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Abstract  Öz 

An image quality metric is proposed by introducing a new framework 
for full reference image quality assessment from the perspective of 
image patch manifolds. Assuming that most natural scenes are sampled 
from low dimensional manifolds or submanifolds, perceived image 
degradations in structural variations can be quantitatively evaluated 
on the surfaces of highly nonlinear image manifolds. Manifold distortion 
image quality index first characterizes intrinsic geometric properties of 
the locally linear manifold structures of spatially local patch spaces, and 
then measures the deviation from the original smooth manifold 
structure to calculate the distortion index. Experimental results 
demonstrate a strong promise with a comparison to both subjective 
evaluation and state-of-the-art objective quality assessment methods. 

 Görüntü parçacık manifoldları perspektifinden, yeni bir tam referans 
görüntü kalitesi değerlendirmesi çerçevesi oluşturularak bir görüntü 
kalitesi metriği önerilmektedir. Çoğu doğal sahnenin düşük boyutlu 
manifoldlardan veya alt-manifoldlardan örneklendiği varsayılarak, 
yapısal varyasyonlarda algılanan görüntü bozulmaları yüksek derecede 
doğrusal olmayan görüntü manifoldlarının yüzeylerinde nicel olarak 
değerlendirilebilir. Manifold bozulması görüntü kalite endeksi önce 
uzamsal olarak yerel parçacık uzaylarının yerel doğrusal manifold 
yapılarının içsel geometrik özelliklerini karakterize etmekte ve daha 
sonra bozulma endeksini hesaplamak için orijinal pürüzsüz manifold 
yapısından sapmayı ölçmektedir. Deneysel sonuçlar hem öznel 
değerlendirme hem de gelişmiş objektif kalite değerlendirme 
yöntemleriyle kıyaslandığında güçlü bir taahhüt göstermektedir. 

Keywords: Image quality assessment, Image quality index, Manifold 
learning, Neighbor embedding. 

 Anahtar kelimeler: Görüntü kalite değerlendirmesi, Görüntü kalite 
endeksi, Manifold öğrenmesi, Komşuluk gömülmesi. 

1 Introduction 

One of the most important research topics in image and video 
processing is the quality assessment (QA) of a visual content. 
During and after the acquisition, any captured image or video 
may have been introduced different kinds of distortion until it 
has been projected or presented to a human observer. There 
are basically two main sources of distortion. The first source is 
related to the hardware limitations where characteristics of 
sensing elements, transmission channels and display devices 
play an important role in the final display quality. The second 
one is related to the software tools especially along with the 
content editing and compression, as well as transmission and 
storage algorithms applied to the visual content. Since any 
kinds of captured and processed visual content are devoted for 
a final human consumption, it is obviously very crucial to 
imitate the human visual system (HVS) and obtain objective 
quality metrics in an excellent agreement with subjective 
opinion from human observers. Therefore, the principal aim is 
to design generic quantitative QA models which are highly 
aligned with the HVS, to accurately estimate the perceptual 
visual quality of a visual content. 

Depending on the availability of a reference (i.e., pristine 
original) content, image and video QA methods can be 
categorized into three groups. In the first group, there is only 
the distorted image available and the evaluation of the 
perceived quality of this image must be done without any 
reference, i.e., no-reference QA. The second group which is 
referred to reduced-reference QA, on the other hand, contains 
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partial information about the reference content in addition to 
the distorted image. This type QA methods makes use of the 
available partial knowledge of the reference to assess the 
quality of the distorted content. The third group consists in a 
full-reference image and a distorted version of it where the 
distortion level is measured based on a comparison with the 
available distortion-free reference. In this study, the focus will 
be on full-reference QA algorithms which basically serve a great 
basis for designing distortion resilient image/video processing 
applications, e.g., for acquisition, communication, compression, 
editing, displaying and printing. Moreover, an objective full-
reference quality metric will be a key component of embedded 
systems evaluating image fidelity or perceived similarity. 

Conventional full-reference QA algorithms, including mean 
squared error (MSE) [1] and its extensions, i.e., signal-to-noise 
ratio (SNR) and peak SNR (PSNR), are mainly based on low level 
models of the HVS. Although MSE is an inexpensive signal 
fidelity measure with its simple mathematical convention, it 
can only estimate point-by-point errors in pixel domain, or in 
an appropriate transform domain, without considering 
structural changes between the distortion-free and distorted 
images. Weighted SNR (WSNR) [2],[3] can yet be thought as an 
extension to MSE in which an appropriate weighting has been 
incorporated in the distortion measure. The weighting strategy 
of WSNR employs a contrast sensitivity function that is a linear 
spatially invariant approximation of the HVS. Nonlinear noise 
quality measure (NQM) [4] respects to the nonlinear spatially 
varying characteristics of the HVS. NQM simply behaves as a 
nonlinear weighted SNR. Universal image quality index (UQI) 
[5] assumes that the HVS is highly adapted to extract structural 
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information from a scene. It models any image distortion with 
a combination of three measures: loss of correlation, luminance 
distortion and contrast distortion. UQI has been generalized to 
structural similarity (SSIM) [6], and SSIM has later been 
extended to multiscale SSIM (MSSIM) [7] and information 
content weighted SSIM (IWSSIM) [8]. Most apparent distortion 
(MAD) [9] combines visual detection and image appearance-
based distortion models to measure the overall perceived 
distortion. Gradient similarity metric (GSM) [10] measures 
structural and contrast changes using the gradient similarity in 
images. It also incorporates a luminance similarity for a 
complete quality assessment. In addition, statistical approaches 
assume that there are parallels between the models of natural 
scenes (visual stimulus of the natural environment) and the 
evolution of the HVS [11],[12]. Information fidelity criterion 
(IFC) [11] models the scale invariant statistics of images in the 
wavelet domain. Visual information fidelity (VIF) [12] can be 
regarded as a content dependent extension of IFC. Visual SNR 
(VSNR) [13] also operates in a multiscale wavelet domain. 
Furthermore, there are feature based similarity metrics based 
on transform features, e.g., RFSIM [14], phase congruency and 
gradient magnitude features, e.g., FSIM [15], local binary 
patterns [16] and image descriptors, e.g., SURF-SIM [17]. 

