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 Engineered Cementitious composites (ECC) became widely popular in the last 
decade due to their superior mechanical and durability properties. Strength 
prediction of ECC remains an important subject since the variation of strength 
with age is more emphasized in these composites. In this study, mix design 
components and corresponding strengths of various ECC designs are obtained 
from the literature and ANN models were developed to predict compressive and 
flexural strength of ECCs. Error margins of both models were on the lower side 
of the reported error values in the available literature while using data with the 
highest variability and noise. As a result, both models claim considerable 
applicability in all ECC mixture types. 
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1. Introduction 

Prediction of concrete strength has been a popular area among concrete technology topics 
[1,2]. Accuracy of the strength prediction is more critical for repair and retrofitting 
materials such as Engineered Cementitious Composites (ECC). ECC is a strong alternative 
for conventional materials for repair, retrofitting and infrastructural applications. They 
offer significant improvements on various mechanical and durability properties of 
concrete especially flexural strength. PVA fibers bridging microcracks prohibits formation 
of large cracks consequently ultimate tensile strain capacity and tensile strength values 
reported up to 4.7% and 6 MPa respectively in the literature [3-6].  

The major factor determining the compressive strength of cementitious composites is mix 
design, the components of which widely used in strength prediction of cementitious 
composites. Artificial neural networks (ANN) is a widely used method for strength 
prediction of concrete and cementitious composites [7,8]. ANN is used to construct 
mapping functions for predicting strength and it is a powerful tool for solving very complex 
problems. Multilayer perceptron (MLP) neural networks are standard neural network 
models with an input layer representing cementitious composite mix design components, 
hidden layers with computation neurons, and an output layer containing one neuron 
representing strength prediction. 

Previous studies on concrete mixtures are known to yield high accuracies especially when 
data is from a single batch or from a single production location [9]. However, when ANN 
models were trained with data from various sources, test errors increased even with a 
powerful tool such as ANN [10,11].  

Predictive performance of ANN is dependent on various factors and can be quite different 
for various types of cementitious composites. There are lots of other contributing factors 
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other than mix design parameters when predicting strength, such as age, curing conditions, 
and handling practices, etc. Most of these factors are not included in the training data 
because they are categorical parameters and cannot be used in a regression problem 
directly. These categorical parameters considered to be one of the reasons for decreasing 
accuracies in strength prediction. Considering cementitious composites such as ECC, there 
are even more categorical parameters such as fiber type, mineral admixture type, etc. 
Individual ANN models were developed for different fiber types or different admixture 
types to be able to obtain acceptable accuracies when predicting ECC strength in the 
literature [12,13]. These models yield very high accuracies, but they are both specific to 
one type of ECC and the test results are obtained from a single batch of ECC which has very 
low noise and variability in the input data. [11-14] 

This study aims to incorporate several categorical parameters for strength prediction of 
ECC mixtures, so a single ANN model can be developed for very different mixture 
characteristics. Additionally the models will be applicable to a range of different ECC mixes 
unlike previous studies.  Compressive strength of any cementitious composite is the most 
important materials property since they are designed to mainly work in compression as a 
building material. In the literature compressive strengths in the range of 25 to 115 MPa 
were reported [3-6,15]. Considering ECC gained its popularity mostly due to its high 
flexural strength capacity, two strength categories namely flexural and compressive 
strength were predicted using the data obtained from literature. Two single ANN models 
were developed to predict compressive and flexural strengths of ECC with different 
chemical and mineral admixture types, fiber types, age, specimen geometry and 
dimensions.  

2. Materials and Methods 

Artificial neural networks (ANNs) use back-propagation (BP) algorithm, which adjusts 
connection weights (w) and bias values (b) during training. The forward propagation in ith 
output layer can be expressed as:  

𝑧𝑗
[𝑖]
=∑𝑤𝑗𝑘

[𝑖]
𝑥𝑘
[𝑖−1]

𝑛

𝑘

 (1) 

𝑎𝑗
[𝑖]
= 𝑓(𝑧𝑗

[𝑖]
) (2) 

where i is the layer of the neuron, n is the number of neurons in the previous layer, wjk is 
the weight associated to jth neuron applied to the kth neuron from the previous layer, xk 
is the output of neuron k, zj is the output of neuron j for layer i, and aj activation function 
applied to zj for layer i. After initializing weights, an optimization method is used to 
minimize the selected cost function.  

