
Int. J. Advanced Networking and Applications
Volume: 12 Issue: 04 Pages: 4621-4626(2021) ISSN: 0975-0290

4621

A Novel Approach to Restructure the Input Java
Program

Dr. R. N. Kulkarni
1

and Aparna K.S
2

1Department of Computer science & Engineering, Ballari Institute of Technology & Management, Ballari.

rn_kulkarni@rediffmail.com
2Assistant Professor, Department of CSE, RYMEC, Ballari, Research scholar, VTU, Belagavi.

aparna.vastard@gmail.com

---ABSTRACT---

During the last few years, we can find a lot of developments in the software industry concerning customized

applications. Most of the businesses are automated using Java programming language because of its object-

oriented features. The applications developed, might have undergone perennial need-based modifications. The

original structure of the program is lost because of the need-based modifications and further, the program

becomes ill-structured. This ill-structured program is not appropriate for the abstraction of design information.

In this paper, we are proposing a novel approach that takes executable java program as input and

restructures the program without modifying its functionality. The proposed approach comprises the phases like

appending the externals files to the main program, eliminating comment lines, blank lines, converting multi-

statement lines to the single statement, the multi-line statement to single statement line, physically allotting line

numbers, and removing unused variables.

Keywords: Restructuring, ill-structured, functionality, design information.

--- -------------------

Date of Submission: Jan 15, 2021 Date of Acceptance: Feb 08, 2021

--- ---------------------------------

1.INTRODUCTION

In today’s ever-changing business world, the only thing

that doesn’t change is ‘change’ itself. Nothing is constant
or predictable in the current challenging business
environment. The software industry is dominated by java

programming for the past two decades because of its
versatility in programming concepts. The majority of the
software applications are developed using java and these

applications[1] are in great usage in different sectors for
decades and hence have to maintain as they have a lot of
business rules and policies embodied[2], which are

mandate for the present working models.
 Due to rapid technological advancements and
perennial changes happening in the business , these

software applications are undergoing a lot of changes[3]
which make the software lose its originality, leading to
poor program comprehension. Maintaining such software

systems to abstract good design information is the real
challenge which is done through restructuring.

2.TERMINOLOGY
Restructuring is the process of making changes to the

software structure externally without changing its
functionality.

Program comprehension is the process of understanding
the functionality of the software using the given program
code.

Functionality is the actual working principles of the given
input with desired outcomes.

Software maintenance is the process of optimizing the
given software with a feasible modification that increases

the throughput.

3. LITERATURE SURVEY
In paper[4], the author has discussed in detail the role of

comments in the maintainability and reusability of the
software, provided, these comment lines should also be
updated as the software gets updated. This paper has

helped us to know the role of comments in program
comprehension.

In this paper[5], the different code smells and the sequence
of elimination are discussed which has a great impact on

the maintenance of the software metrics like
maintainability index, relative logical complexity, and so
on. This paper has helped us to know the impact of code
on software metrics.

In paper[6], the author has highlighted that replacing or re-
building the existing software system is the most time-
oriented and also economically infeasible to the industry

because of the outdated technology and has proposed to
modernize the system using reengineering and reverse
engineering concepts.

In paper[7], the different techniques of restructuring java
programs are discussed. It has given sufficient input for

our methodology. These methods are applied with
appropriate modifications.

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 04 Pages: 4621-4626(2021) ISSN: 0975-0290

4622

In paper[10], the different types of comments and their
purposes for comprehending the program are discussed
and this has helped to know the role of comments.

In paper[9,12] a thorough study is conducted on the
different refactoring techniques for improving the design
level information. The study signifies various refactoring

operations improving maintainability, understandability,
modifiability, and analyzability of the refactored software.
It has given an idea on different levels of refactoring
which is appropriately modified and applied.