This paper develops a novel framework for full-reference QA 
from the perspective of image manifolds. The proposed 
solution builds upon a (multi)patch-based scheme which 
naturally leads to a constrained optimization problem for 
characterizing the intrinsic properties of image manifold 
structures to measure a local distortion index. Experimental 
results illustrate a strong promise when compared to both 
subjective evaluation and objective QA methods. The rest of this 
paper is organized as follows. Section 2 introduces the 
motivation and details the main ideas and steps of the proposed 
QA algorithm. Section 3 presents the experimental setup and 
draws a discussion over the obtained results. Section 4 finally 
gives a brief conclusion while describing possible future 
directions. 

2 Manifold distortion quality index 

A very well studied approach in image and video processing is 
to make full use of textural and structural self-similarities 
within an image and cross-similarities across different images. 
The fact is that sufficiently small image patches are very likely 
to repeat themselves within the same scale and across different 
scales of an image, as well as across different images. Based on 
this observation, most of the image processing problems such 
as inpainting [18]-[21],  denoising [22]-[24], super-resolution 
[25]-[28], image prediction and compression [29]-[35], and 
more have found their solutions in the literature. All these 
methods have mainly been inspired from texture synthesis 
techniques [36]-[38] which are highly influenced by Markov 
Random Fields [39],[40]. 

A second observation suggests that most of the natural images 
are sampled from low-dimensional (sub)manifolds. This 
assumption leads to the fact that densely sampled and 
sufficiently small image texture patches can be successfully 
reconstructed as a weighted linear combination of their 
nearest-neighboring (NN) patches. This is usually referred to as 
neighbor-embedding [41]-[44] and is basically aligned with the 
main idea of manifold learning algorithms for dimensionality 
reduction [45]-[47]. 

In this work, the texture synthesis principle and the manifold 
sampling assumption have been combined resulting in a new 

framework for full-reference QA. Given a pair of images of same 
size, i.e., the pristine original and its distorted version, a patch 
based scheme builds upon a strictly localized NN search 
followed by a characterization of the intrinsic properties of the 
manifold structures of spatially local patch spaces, and then by 
a calculation of the projected local deviation from the smooth 
distortion-free manifold structure, in order to calculate the 
distortion index per pixel. 

2.1 Problem definition and notation 

Given two images of same size 𝑁 × 𝑀 pixels represented by 𝒳 
as the distortion free original and 𝒳 as the distorted version of 
𝒳, the main objective is to design a quantitative QA model in 
order to accurately estimate the perceptual visual quality of 𝒳 
using the information contained in 𝒳. As stated above, the 
manifold sampling assumption will be followed and extended 
for this purpose. The solution naturally leads to a local multi- 
patch scheme which is a powerful and generic enough tool to 
deal with different kinds of distortion corruption in 𝒳. 

A lexical ordering of image pixels and 𝑛 × 𝑛 square image 
patches as stacked column vectors of size 𝑛2 × 1 are assumed. 
While representing the given images as matrices by 𝐗 and 𝐘, 
each distortion-free patch 𝐱𝑖  extracted from 𝐗 has a spatially 
collocated distorted patch 𝐲𝑖 obtained from 𝐘. Here column 
vectors 𝐱𝑖  and 𝐲𝑖 in fact denote 𝑛 × 𝑛 square patches centered 
around the pixel indexed by 𝑖 extracted from 𝐗 and 𝐘, 
respectively, where 𝑖 = 1 … 𝑁𝑀 and 𝑛 is odd. Let us denote 
these patch pairs in a set as 𝒮 = {𝐱𝑖 , 𝐲𝑖}∀𝑖 . 

2.2 Manifold distortion as a quality index 

The main objective here is to characterize point-based image 
distortions by means of patch (sub)manifolds through spatially 
close and chromatically similar image texture patches. In order 
to achieve this aim, distortion-free local neighborhood 
information of 𝐱𝑖  ∀𝑖 has first been extracted from a strictly 
localized search region Ω𝑖  centered around 𝐱𝑖 , by minimizing a 

weighted distance metric ‖𝐱𝑖 − 𝐱𝑗‖
2,𝜎

2
 where 𝜎 represents the 

standard deviation of the 𝑛 × 𝑛 Gaussian kernel used for 

weighting and {𝐱𝑗} = {𝐱𝑖  | 𝐱𝑖 ∈ Ω𝑖  ∧  𝑖 ≠ 𝑗}. 𝐾-closest such 

neighbors are kept in a set {𝐱𝑖𝑘}𝑘=1
𝐾  as the 𝐾-NN of 𝐱𝑖 . Then 

similar to [46], intrinsic local geometric properties of each 
individual neighborhood can be linearly characterized as in 
Equation (1) by solving 

argmin
{𝛼𝑖𝑘}

‖𝐱𝑖 − ∑ 𝛼𝑖𝑘𝐱𝑖𝑘
𝑘

‖
2,𝜎

2

  𝑠. 𝑡.   ∑ 𝛼𝑖𝑘
𝑘

= 1, ∀𝑖. (1) 

The above constrained least squares optimization can be solved 
for 𝛂𝑖 = [𝛼𝑖1 𝛼𝑖2 … 𝛼𝑖𝐾]𝑇 as given in Equation (2) by 

𝛂𝑖 =
𝐆𝑖,𝜎

−1𝟏

𝟏𝑇𝐆𝑖,𝜎
−1𝟏

 (2) 

where 𝐆𝑖,𝜎 = 𝐗𝑖,𝜎
𝑇 𝐗𝑖,𝜎 is the Gram (inner product) matrix and 

the columns of the matrix 𝐗𝑖,𝜎 correspond to the set {�̅�𝑖𝑘
𝜎 } 

representing the 𝐱𝑖-centered and then Gaussian weighted NN 
set {𝐱𝑖𝑘}, and 𝟏 denotes a column vector of ones of size 𝐾 × 1. 
The optimum reconstruction weights {𝛼𝑖𝑘}𝑘=1

𝐾  here describe 
the local properties of the distortion-free manifold structure. 