Two hidden layers were used in the ANN model for this study. ANN model was 
implemented using Tensorflow library in the medium of python. Activation function was 
selected to be sigmoid for all layers except output layer. Sigmoid function is often used in 
ANN to introduce nonlinearity in a model. It simply converts the output of the neuron to a 
value in the range of (0,1) so that activated output that will be fed to the next set of 
perceptrons will be 1 at most when the output is too large and 0 if output is too small [16]. 

Gradient descent-based algorithms are used commonly in ANN models. Adam 
Optimization algorithm was selected to be used in the ANN model since it showed better 
convergence compared to other gradient descend based algorithms in the literature. Adam 
optimization is based on the idea of adaptive moment estimation, learning rate decay is 
implemented using exponential moving average of the gradient. This algorithm is reported 
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to be efficient and convenient for a wide range of optimization problems in the field of 
machine learning [17]. 

Total dataset was divided into 80% and 20% to use as training and test data, respectively. 
Training and testing data were separated using train_test_split function of sklearn library. 
Train_test_split function splits arrays or matrices into random training and testing subsets. 
This function also shuffles the data before splitting which can be critical during training. 
Validation data was not used, instead cross validation was performed for hyper parameter 
tuning. Cross validation method is commonly used when training data is relatively small. 
In cross validation method, training data is split into 5 subsets, and 4 of those subsets are 
used to train the model with a specific hyperparameter combination, as one of the subsets 
kept as test data. For categorical features, one_hot encoding was applied using 
get_dummies function in pandas library. 

 

A total of 214 different ECC mix designs for compressive strength and 147 for flexural 
strength are obtained from various sources [ 3,13,18-36]. A total of 13 parameters were 
incorporated which were readily available from the literature namely; age, cement 
content, cement type, fiber content, water content, aggregate content, and chemical 
admixture content, mineral admixture type and content, specimen geometry, specimen 
dimensions, Calcium and silica content of mineral admixtures. Since flexural specimens 
were always prismatic, specimen geometry parameter was not included which reduced the 
total parameters to 12 for flexural strength model. Categorical variables are given in Table 
1. The categories for each categorical variable listed in this table shows the categories that 
are found in the database used. All the non-categorical parameters were defined for 1m3 
of ECC. Minimum and maximum values of non-categorical parameters for the dataset used 
in this study are given in Table 2.   

There is no specific standard that governs the specimen preparation for ECC. Typically 
mixtures were prepared following a typical ECC mixing procedure. The procedure involves 
mixing the dry ingredients first and adding liquid ingredients such as superplasticizers, 
water, admixtures etc. The mixing operation is performed at various speeds to ensure 
homogeneous fiber dispersion [18-36]. Following demolding after 24 hours, specimens 
usually cured sealed in plastic sheets until the testing date. Compressive and flexural 
strength testing followed related ASTM standards [37,38] 

Table 1. Categorical Parameters 

Parameters Categories 

Cement type CEM I 52.5R, Type I OPC, CEM I 42.5N 

Mineral admixture 
type 

Limestone powder, Fly ash, Blast furnace slag, Silica fume, 
Natural pozzolan 

Specimen geometry 
Compression: Cylinder, Prism 

Flexure: Prism 

Specimen dimensions 
Compression: 40*40*40, 50*50*50, 75*150 

Flexure: 40*40*160, 100*100*400, 75*50*360 
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Table 2. Dataset properties 

Dataset for compressive strength of ECC 

Parameter Unit Min. Max. 