In paper[11], the different tools used for code quality
analysis are discussed. The code is checked for different
refactoring methods are tried and concluded that some

refactoring techniques are feasible and cost-effective and
other higher forms are very complex, changing the
structure and leading to costly affairs. This has helped me

to know the different refactoring techniques which are
feasible and cost-effective. The higher forms of
refactoring are very complex changing the structure of the
original program, which is not advisable.

In paper[13] author signifies the role of both inner and
outer comments. The association of comments and the
fault proneness of the code are highlighted. It is proved

that methods having inner comments tends to be more
faulty. It reveals the role of inner comments as faulty
methods. This paper has helped me to know the
significance of retaining comments in the software code.

In paper[15], the different techniques of restructuring are
done on the C program for multi-core architectures are
discussed. The author has discussed that the software

becomes obsolete, at some point, and discarding the entire
system is not an economically viable solution and has
adapted the strategies used for the accelerated

development of software with reusability concepts. In
[21][22], the author has proposed the methodology for the
restructuring of the C program for the abstraction of

design information. In [23], the dead code is eliminated by
identifying the unused variables, classes and methods.
These redundant variables are identified using data flow

analysis and single assignment property for the variables.
This paper has given basic idea of dead code elimination.
In our paper, the unused variables , are removed using

regular expressions. In paper[24], the code quality can be
improved by different refactoring methods for effective
implementation. Further these complex refactoring

techniques may change the structure of the system and
require additional code for refactoring which leads to
chain reaction. In this paper, the novel approach of
restructuring are addressed by these following steps

i. Appending the packages, classes and
interfaces to the input file

ii. Eliminate Comment lines

iii. Eliminate blank lines

iv. Transform multiple declaration statements
into a single declaration statement

v. Allotting Line numbers to executable
statements

vi. Identifying and Removing unused
variables

4. METHODOLOGY
The various approaches used are discussed in detail in the
literature survey and the methodology proposed in this
paper is carried out using the following steps , which are
made amenable for reengineering.

i. Appending the packages, classes and interfaces to the
input file:

In Java , the concept of reusability is supported by
importing the required classes, package and abstract

interfaces from one file to another. In our methodology,
we import these concepts physically, by copying the entire
code from one location to the input file for easy parsing.

ii. Eliminate Comment lines :

The Comment lines give an overview of code and these

comment lines have to be updated periodically as and
when the software is modified but this does not happen in
reality. These comment lines may also be used for

commenting functions that were not needed, but the reason
for commenting may not be specified. So the feasible way
of restructuring the input program is to consider only the
executable statements and ignore the comment lines in our
input program.

iii. Eliminate blank lines:

The conventional method of programming is to insert
blank lines for improving the readability of the program
but these blank lines are removed as they do not contribute

to any program logic. So the proposed methodology
restructures by eliminating these blank lines in the input.

iv. Transform multiple declaration statements into a
single declaration statement:

 Consider the scenario where multiple statements are

declared in a single line, separated by the delimiter “; ”.
These statements will be considered as a single node,
which does not carry any meaning. So these multiple

statements are restructured to appear as a single statement
separated by the delimiter “, ” in all declaration statements
of the input program.

iv. Transform multi-line statements into a single

statement line:

 While programming, some statements in the input
program may be represented as the multi-line statements

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 04 Pages: 4621-4626(2021) ISSN: 0975-0290

4623

and will be considered as separate nodes, without any
meaning. So these are restructured to appear in a single
line, contributing to a meaningful node.

v. Allotting Line numbers to executable statements:

The executable statements are kept on track by assigning
some numbering by the tool which helps in better program
comprehension. Hence in our methodology, the line

numbers are allotted uniquely for all the executable
statements after completion of the above restructuring
steps.

vi. Identifying and Removing unused variables: During

programming, the changes are done dynamically. In this
process, some variables, are declared but not used due to
the repeated modifications because of need-based

requirements. Hence such variables are restructured by
identifying and removing them as they occupy a lot of
memory space and execution time in the program.