Now let us think of a special case when there is no distortion on 
the pristine original content, i.e., 𝒳 = 𝒴, the local neighborhood 
of and the manifold structure around 𝐱𝑖  would be identical for 
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𝐲𝑖 ∀𝑖. This fact leads to a fundamental observation that, these 
local geometric similarities of image spaces can be benefited 
from, and a quality index can be successfully calculated based 
on manifold distortions, by relating the intrinsic properties of 
distortion-free and distorted local patch neighborhoods via 
neighbor-embedding. To do so, the parameters of distortion-
free local neighborhood information is directly transferred to 
the distorted image manifold structure as if there were no 
distortion. These parameters simply correspond to the index 
set {𝑖𝑘} of the selected 𝐾-NN of 𝐱𝑖  which will help extract 
collocated distorted image patches {𝐲𝑖𝑘}𝑘=1

𝐾  from the correct, 
indeed ground-truth spatial coordinates in 𝐘. After transferring 
this local neighborhood information to the distorted domain, 
intrinsic local geometric properties of distorted neighborhood 
of 𝐲𝑖 can be characterized as in Equation (3) by solving 

argmin
{𝜔𝑖𝑘}

‖𝐲𝑖 − ∑ 𝜔𝑖𝑘𝐲𝑖𝑘
𝑘

‖
2,𝜎

2

  𝑠. 𝑡.   ∑ 𝜔𝑖𝑘
𝑘

= 1, ∀𝑖, (3) 

for 𝛚𝑖 = [𝜔𝑖1 𝜔𝑖2 … 𝜔𝑖𝐾]𝑇 as given in Equation (4) by 

𝛚𝑖 =
𝐆𝑖,𝜎

−1𝟏

𝟏𝑇𝐆𝑖,𝜎
−1𝟏

. (4) 

𝐆𝑖,𝜎 = 𝐘𝑖,𝜎
𝑇 𝐘𝑖,𝜎 is the inner product matrix where the columns of 

the matrix 𝐘𝑖,𝜎  correspond to the set {�̅�𝑖𝑘
𝜎 } representing the 𝐲𝑖-

centered and Gaussian weighted NN set {𝐲𝑖𝑘}, and 𝟏 denotes a 
column vector of respective size. The optimum reconstruction 
weights {𝜔𝑖𝑘}𝑘=1

𝐾  describe the desired local properties of the 
distorted manifold structure. 

The information extracted above is for both local (point-based 
via Gaussian weighting) and nonlocal (patch-based via 
reconstruction weights) intrinsic characteristics of distortion-
free and distorted local neighborhoods, and thus, is a valuable 
tool for measuring textural and structural deviations from the 
original distortion-free structure. While transferring distorted 
local neighborhood parameters set {𝜔𝑖𝑘} directly to the original 
manifold structure from which quantitative deviations can 
easily be measured, two different representations of 𝐱𝑖  ∀𝑖 are 
reconstructed using the distortion-free local neighborhood 
{𝐱𝑖𝑘}. The first one is the distortion-free representation of 𝐱𝑖 , 
i.e., �̅�𝑖 = ∑ 𝛼𝑖𝑘𝐱𝑖𝑘𝑘 ; and the second holds the properties of the 
distorted manifold structure, i.e., �̿�𝑖 = ∑ 𝜔𝑖𝑘𝐱𝑖𝑘𝑘 . The next step 
then consists in measuring the distortion between �̅�𝑖  and �̿�𝑖  as 
𝐝𝑖 = �̅�𝑖 − �̿�𝑖 = ∑ (𝛼𝑖𝑘 − 𝜔𝑖𝑘)𝐱𝑖𝑘𝑘 . Figure 1 summarizes all these 
parameter transfer procedures between distortion-free and 
distorted images and corresponding local manifold structures. 

During local neighborhood selection and characterization by 
the least-squares optimization, much more attention has been 
given to the centering pixel indexed by 𝑖. Thus, the Manifold 
Distortion Quality Index can now be defined as 𝐌𝐃𝐐𝐈[𝑖] =
(𝐝𝑖). The operator  first reshapes 𝐝𝑖  into an 𝑛 × 𝑛 distortion 
patch, then extracts the value of the centering pixel location and 
clamps it to [−2𝑚 + 1, 2𝑚 − 1] for 𝑚-bit images, if necessary. 
Finally, a Manifold Distortion MSE (MDMSE) and a Manifold 
Distortion PSNR (MDPSNR) are formulated in Equation (5) by 

𝐌𝐃𝐌𝐒𝐄 =
1

|𝒮|
∑ (𝐌𝐃𝐐𝐈[𝑖])2

𝑖
 

𝐌𝐃𝐏𝐒𝐍𝐑 = 20 log10

2𝑚 − 1

√𝐌𝐃𝐌𝐒𝐄
 

     (5) 

where |𝒳| denotes the number of patch pairs in the set 𝒳. 

 

Figure 1. Parameter transfer between distortion-free and 
distorted images and corresponding manifolds. 

3 Experimental setup and results 

The Tampere Image Database 2013 (TID2013) [48] and The 
LIVE Image Quality Assessment Database (LIVE, Release 2) 
[49],[50] are utilized and tested for the proposed QA algorithm. 
TID2013 contains 25 true color (24-bits/pixel RGB) distortion-
free and 3000 distorted images. In this database, 24 types of 
distortions with 5 different levels are introduced, i.e., there are 
120 distorted images per reference image. The LIVE Image 
Database contains 29 true color distortion-free images which 
are distorted by 5 types of distortions with different perceptual 
quality levels. LIVE consists of a total 982 test images (including 
203 reference images).  The distortion types and details of these 
datasets are given in Table 1. 

Table 1. The distortion details of TID2013 and LIVE datasets. 