Age Day 7 180 

Cement content kg/m3 275 1000 

Fiber content % by volume 0.25 2 

Water content kg/m3 74 638 

Chemical admixture content kg/m3 1.8 30 

Mineral admixture content kg/m3 0 2550 

Calcium content of mineral admixture % (by mass) 0 35.1 

Silica content of mineral admixture % (by mass) 0.3 78.1 

Compressive strength MPa 8.2 95.1 

Flexural strength MPa 0.3 23.75 

 

3. Results  and Discussion  

A grid search algorithm was performed to establish learning rate and model architecture. 
Grid search algorithm was employed for both training and validation data. As mentioned 
in the previous chapter cross validation method is used to create validation data. Different 
node numbers were used in the range of 3 to 9 for each layer. Additionally, a learning rate 
range of 0.001-0.009 was also included in the search space. Range values for learning rates 
and node numbers were decided based on the literature [11-14]. ANN also known to be 
sensitive to weight initialization. The initial set of weights can cause the algorithm to be 
stuck in local minima eliminating the chance to find the global solution. Consequently, each 
architecture was run 10 times for each learning rate and the average values were recorded 
so the effect of weight initialization can be removed. In Table 3 learning rates are reported 
for the lowest RMSE yielding model after all values are applied in the learning rate range. 
As can be seen from this table increase in the node numbers did not always translate into 
a decrease in RMSE values. Final architecture was chosen to be 6 and 7 nodes at first and 
second hidden  layers, respectively  with a learning rate of 0.005. A similar grid search was 
performed for flexural strength model and the optimum architecture was selected to be 8 
and 7 nodes in the first and second hidden layers, respectively. 
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Table 3. Grid Search for hyperparameters in compressive strength prediction model 

Nodes Nodes LearningRate 
RMSE 

Training 
RMSE 

Validation 
R2 

Training 
R2 

Validation 

4 3 0.005 5.953 5.193 0.93 0.92 
4 0.005 5.023 4.596 0.95 0.94 
5 0.004 5.248 4.748 0.94 0.93 
6 0.006 4.312 4.650 0.96 0.93 
7 0.006 4.805 4.524 0.94 0.94 
8 0.006 4.712 4.309 0.95 0.94 
9 0.007 4.250 4.271 0.96 0.95 

5 3 0.007 4.337 4.329 0.96 0.94 
4 0.007 5.011 4.181 0.94 0.95 
5 0.007 4.147 4.250 0.97 0.95 
6 0.007 4.629 4.342 0.96 0.94 
7 0.007 4.629 4.342 0.96 0.94 
8 0.007 4.342 3.999 0.96 0.95 
9 0.007 4.776 4.227 0.95 0.94 

6 3 0.004 4.322 4.566 0.99 0.95 
4 0.006 4.119 4.329 0.99 0.95 
5 0.007 3.721 4.137 0.97 0.94 
6 0.006 3.864 3.660 0.98 0.96 
7 0.005 2.881 3.899 0.99 0.96 
8 0.006 3.268 3.914 0.98 0.96 
9 0.005 3.041 3.838 0.99 0.96 

7 3 0.007 3.666 3.591 0.98 0.97 
4 0.004 3.941 4.218 0.97 0.95 
5 0.004 4.376 4.209 0.98 0.95 
6 0.005 2.989 4.287 0.99 0.95 
7 0.006 3.992 3.846 0.97 0.96 
8 0.007 3.911 3.886 0.99 0.96 
9 0.007 3.971 3.769 0.98 0.96 

8 3 0.005 4.005 4.209 0.98 0.95 
4 0.004 3.193 3.856 0.99 0.96 
5 0.007 3.625 3.927 0.98 0.96 
6 0.005 3.014 3.542 0.99 0.97 
7 0.006 3.158 3.406 0.99 0.98 
8 0.007 2.803 4.267 0.99 0.95 
9 0.006 4.064 4.067 0.98 0.96 

9 3 0.007 3.495 3.679 0.98 0.96 
4 0.005 3.497 3.577 0.98 0.97 
5 0.007 2.694 3.438 0.99 0.97 
6 0.005 4.594 3.772 0.95 0.96 
7 0.004 3.938 3.671 0.97 0.98 
8 0.007 3.549 3.647 0.98 0.96 
9 0.007 3.890 3.843 0.98 0.96 
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Fig. 1 ANN architecture 