Similarly the same can be done for classes and member
functions.

5. ALGORITHM- RESTRUCTURING THE

JAVA PROGRAM
INPUT: Java application program
OUTPUT: Restructured java application
Input:Executable java program

Output:Restructured java program
STRG[1…n]file1.java
 Step 1:[Append the imported packages]

if(STR[i].contains “import package.*”) then
 merge_file(file1.java, package.name)
end if

Step 2:[Append the interfaces]

if(STR[i].contains “import package.classname”)
then

 merge_file(file1.java, package.interface)
end if

Step 3:[Append the imported classes]

if(STR[i].contains “import package.classname”)
then

 merge_file(file1.java, package.classname)

 end if
Step 4:[Eliminate Comment lines]

 for i1 to n

 Comment=false
 if STRG[i].contains=”//”
 Comment=true

 end if
 if STRG[i].contains “/*” and ends with “
*/”

comment=true, i<-j ,print(STRG[i])
 end if

end for

 Step 5:[Eliminate blank lines]

for i <- 1 to n
 if (!STRG[i].isEmpty()) then

 write-to(STRG[i]);

 write-to(“\n”)
 end if

 end for
Step 6:[Transform the multiple statements into single

line]

while (STRG!= NULL) do
 STRG = STRG
.restoreall(";“ “,” "; \n")

 Writer-to(STRG);
 end while
Step 7:[Transform multiline statements into single line]

 while (STRG [1..n]!=’;)
 STRG = STRG + STRG.restoreall(";“ , "; \n")
 Writer-to(STRG);

 end while
Step 8:[Allot line numbers]

 Lineno<- 1

for i<- 1 to n
 Print(lineno + STRG[i])
 end for

Step 9:[Identifying variables declared but not used]

 for i1 to n
 count[i]=1

 Storing variables in array a[i]
 for i<-1 to n
 if (STRG[i]== a[i]) count[i]++;

 if (count[i]==1) print(“Variable a[i] not used”)

V. ALGORITHM- RESTRUCTURING THE

JAVA PROGRAM
INPUT: Java application program
OUTPUT: Restructured java application

Input:Executable java program

Output:Restructured java program
STRG[1…n]file1.java

 Step 1:[Append the imported packages]

if(STR[i].contains “import package.*”) then
 merge_file(file1.java, package.name)

end if
Step 2:[Append the interfaces]

if(STR[i].contains “import package.classname”)

then
 merge_file(file1.java, package.interface)
end if

Step 3:[Append the imported classes]

if(STR[i].contains “import package.classname”)
then

 merge_file(file1.java, package.classname)
 end if
Step 4:[Eliminate Comment lines]

 for i1 to n
 Comment=false
 if STRG[i].contains=”//”

 Comment=true
 end if
 if STRG[i].contains “/*” and ends with “

*/”
comment=true, i<-j ,print(STRG[i])

 end if

end for

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 04 Pages: 4621-4626(2021) ISSN: 0975-0290

4624

 Step 5:[Eliminate blank lines]

for i <- 1 to n

 if (!STRG[i].isEmpty()) then
 write-to(STRG[i]);
 write-to(“\n”)

 end if
 end for
Step 6:[Transform the multiple statements into single

line]

while (STRG!= NULL) do
 STRG = STRG

.restoreall(";“ “,” "; \n")
 Writer-to(STRG);
 end while

Step 7:[Transform multiline statements into single line]

 while (STRG [1..n]!=’;)
 STRG = STRG + STRG.restoreall(";“ , "; \n")

 Writer-to(STRG);
 end while
Step 8:[Allot line numbers]

 Lineno<- 1
for i<- 1 to n

 Print(lineno + STRG[i])

 end for
Step 9:[Identifying variables declared but not used]

 for i1 to n

 count[i]=1
 Storing variables in array a[i]
 for i<-1 to n

 if (STRG[i]== a[i]) count[i]++;
 if (count[i]==1) print(“Variable a[i] not used”)