Database Type Description 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
TID 

 

 AGN additive Gaussian noise 

 ANC additive noise in color components is more intensive 
than additive noise in luminance 

 SCN spatially correlated noise 

 MN masked noise 

 HFN high frequency noise 

 IN impulse noise 

 QN quantization noise 

 GB Gaussian blur 

 ID image denoising 

 JP1 JPEG compression 

 JP2K1 JPEG2K compression 

 JP2 JPEG transmission errors 

 JP2K2 JPEG2K transmission errors 

 NEPN non eccentricity pattern noise 

 LBD local block-wise distortions of different intensity 

 MS mean (intensity) shift 

 CC contrast change 

 CCS change of color saturation 

 MGN multiplicative Gaussian noise 

 CN comfort noise 

 LCNI lossy compression of noisy images 

 CQD image color quantization with dither 

 CA chromatic aberrations 

 SSR sparse sampling and reconstruction 

 
 
 

LIVE 

 JPG2K JPEG2K compression (227 images) 

 JPG JPEG compression (233 images) 

 GBlur Gaussian blur (174 images) 

 WN white noise in the RGB components (174 images) 

 FF JPEG2K transmission errors in the bit-stream using a 
fast-fading Rayleigh channel (174 images) 
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TID2013 and LIVE also provide the mean opinion score (MOS) 
for each distorted image. In TID2013, a total of 971 observers 
from Finland (116), France (72), Italy (80), Ukraine (602) and 
USA (101) have evaluated relative visual quality in 1048680 
image pairs, i.e., 524340 visual quality comparisons of distorted 
images. The obtained MOS values lie between 0 (minimal) and 
9 (maximal). The higher MOS value is the better visual quality 
of the image. In LIVE, about 20-29 human subjects have rated 
visual quality of each image in seven different experiments, 
using the same equipment and viewing conditions. Observers 
have evaluated each distortion type in order to provide a visual 
quality on a continuous linear scale with five equal regions 
labeled as “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. These 
raw scores have later been translated into a difference MOS 
value for each distorted image. 

It is worth noting here that a single scale of analysis might not 
be effective since both image resolution and viewing distance 
have great effect on the perceived quality. In practice, it has 
been suggested to use an empirical formula to determine the 
scale for images viewed from a typical distance [6]. In this 
study, all images are automatically decimated by a factor 𝐹 =
max(1, round(min(𝑀, 𝑁)/256)) with a simple averaging filter 
of size 𝐹 × 𝐹 pixels. Another keynote is that the elements of the 
set 𝒳 can be used to calculate the distortion index for all pixels, 
or a subset of pixels in the image for the sake of computational 
complexity. In the latter case, a subset �̃� can be chosen from 𝒳 
with a predetermined regular pixel offsets in both dimensions 
of the image. This paper assumes �̃� = 𝒮. 

In order to evaluate and compare the performance of MDQI 
with the competing methods, four widely utilized metrics are 
employed, namely Spearman rank-order correlation coefficient 
(SROCC) [51], Kendall rank-order correlation coefficient 
(KROCC) [52], Pearson linear correlation coefficient (PLCC) and 
root MSE (RMSE). The calculation details of these metrics are 
illustrated in Table 2.  

Table 2. The details of SROCC, KROCC, PLCC and RMSE for a 
given paired data {(𝑎1, 𝑏1), … , (𝑎𝑁, 𝑏𝑁)} consisting of 𝑁 pairs. 

Metric Formula Description 

SROCC 1 −
6 ∑ 𝑑𝑛

2
𝑛

𝑁(𝑁2 − 1)
 

𝑑𝑛: difference between 
two ranks of each 
observation, 𝑛 = 1 … 𝑁 

KROCC 
2(𝑁𝑐 − 𝑁𝑑)

𝑁(𝑁 − 1)
 

𝑁𝑐= number of rank-
concordant pairs 
𝑁𝑑= number of rank-
discordant pairs 

PLCC 
∑ (𝑎𝑛 − 𝜇𝑎)(𝑏𝑛 − 𝜇𝑏)𝑛

√∑ (𝑎𝑛 − 𝜇𝑎)2
𝑛 √∑ (𝑏𝑛 − 𝜇𝑏)2

𝑛

 
𝜇𝑎= sample mean of 𝑎 
𝜇𝑏= sample mean of 𝑏 
𝑛 = 1 … 𝑁 

RMSE √
∑ (𝑎𝑛 − 𝑏𝑛)2

𝑛

𝑁
 𝑛 = 1 … 𝑁 

While SROCC and KROCC measure the ranking monotonicity 
between the subjective MOS and the objective score variables, 
both PLCC and RMSE need a prior regression analysis to get a 
nonlinear mapping between these variables. For this purpose, 
a five-parameter logistic function with a linear term that is 
constrained to be monotonic is utilized as in Equation (6) by 

𝑓(𝑥) = 𝛽1 (
1

2
−

1

1 + 𝑒𝛽2(𝑥−𝛽3)
) + 𝛽4𝑥 + 𝛽5 (6) 

where the parameter set {𝛽𝑝}
𝑝=1

5
 needs to be fitted to minimize 

the MSE between the mapped objective scores and the MOS 
[49]. A better objective QA metric is expected to have higher 
SROCC, KROCC and PLCC values, but a lower RMSE value. 

For computational purposes, local search region Ω𝑖  is fixed to a 
square window of size 27 × 27 pixels centered around the pixel 
indexed by 𝑖 ∀𝑖, and all image patches are of size 9 × 9 pixels, 
i.e., 𝑛 = 9. This block size has been experimentally shown to be 
large enough in order to capture local structures and fine 
details, to be small enough in order to apply neighbor-
embedding in terms of texture synthesis. The standard 
deviation 𝜎 of the 9 × 9 Gaussian kernel used for weighting is 
set to 3.50, and then this kernel is uniformly normalized to have 
a centering coefficient equal to “1”. The same kernel is applied 
both for local neighborhood (𝐾-NN) selection and for local 
geometry characterization by least-squares optimization. 𝐾 is 
set to 8 providing a sparsity notion for the representation. It is 
important note here that all these parameters are fixed in the 
reported experimental results for a fair comparison with the 
competing methods. 

For distortion-free and distorted neighborhood optimizations, 
mean subtracted image patches are employed as textural 
features rather than patch absolute intensities. Although first 
and/or second order gradients could be extracted as in [41] and 
[53] for this purpose, it is sufficient here to consider 
representative features as relative textural and structural 
variations with respect to the patch mean. In this way, the 
distortion 𝐝𝑖  can easily detect local intensity and structural 
changes. 