Architecture for flexural strength model is shown in the Fig 1. As for the Adam Optimizer, 
beta1 and beta 2 values were chosen as 0.9 and 0.999 which are already default values. 
Two prediction targets were defined in the output layer; compressive and flexural strength 
both in MPa as unit resulting in two different models. The average compressive and 
flexural strengths for the ECC mix designs used were 54.8 and 9.22 MPa. Predicted strength 
versus actual strength values for test data is presented in Figs 2 and 3. There are a couple 
of strength values that were both over and under predicted in compressive strength model 
however it can be seen from Fig 2 that majority of the predictions are within the close 
proximity (deviating around 1-1.5 MPa) of the actual strength value. The RMSE value for 
the test data is measured as 3.34 MPa, which is on the same range with reported values for 
ECC strength prediction in similar papers [12-14]. For flexural strength values it can be 
observed from Figure 3 the deviations from actual strength is much less compared to 
compressive strength. Accordingly, RMSE obtained from test data for flexural strength 
model is (0.35 MPa) much lower compared to that of compressive strength which is also 
similar in the reported literature. 

 

Fig. 2 Predicted compressive strength versus actual strength values for test data. 
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Fig.3 Predicted flexural strength versus actual strength values for test data. 

Compared to literature available on strength prediction of ECC, accuracy of both 
compression and flexural strength models are either in the same range or superior. In 
addition to high accuracy, strength of a much wider range of ECC types and ages were 
predicted, mainly due to inclusion of categorical variables [1112,39]. An ANN model 
trained using data from a single batch of ECC offers very limited applicability. Additionally, 
high accuracy obtained from such model is most likely achievable by other predictive 
methods too because of the low variability in the training inputs. However, the literature 
available on ECC strength prediction is limited to models trained on ECC cast using a single 
batch with varying only ingredient quantities. Major difference of this work from limited 
literature works on ECC strength prediction is these ANN models predict strength of ECC 
with different components obtained from a wide range of data sources with the same 
accuracy as reported in single batch studies. Accuracy of the model is increased by 
inclusion of categorical parameters to the model unlike similar model trained in the 
literature. Predictive scores from test data and final hyperparameters of the ANN models 
for compressive and flexural strength is given in Table 4. 

Table 4. ANN model results for compressive and flexural strength test data. 

 Compressive Strength Flexural Strength 

MSE 11.120 0.121 

RMSE 3.34 0.348 

R2 0.958 0.967 

Nodes 6 and 7 8 and 7 

Learning rate 0.005 0.006 

5. Conclusions 

Strength prediction of ECC were performed in this study. Data from several papers with a 
wide range of mix design components were used. Different ECC types and mix designs from 
different sources in the literature were used which introduced a considerable variance to 
the dataset. Limited literature available on ECC strength prediction contained data from a 
single batch of concrete while only quantities of composite components are changing. 
Relative error values reported for the models trained using low variability data were 
around 2-10% for compressive strength and 3-5% for flexural strength. Two ANN models 
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were developed which predicted compressive and flexural strength of ECC. A grid search 
was also performed for selecting the model architecture and learning rate. Although 
architectures of the two models were different, a learning rate of 0.06 were proved to be 
optimal for both models. Number of layers were decided as two since most of the literature 
on cementitious composites and concrete materials proved to be 2-layer architecture was 
optimal for strength prediction. Relative errors for the models were 6.5% and 3% for 
compressive and flexural strengths, respectively. In addition, the models were able to 
predict strength of a wide range of ECC mixes with different specimen shape, specimen 
geometry, age, mineral and chemical admixture types with high accuracy. 

The most important output of this study is the high accuracy obtained with a dataset 
created using data from various studies. Often when a dataset contains mixed data, 
accuracy reduces significantly due to increased noise in the data.  This study used ECC mix 
design and strength values from 14 different sources and high accuracy in test data shows 
both models can be used for strength prediction. It must be noted that inclusion of 
categorical variables made it possible for the model to learn strength prediction for 
different ECC types and increased accuracy of the models. 
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