VI. RESULTS AND DISCUSSIONS
Table 6.1: Restructuring java-code by Importing packages
to the original code.

import MyPackage.MeClass;
public class PName
{

 public static void main(String args[])
 {
 // Initializing the String variable

 // with a value
 String name = "restructuring";
 int myN = 5;

 int myFNum = 5.99f;
 char myLett = 'D';
 boolean myBo = true;

 String myTe = "Hello";
 System.out.println(myN);
 System.out.println(myFNum);

 System.out.println(myLett);
 System.out.println(myBo);
 System.out.println(myTe);

 // Creating an instance of class MeClass in
 // the package.
 MeClass obj = new MeClass();

 obj.getNames(name);
 }

}

Figure: 6.1 Java program before importing

package Mepack;

public class MeClass
{
 public void create-Names(String s1)

 {
 System.out.println(s1);
 }

}
public class PName
{

 public static void main(String args[])
 {
 // Initializing the String variable

 // with a value
 String name = "restructuring";
 int myN = 5;

 int myFNum = 5.99f;
 char myLett = 'D';
 boolean myBo = true;

 String myTe = "Hello";
 System.out.println(myN);
 System.out.println(myFNum);

 System.out.println(myLett);
 System.out.println(myBo);
 System.out.println(myTe);

 // Creating an instance of class MeClass in
 // the package.
 MeClass obj = new MeClass();

 obj.getNames(name);
 }
}

Figure: 6.2 Java program after importing

1
2 package mePack;
3 public class MeClass

4 {
5 public void create-Names(String s1)
6 {

7 System.out.println(s1);
8 }
9 }

10 public class PName
11 {
12 public static void main(String args[])

13 {
14 String name = "restructuring",myTe = "Hello";
15 int myN = 5, myFNum = 5.99f;

16 char myLett = 'D';
17 boolean myBo = true;
18 System.out.println(myNum);

19 System.out.println(myFloatNum);
20 System.out.println(myLetter);
21 System.out.println(myBool);

22 System.out.println(myText);

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 04 Pages: 4621-4626(2021) ISSN: 0975-0290

4625

23 MeClass obj = new MeClass();
24 obj.getNames(name);

25 }
26 }

Figure: 6.3 Restructured java code

In Fig 6.1 a small java program using user-defined import

packages is taken as input. This program code is getting
restructured by substituting the entire imported package,
as shown in Fig 6.2. This java code in Fig 6.2 acts as input

to the next level of restructuring, which is done using the
above-discussed techniques. The output java code after
this restructuring is shown in Fig 6.3. This restructured

code has imported the entire package with no comment
lines, no blank lines, multiline declarations in a single line,
has physical line numbers .

6. CONCLUSION
In this paper, an attempt is made to restructure the input

java program. The proposed tool restructures the input
java program by first appending the imported files to the
main program and then eliminating the comment lines,

blank lines, and converting the multi-statement lines to the
single statement, the multi-line statement to a single
statement line, assigning line numbers, eliminating unused

variables. The tool is tested for its correctness and
completeness and presently working for all the
restructuring aspects discussed above.
 Further this work will be continued to address the

issues related to the speed and memory.

7. REFERENCES

[1] Mohammed Furqan Shreetha Bhat “The Secrets
Behind the Product-Making Process “, Int. Jnl. of
Advanced Networking & Applications (IJANA)

Special Issue, Volume 10, Issue 5(March-April 2019)

[2] Dr.Raghavi K Bhujang, Dr. Suma V “Need for

Effective Risk Management Strategy
duringSoftwareDevelopment Process – A Holistic
View”, Int. Jnl. of Advanced Networking &

Applications (IJANA) Special Issue, Volume 10,
Issue 5(March-April 2019).