Figure 2 depicts a visual example of image quality index maps 
for the Einstein image. In this example, all distorted images have 
roughly the same MSE values with respect to the original image, 
but they have obviously different visual quality. MDMSE leads 
to a better indication of image quality assessment together with 
a visual index map. The details of the calculated QA statistics 
with MDQI in comparison to the widely used MSE and SSIM 
scores are summarized in Table 3. 

All experiments performed for all quality metrics on TID 2013 
and LIVE are reported in Table 4, Table 5, and Table 6. Table 4 
and Table 5 illustrate detailed performance comparison on 
each individual distortion type (as listed in Table 1) in terms of 
SROCC on TID 2013 and LIVE, respectively. In these tables, the 
statistics are calculated on each distortion type separately and 
the top-three performing QA models are given in bold (per-
row). It can be clearly observed from these statistics, MDQI 
demonstrates a strong global promise when compared to both 
state-of-the-art objective methods and subjective evaluation 
scores. In addition to that, it is better than the most distortion 
types, and in some cases a comparable alternative to the other 
QA models. On the other hand, MDQI tends to fail when there 
are local or global uniform intensity changes and/or contrast 
changes between images. This can be well-explained with the 
constrained optimization of each local neighborhood, which is 
in fact translation invariant because of the sum-to-one 
constraint on weights. This observation however is aligned 
with the HVS which is insensitive to uniform intensity changes 
up to a level.  

Table 6 further gives an overall performance comparison of 
several QA models in terms of SROCC, KROCC, PLCC and RMSE 
on TID 2013 and LIVE datasets. In this table, the statistics are 
calculated on the whole datasets employed and the top-three 
performing QA models are highlighted in bold (per-row). MDQI 
outperforms most of the models on TID 2013 and in some cases, 
it is comparable to the other QA models on LIVE. 

The nonlinear regression parameters in Equation (6) are 
obtained using iterative least squares estimation with initial 
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values set to {𝛽𝑝} = {MOS𝜎 , 1, QA𝜇 , 1, 0.1} where MOS𝜎 and 

QA𝜇  represent the standard deviation of the MOS and the mean 

of the QA model selected, respectively. This initialization of 
parameters gives a meaningful conditioning while reducing the 
probability of having a local minimum in the final estimation. 

Figure 3 demonstrates some examples of scatter plots of the 
MOS versus MDQI together with other selected QA models, i.e., 
IWSSIM, GSM, MAD, FSIM, MSSIM, SSIM, PSNR. The black curves 
shown in this figure are obtained by the logistic function. It can 
also be seen from these scatter plots that MDQI has a consistent 
correlation with the MOS. 

 

      

      

      

Figure 2. The Einstein image. (Top Left-to-right) Original (MSE = 0, SSIM = 1, MDMSE = 0); uniform mean shift (MSE = 144, SSIM = 
0.988, MDMSE = 0.001); contrast change (MSE=144, SSIM = 0.913, MDMSE = 30.50); impulse noise (MSE = 144, SSIM = 0.840, 

MDMSE=20.93); blur (MSE=144, SSIM=0.694, MDMSE = 96.41);  JPEG compression (MSE = 142, SSIM = 0.662, MDMSE = 121.48). 
(Bottom Left-to-right) MDQI maps of the original, uniform mean shift, contrast change, impulse noise, blur and JPEG compression. 

    

    

    

Figure 3. Example scatter plots of the MOS vs. scores of QA models on TID 2013. The black curves are obtained by the logistic 
regression function. (Top Left-to-right) MDQI, IWSSIM, GSM, MAD; (Bottom Left-to-right) FSIM, MSSIM, SSIM, PSNR. 

Table 3. The Einstein image statistics. 

Type MSE SSIM MDMSE 
Original 0 1 0 
Mean Shift 144 0.988 0.001 
Contrast Change 144 0.913 30.50 
Impulse Noise 144 0.840 20.93 
Blur 144 0.694 96.41 
JPEG Compression 142 0.662 121.48 
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Table 4. Performance comparison of several QA models for each individual distortion type of TID2013 in terms of SROCC. 

