.1007/s13369-015-1999-

9.

[4] Dr. R. N Kulkarni et.al, Abstraction of Uml

Diagrams From Java Code, International

Journal of Combined Research & Development

(IJCRD) eISSN:2321-225X; pISSN:2321-2241

Volume: 2; Issue: 4; April-2014.

[5] Preeti Satish, Arinjita Paul, Krishnan

Rangarajan. Extracting the Combinatorial Test

Parameters and Values from UML Sequence

Diagrams, 2014 IEEE International Conference

on Software Testing, Verification, and

Validation Workshops.

[6] Chris Alvin · Brian Peterson · Supratik

Mukhopadhyay. Static generation of UML

sequence diagrams, springer 2019 International

Journal on Software Tools for Technology

Transfer.

[7] Seung Mo Cho, Hyung Ho Kim, Sung Deok

Cha, Doo Hwan Bae. A semantics of sequence

diagrams, Elsevier Information Processing

Letters 84 (2002) 125–130.

[8] Mubarak Albarka Umar, Chen Zhanfang. A

Comparative study of Dynamic Software Testing

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 04 Pages: 4633-4638(2021) ISSN: 0975-0290

4638

Techniques. Int. J. Advanced Networking and

Applications Volume: 12 Issue: 03 Pages: 4575-
4584(2020) ISSN: 0975-0290.

[9] Dr Vipin Saxena, Deepa Raj. Local Area

Network Performance Using UML. Int. J. of

Advanced Networking and Applications Volume:

02, Issue: 02, Pages:614-620 (2010).

[10] Martina Seidl “UML@ Classroom”, Springer

International Publishing Switzerland 2015, DOI

10.1007/978-3-3/-19-12742-2.

[11] OMG Unified Modeling Language TM (OMG
UML), Superstructure version 2.2,

http://www.omg.org/spec/UML/2.2/Superstructu

re.

[12] B Rumpe, Modeling with UML, Springer

Imternational Publishing Switzerland 2016, DOI

10.1007/978-3-319-33933-7-2.

AUTHORS PROFILE

Dr. R. N. Kulkarni holds a Ph.D in

software Engineering from Visvesvaraya

Technological University, Belagavi,

Karnataka, India. He has more than 31

years of teaching experience and

published nearly 70 publications in International

journals/conferences and also national conferences. His

area of research work are Software Engineering, DBMS,

Soft Computing and Object Technology. He is presently

working as Prof. & Head of Computer Science &

Engineering Department at Ballari Institute of Technology

& Management, Ballari,Karnataka, India.

C. K. Srinivasa has completed M.Tech

in Computers Science and Engineering

from Kuvempu University Karnataka,

India. His teaching interests are in the

areas of Computer Programming,

computer graphics and Object-Oriented Analysis and

Design. His research interests and work are in the areas of

Software Engineering. He is Currently working as

Associate Prof. in Computer Science & Engineering

Department at Ballari Institute of Technology &

Management, Ballari, Karnataka, India.

	1. introduction
	2. Literature Survey
	3. Proposed Methodology
	5. Conclusion
	6. References
	AUTHORS PROFILE