[3] Mubarak Albarka Chen Zhanfang “A Comparative
Study of Dynamic Software Testing Techniques “,
Int. Jnl. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020)
ISSN: 0975-0290 4575 “

[4] Elman Abdullah Alomar, Mohamed Wien Mkaouer,
Ali Ouni, Marouane Kessentini “On the Impact of
Refactoring on the Relationship between Quality

Attributes and DesignMetrics”,978-1-7281-2968-
6/19/$31.00©2019IEEE,10.1109/ESEM.2019.8870
177.

[5] Dr. R N Kulkarni, Pani Ram Prasad, “ Restructuring

of Java Program to be amenable for

Reengineering”, Journal of Engineering Science
and Technology Volume 02, Issue 06 (2019) P.

[6] Ally s. Nyamawe, hui Liu 1, Shandong niu1,”
Recommending Refactoring Solutions Based on

Traceability and Code Metrics”, 2018. Page
no: 49460 – 49475, 06 September 2018,
ISSN: 2169-3536.

[7] Satwinder Singh, Sharanpreet Kaur, “A systematic
literature review: Refactoring for disclosing code

smells in object-oriented software”,
http://dx.doi.org/10.1016/j.asej.2017.03.002,
December 2018, Pages 2129-2151

[8] Mehmet Kaya1, Shannon Conley2, Zhala S.

Othman3, Asaf Varol, “Effective Software

Refactoring Process”, 2018 6th International
Symposium on Digital Forensic and Security
(ISDFS), 22-25 March 2018,

DOI: 10.1109/ISDFS.2018.8355350

[9] Yukti Mehta, Ashish Sureka, Paramvir Singh

“Analyzing Code Smell Removal Sequence for
Enhanced Software Maintainability”, 2018
Conference on Information and Communication

Technology (CICT), 26-28 Oct. 2018,
https://doi.org/10.1109/INFOCOMTECH.2018.872
2418

[10] SeetharamaTantry, Muralidhar N.N. “Implications of

legacy software system modernization – a survey in

a changed scenario “, International Journal of
Advanced Research in Computer
Science,http://dx.doi.org/10.26483/ijarcs.v8i7.4556

Volume 8, No. 7, July – August 2017.

[11] Shaik Ismail, Sai Koparthi, “Automatically

restructuring of java comments”, Published in
conference July 2017, Washington D.C, U.S.A. PP-
1-4.

[12] Dr. R N Kulkarni, Padma Priya Patil, ”Restructuring

of Legacy ‘C’ programs to be amenable for

multicore architecture”, Science Direct, Elsevier,
876-6102@2017, 2017 International Conference
On Smart Technologies For Smart Nation

(SmartTechCon).

[13] Luca Pascarella, Alberto Bacchelli, “Classifying code

comments in Java open-source software systems“,
2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). 2017

IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), 20-21 May
2017, 10.1109/MSR.2017.63.

[14] Raja Sehrab Bashir, Sai Peck Lee, Chong Chun

Yung, ”A methodology for impact evaluation of

refactoring on external quality attributes of a

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 04 Pages: 4621-4626(2021) ISSN: 0975-0290

4626

software design”, 0-7695-6347-3/17/$31.00
©2017. 2017 International Conference On Smart

Technologies For Smart Nation (SmartTechCon),
17-19 Aug. 2017,

 DOI: 10.1109/SmartTechCon.2017.8358389.

[15] A.Cathreen Graciamary and Dr.Chidambaram,

“Enhanced Re-engineering Mechanism to Improve

the Efficiency of Software Re-engineering”,
International Journal of Advanced Computer
Science and Applications vol.7, No 11, 2016.

[16] Anna Vasileva, Doris Schmedding, ”How to Improve

Code Quality by Measurement and refactoring”,

DOI 10.1109/QUATIC.2016.28, 2016-IEEE 10th
International Conference on the
https://ieeexplore.ieee.org/xpl/conhome/7811933/pr

oceeding.