TID PSNR SSIM MSSIM VSNR VIF UQI IFC NQM WSNR SNR FSIM MAD GSM IWSSIM IWPSNR MDQI 
AGN 0.936 0.867 0.861 0.824 0.914 0.583 0.707 0.814 0.855 0.864 0.897 0.859 0.906 0.858 0.927 0.916 
ANC 0.891 0.773 0.769 0.664 0.848 0.496 0.589 0.718 0.811 0.838 0.818 0.738 0.818 0.766 0.864 0.831 
SCN 0.920 0.851 0.854 0.807 0.908 0.606 0.724 0.787 0.882 0.850 0.875 0.871 0.916 0.846 0.956 0.916 
MN 0.799 0.777 0.745 0.662 0.837 0.567 0.691 0.690 0.595 0.718 0.794 0.573 0.729 0.754 0.681 0.814 
HFN 0.950 0.863 0.869 0.814 0.907 0.657 0.773 0.863 0.892 0.915 0.897 0.850 0.887 0.874 0.918 0.915 
IN 0.899 0.750 0.750 0.790 0.870 0.505 0.622 0.791 0.909 0.898 0.808 0.687 0.796 0.745 0.914 0.888 
QN 0.904 0.866 0.871 0.854 0.861 0.656 0.662 0.826 0.890 0.879 0.871 0.866 0.884 0.859 0.898 0.854 
GB 0.950 0.967 0.962 0.945 0.966 0.912 0.905 0.901 0.934 0.936 0.955 0.863 0.969 0.964 0.917 0.957 
ID 0.951 0.925 0.931 0.921 0.927 0.767 0.826 0.918 0.920 0.938 0.930 0.906 0.943 0.925 0.914 0.935 
JP1 0.960 0.920 0.920 0.860 0.937 0.786 0.869 0.887 0.919 0.927 0.933 0.894 0.928 0.917 0.935 0.948 
JP2K1 0.969 0.947 0.948 0.921 0.958 0.866 0.910 0.926 0.927 0.924 0.958 0.913 0.960 0.951 0.951 0.970 
JP2 0.798 0.849 0.824 0.755 0.856 0.845 0.773 0.736 0.665 0.771 0.847 0.756 0.851 0.820 0.768 0.827 
JP2K2 0.950 0.883 0.874 0.820 0.890 0.749 0.809 0.808 0.826 0.897 0.891 0.860 0.918 0.865 0.857 0.918 
NEPN 0.733 0.782 0.804 0.736 0.812 0.769 0.542 0.747 0.788 0.703 0.792 0.828 0.813 0.811 0.804 0.830 
LBD 0.087 0.572 0.144 0.110 0.497 0.513 0.420 0.001 0.138 0.071 0.551 0.059 0.642 0.185 0.081 0.426 
MS 0.767 0.775 0.791 0.574 0.625 0.744 0.580 0.608 0.773 0.774 0.752 0.598 0.787 0.789 0.617 0.606 
CC 0.431 0.377 0.461 0.334 0.828 0.361 0.358 0.462 0.418 0.422 0.468 0.192 0.486 0.451 0.419 0.246 
CCS 0.009 0.414 0.362 0.159 0.230 0.301 0.379 0.124 0.077 0.006 0.378 0.038 0.359 0.340 0.088 0.679 
MGN 0.898 0.780 0.780 0.801 0.875 0.505 0.666 0.768 0.800 0.878 0.847 0.793 0.835 0.794 0.889 0.889 
CN 0.936 0.857 0.878 0.858 0.923 0.738 0.835 0.870 0.916 0.890 0.912 0.874 0.912 0.892 0.931 0.944 
LCNI 0.948 0.906 0.910 0.914 0.949 0.780 0.850 0.905 0.949 0.907 0.947 0.932 0.956 0.912 0.967 0.958 
CQD 0.928 0.854 0.882 0.882 0.877 0.665 0.669 0.862 0.896 0.897 0.876 0.864 0.897 0.877 0.893 0.885 
CA 0.889 0.877 0.868 0.847 0.859 0.783 0.804 0.810 0.827 0.883 0.871 0.766 0.882 0.859 0.820 0.848 
SSR 0.962 0.946 0.950 0.940 0.957 0.867 0.918 0.946 0.948 0.919 0.956 0.947 0.967 0.953 0.959 0.964 

avg 0.811 0.807 0.792 0.741 0.838 0.668 0.703 0.740 0.773 0.779 0.826 0.730 0.835 0.792 0.790 0.832 
std 0.257 0.149 0.193 0.225 0.163 0.159 0.160 0.231 0.235 0.249 0.149 0.258 0.148 0.190 0.246 0.174 

Table 5. Performance comparison of several QA models for each individual distortion type of LIVE in terms of SROCC. 

LIVE PSNR SSIM MSSIM VSNR VIF UQI IFC NQM WSNR SNR FSIM MAD GSM IWSSIM IWPSNR MDQI 
JPG2K 0.970 0.984 0.985 0.967 0.988 0.934 0.955 0.973 0.966 0.957 0.988 0.957 0.987 0.983 0.983 0.977 
JPG 0.970 0.984 0.985 0.961 0.987 0.950 0.965 0.979 0.977 0.965 0.987 0.952 0.985 0.984 0.984 0.971 
GBlur 0.931 0.972 0.980 0.973 0.981 0.968 0.970 0.908 0.919 0.913 0.983 0.956 0.972 0.984 0.965 0.952 
WN 0.989 0.982 0.987 0.988 0.992 0.934 0.966 0.991 0.981 0.984 0.980 0.978 0.987 0.988 0.986 0.985 
FF 0.946 0.974 0.931 0.905 0.959 0.961 0.961 0.896 0.896 0.948 0.971 0.945 0.965 0.941 0.874 0.947 

avg 0.961 0.979 0.974 0.959 0.981 0.949 0.963 0.949 0.948 0.953 0.982 0.958 0.979 0.976 0.958 0.966 
std 0.020 0.005 0.021 0.028 0.012 0.014 0.005 0.039 0.034 0.023 0.006 0.011 0.009 0.018 0.043 0.015 

Table 6. Performance comparison of several QA models. TID2013 and LIVE in terms of SROCC, KROCC, PLCC and RMSE. 

TID PSNR SSIM MSSIM VSNR VIF UQI IFC NQM WSNR SNR FSIM MAD GSM IWSSIM IWPSNR MDQI 

SROCC 0.634 0.742 0.756 0.663 0.769 0.633 0.570 0.646 0.533 0.617 0.802 0.721 0.795 0.742 0.630 0.832 
KROCC 0.493 0.559 0.579 0.496 0.592 0.458 0.422 0.476 0.404 0.467 0.629 0.549 0.626 0.563 0.465 0.647 
PLCC 0.705 0.760 0.805 0.689 0.824 0.691 0.673 0.676 0.611 0.681 0.859 0.760 0.846 0.670 0.602 0.852 
RMSE 0.880 0.806 0.735 0.899 0.702 0.897 0.917 0.913 0.981 0.908 0.635 0.806 0.660 0.921 0.991 0.650 

LIVE PSNR SSIM MSSIM VSNR VIF UQI IFC NQM WSNR SNR FSIM MAD GSM IWSSIM IWPSNR MDQI 
SROCC 0.958 0.973 0.970 0.957 0.979 0.940 0.952 0.954 0.953 0.952 0.981 0.957 0.977 0.973 0.952 0.965 
KROCC 0.832 0.864 0.862 0.829 0.883 0.802 0.810 0.830 0.827 0.821 0.888 0.844 0.876 0.873 0.825 0.844 
PLCC 0.949 0.828 0.637 0.956 0.965 0.880 0.879 0.949 0.946 0.941 0.848 0.961 0.772 0.651 0.945 0.960 
RMSE 9.86 17.53 24.12 9.17 8.25 14.86 14.94 9.86 10.14 10.59 16.60 8.71 19.89 23.75 10.21 8.71 

 

4 Conclusion 

In this study, a novel technique for full-reference QA through 
manifold learning is developed with results highly correlated to 
subjective assessments. To the best of available knowledge, the 
proposed algorithm is a new framework which takes advantage 
of texture synthesis and manifold sampling through neighbor 
embeddings of image patches. The proposed model, namely 
MDQI, i.e., MDMSE and MDPSNR, is capable of quantitively 
evaluating perceived image degradations in structural and 
textural variations, and moreover it can produce an index map 
because of its pixel-based structure. Possible future directions 
include the investigation of other efficient ways to measure 
distortion values through intrinsic properties of each individual 
neighborhood, a gradient-features based characterization of 
neighborhoods, an adaptation of the constrained optimization 
to handle local/global uniform intensity and contrast changes, 
and a multi-scale extension to MDQI (MMDQI) not only for 
increasing its accuracy but also for assessing quality of images 
with different sizes. 

5 Author contribution statements 

In the scope of this study, Mehmet TÜRKAN, in the formation of 
the idea, the design and the literature review, performing 
analyzes and examining the results, the spelling and checking 
the article in terms of content were contributed. 

6 Ethics committee approval and conflict of 
interest statement 

There is no need to obtain permission from the ethics 
committee for the article prepared. 

There is no conflict of interest with any person / institution in 
the article prepared. 

7 References 
[1] Wang Z, Bovik AC. “Mean squared error: Love it or leave 

it? A new look at signal fidelity measures”. IEEE Signal 
Processing Magazine, 26(1), 98-117, 2009. 

[2] Mannos J, Sakrison D. “The effects of a visual fidelity 
criterion of the encoding of images”. IEEE Transactions on 
Information Theory, 20(4), 525-536, 1974. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 27(5), 610-617, 2021 
M. Türkan 

 

616 
 

[3] Mitsa T, Varkur KL. “Evaluation of contrast sensitivity 
functions for the formulation of quality measures 
incorporated in halftoning algorithms”. IEEE 1993 
International Conference on Acoustics, Speech, and Signal 
Processing, Minneapolis, MN, USA, 27-30 April 1993. 

[4] Damera-Venkata N, Kite TD, Geisler WS, Evans BL, Bovik 
AC. “Image quality assessment based on a degradation 
model”. IEEE Transactions on Image Processing,  
9(4), 636-650, 2000. 

[5] Wang Z, Bovik AC. “A universal image quality index”.  
IEEE Signal Processing Letters, 9(3), 81-84, 2002. 

[6] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. “Image 
quality assessment: From error visibility to structural 
similarity”. IEEE Transactions on Image Processing,  
13(4), 600-612, 2004. 

[7] Wang Z, Simoncelli EP, Bovik AC. “Multiscale structural 
similarity for image quality assessment”. 2003 Asilomar 
Conference on Signals, Systems & Computers, Pacific Grove, 
CA, USA, 9-12 November 2003. 

[8] Wang Z, Li Q. “Information content weighting for 
perceptual image quality assessment”. IEEE Transactions 
on Image Processing, 20(5), 1185-1198, 2011. 

[9] Larson EC, Chandler DM. “Most apparent distortion: Full-
reference image quality assessment and the role of 
strategy”. Journal of Electronic Imaging, 2010.  
https://doi.org/10.1117/1.3267105. 

[10] Liu A, Lin W, Narwaria M. “Image quality assessment 
based on gradient similarity”. IEEE Transactions on Image 
Processing, 21(4), 1500-1512, 2012. 

[11] Sheikh HR, Bovik AC, de Veciana G. “An information 
fidelity criterion for image quality assessment using 
natural scene statistics”. IEEE Transactions on Image 
Processing, 14(12), 2117-2128, 2005. 

[12] Sheikh HR, Bovik AC. “Image information and visual 
quality”. IEEE Transactions on Image Processing,  
15(2), 430-444, 2006. 

[13] Chandler DM, Hemami SS. “VSNR: A wavelet-based visual 
signal-to-noise ratio for natural images”. IEEE 
Transactions on Image Processing, 16(9), 2284-2298, 
2007. 

[14] Zhang L, Zhang L, Mou X. “RFSIM: A feature based image 
quality assessment metric using Riesz transforms”. IEEE 
2010 International Conference on Image Processing,  
Hong Kong, China, 26-29 September 2010. 

[15] Zhang L, Zhang L, Mou X, Zhang D. “FSIM: A feature 
similarity index for image quality assessment”. IEEE 
Transactions on Image Processing, 20(8), 2378-2386, 
2011. 

[16] Wu J, Lin W, Shi G. “Image quality assessment with 
degradation on spatial structure”. IEEE Signal Processing 
Letters, 21(4), 437-440, 2014. 

[17] Wang F, Sun X, Guo Z, Huang Y, Fu K. “An object-distortion 
based image quality similarity”. IEEE Signal Processing 
Letters, 22(10), 1534-1537, 2015. 

[18] Criminisi A, Perez P, Toyama K. “Region filling and object 
removal by exemplar-based image inpainting”. IEEE 
Transactions on Image Processing, 13(9), 1200-1212, 
2004. 

[19] Zhang Y, Xiao J, Shah M. “Region completion in a single 
image”. 2004 Eurographics, Grenoble, France, 30 August-3 
September 2004. 

[20] Sun J, Yuan L, Jia J, Shum HY. “Image completion with 
structure propagation”. ACM Transactions on Graphics, 
24(3), 861-868, 2005. 

[21] C. Barnes, Shechtman E, Finkelstein A, Goldman DB. 
“PatchMatch: A randomized correspondence algorithm 
for structural image editing”. ACM Transactions on 
Graphics, 2009. 
https://doi.org/10.1145/1531326.1531330. 

[22] Buades A, Coll B, Morel J. “A non-local algorithm for image 
denoising”. IEEE 2005 Computer Society Conference on 
Computer Vision and Pattern Recognition, San Diego, CA, 
USA, 20-25 June 2005. 

[23] Mahmoudi M, Sapiro G. “Fast image and video denoising 
via nonlocal means of similar neighborhoods”. IEEE Signal 
Processing Letters, 12(12), 839-842, 2005. 

[24] Dabov K, Foi A, Katkovnik V, Egiazarian K. “Image 
denoising with block-matching and 3D filtering”. SPIE 
2006 Electronic Imaging, San Jose, CA, USA, 17 February 
2006. 