[17] Isong Bassey, Nosipho Dladlu,” Object-Oriented

Code Metric-Based Refactoring Opportunities
Identification Approaches: analysis”, 978-1-5090-
4871-7/16 $31.00 © 2016 IEEE, DOI

10.1109/ACIT-CSII-BCD.2016.24, 12-14 Dec.
2016.

[18] Dr. R N Kulkarni, Nidhi Jain C, Rashmi G, Vaishali
B J, Zakiya Niyazi, “Abstraction of Test Cases
From Input Java Program”, International Journal of

Combined Research & Development (IJCRD)
ISSN:2321-25X; ISSN:2321-2241 Volume: 4;
Issue: 5; May -2015.

[19] S.H. Kannangara1 and W.M.J.I. Wijayanayake2 “An

empirical evaluation of the impact of refactoring on

internal and external measures of code quality”,
International Journal of Software Engineering &
Applications (IJSEA),2015,

DOI:10.5121/idea.2015, IJSEA Journal, Vol.6,
No.1, January 2015, PP. 51 – 67

[20] Oscar Chaparro, Gabriele Bavota, Andrian Marcus,
Massimiliano Di Penta, “On the Impact of
Refactoring Operations on Code Quality Metrics”,

29 Sept.-3 Oct. 2014 29 Sept.-3 Oct. 2014, 978-1-
4799-6146-7, ISSN:1063-6773

[21] Hirohisa Aman, Sousuke Amasaki, Takashi Sasaki,
and Minoru Kawahara “Empirical Analysis of
Fault-proneness in Methods by Focusing on their

Comment Lines”, 1530-1362/14 $31.00 © 2014
IEEE, DOI 10.1109/APSEC.2014.93, 1-4 Dec.
2014, INSPEC Accession Number: 15076974

[22] Dr. R N Kulkarni, Shilpa Jain, Bhavana

S.H,Nethravathi .K, Shalini .S “Abstraction of

UML Diagrams from Java Code “, International
Journal of Combined Research & Development
(IJCRD) eISSN: 2321- 225X; pISSN: 2321-2241

Volume: 2; Issue: 4; April- 2014.

[23] Rekha Naug1 and Kavita “A study of types of dead

codes and their solutions”, International Journal of
Computer Science and Engineering (IJCSE)
ISSN(P): 2278–9960; ISSN(E): 2278–9979 Vol. 9,

Issue 2, Feb–Mar 2020, 1–6.

[24] Anna Vasileva, Doris Schmedding, “How to Improve

Code Quality by Measurement and Refactoring”,
2016 10th International Conference on the Quality
of Information and Communications Technology.

[25] Dr. Shivanand M. Handigund, Rajkumar N. Kulkarni

“An Ameliorated Methodology for the design of

Object Structures from legacy ‘C’ Program”,
©2010 International Journal of Computer
Applications (0975 – 8887) Volume 1 – No. 13.

Biographies and Photographs

Dr.R.N.Kulkarni, Ph.D in Software
engineering from visveswaraiah
technological university, Belagavi,

Karnataka, India. Presenthy heading the
Department of Computer science and
Engineering, Ballari Institute of

Technology and Management, Ballari, Karnataka, India.
He has more than 30 years of experience in teaching with
passionate teaching and getting involved in many aspects

of academic growth like International and National
conferences ,possessing 65 publications. His Research
domains include software engineering, DBMS, Soft

Computing and object Technology. He is an active person
in the process of NBA and NAAC. He has chaired many
conferences and involved actively in various committees.

Aparna K.S working as Assistant
professor in the Department of

Computer Science and Engineering at
Rao Bahadur Y Mahabaleswarappa
Engineering college, Affiliated to

VTU, Belagavi with teaching
experience of 16 years, pursuing Phd degree in Software
engineering. Passionate about the teaching learning

process and involved in many innovative projects .
Paticipated in many Interntional and National conferences
Workshops and Seminars with many paper publications.

An Active member in various academic committees like
NBA and NAAC.