[25] Freeman WT, Jones TR, Pasztor EC. “Example-based 
super-resolution”. IEEE Computer Graphics and 
Applications, 22(2), 56-65, 2002.  

[26] Glasner D, Bagon S, Irani M. “Super-resolution from a 
single image”. IEEE 2009 International Conference on 
Computer Vision, Kyoto, Japan, 29 September-2 October 
2009. 

[27] Freedman G, Fattal R. “Image and video upscaling from 
local self-examples”. ACM Transactions on Graphics,  
30(2), 2011. https://doi.org/10.1145/1944846.1944852. 

[28] Michaeli T, Irani M. “Nonparametric blind super-
resolution”. IEEE 2013 International Conference on 
Computer Vision, Sydney, NSW, Australia, 1-8 December 
2013. 

[29] Sugimoto K, Kobayashi M, Suzuki Y, Kato S, Boon CS. “Inter 
frame coding with template matching spatio-temporal 
prediction”. IEEE 2004 International Conference on Image 
Processing, Singapore, Republic of Singapore,  
24-27 October 2004. 

[30] Yang J, Yin B, Sun Y, Zhang N. “A block-matching based 
intra frame prediction for H.264/AVC”. IEEE 2006 
International Conference on Multimedia and Expo,  
Toronto, Ontario, Canada, 9-12 July 2006. 

[31] Tan TK, Boon CS, Suzuki Y. “Intra prediction by template 
matching”. IEEE 2006 International Conference on Image 
Processing, Atlanta, GA, USA, 8-11 October 2006. 

[32] Tan TK, Boon CS, Suzuki Y. “Intra prediction by averaged 
template matching predictors”. IEEE 2007 Consumer 
Communications and Networking Conference, Las Vegas, 
NV, USA, 11-13 January 2007. 

[33] Turkan M, Guillemot C. “Sparse approximation with 
adaptive dictionary for image prediction”. IEEE 2009 
International Conference on Image Processing,  
Cairo, Egypt, 7-10 November 2009. 

[34] Turkan M, Guillemot C. “Image prediction: Template 
matching vs. sparse approximation”. IEEE 2010 
International Conference on Image Processing, Hong Kong, 
China, 26-29 September 2010. 

[35] Turkan M, Guillemot C. “Image prediction based on 
neighbor-embedding methods”. IEEE Transactions on 
Image Processing, 21(4), 1885-1898, 2012. 

[36] Efros AA, Leung TK. “Texture synthesis by non-parametric 
sampling”. IEEE 1999 International Conference on 
Computer Vision, Kerkyra, Greece, 20-27 September 1999. 

[37] Wei LY, Levoy M. “Fast texture synthesis using tree-
structured vector quantization”. 2000 Annual Conference 
on Computer Graphics and Interactive Techniques,  
New Orleans, LA, USA, 23-28 July 2000. 

https://doi.org/10.1117/1.3267105
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/1944846.1944852


 
 
 
 

Pamukkale Univ Muh Bilim Derg, 27(5), 610-617, 2021 
M. Türkan 

 

617 
 

[38] Ashikhmin M. “Synthesizing natural textures”. 2001 
Symposium on Interactive 3D Graphics, Chapel Hill, NC, 
USA, 26-29 March 2001. 

[39] Besag J. “Spatial interaction and the statistical analysis of 
lattice systems”. Journal of the Royal Statistical Society 
Series B, 36(2), 192-236, 1974. 

[40] Cross GR, Jain AK. “Markov random field texture models”. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 5(1), 25-39, 1983. 

[41] Chang H, Yeung DY, Xiong Y. “Super-resolution through 
neighbor embedding”. IEEE 2004 Computer Society 
Conference on Computer Vision and Pattern Recognition, 
Washington, DC, USA, 27 June-2 July 2004. 

[42] Turkan M, Thoreau D, Guillotel P. “Self-content super-
resolution for ultra-HD up-sampling”. 2012 European 
Conference on Visual Media Production, London, UK,  
5-6 December 2012. 

[43] Turkan M, Thoreau D, Guillotel P. “Optimized neighbor 
embeddings for single-image super-resolution”. IEEE 
2013 International Conference on Image Processing, 
Melbourne, VIC, Australia, 15-18 September 2013. 

[44] Turkan M, Thoreau D, Guillotel P. “Iterated neighbor-
embeddings for image super-resolution”. IEEE 2014 
International Conference on Image Processing,  
Paris, France, 27-30 October 2014. 

[45] Tenenbaum JB, de Silva V, Langford JC. “A global geometric 
framework for nonlinear dimensionality reduction”. 
Science, 290(5500), 2319-2323, 2000. 

[46] Roweis ST, Saul LK. “Nonlinear dimensionality reduction 
by locally linear embedding”. Science, 290(5500)  
2323-2326, 2000. 

[47] Donoho DL, Grimes C. “Hessian eigenmaps: Locally linear 
embedding techniques for high-dimensional data”.  
2003 Proceedings of the National Academy of Sciences, 
100(10), 5591-5596, 2003. 

[48] Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, 
Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo CCJ. 
“Image database TID2013: Peculiarities, results and 
perspectives”. Signal Processing: Image Communication, 
30, 57-77, 2015. 

[49] Sheikh HR, Sabir MF, Bovik AC. “A statistical evaluation of 
recent full reference image quality assessment 
algorithms”. IEEE Transactions on Image Processing, 
15(11), 3440-3451, 2006. 

[50] Sheikh HR, Wang Z, Cormack L, Bovik AC. “LIVE Image 
Quality Assessment Database Release 2”. 
http://live.ece.utexas.edu/research/quality 
(03.05.2020). 

[51] Spearman C. “The proof and measurement of association 
between two things”. The American Journal of Psychology, 
15(1), 72-101, 1904. 

[52] Kendall MG. “A new measure of rank correlation”. 
Biometrika, 30(1-2), 81-93, 1938. 

[53] Yang J, Wright J, Huang TS, Ma Y. “Image super-resolution 
via sparse representation”. IEEE Transactions on Image 
Processing, 19(11), 2861-2873, 2010. 

 

 

http://live.ece.utexas.edu/research/quality

