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Abstract  Öz 

The use of Q-learning methods in multi-robot systems is a challenging 
area. Multi-robot systems have dynamic and partially observable 
nature because of robot’s independent decision-making and acting 
mechanisms. Whereas, Q-learning is defined on Markovian 
environments theoretically. One way to apply Q-learning in multi robot 
systems is centralized learning. It learns optimal Q-values for state 
space of overall system and joint action spaces of all agents. In this case, 
the system can be considered as stationary and optimal solutions can be 
converged. But, centralized learning requires full knowledge of the 
environment, perfect inter-robot communication and good 
computational power. Especially for large systems, the computational 
cost becomes huge because of exponentially growing learning space size 
with the number of robots. The proposed approach in this study,  
subG-CQL, divides the overall system into small-sized sub-groups 
without adversely affecting the system's task performing abilities. Each 
sub-group consists of less number of robots performing less tasks and 
learns in centralized manner for its own team. So, the learning space 
dimension is reduced to a reasonable level and required communication 
remains limited to the robots in the same the sub-group. Due the 
centralized learning is used, it is expected that the successful results are 
achieved. Experimental studies show that the proposed algorithm 
provides increase in the task assignment performance of the system and 
efficient use of system resources. 

 Çok robotlu sistemlerde Q-öğrenme yönteminin kullanımı oldukça 
problemlidir. Çok robotlu sistemlerde, robotun bağımsız karar verme ve 
hareket etme mekanizmaları nedeniyle dinamik ve kısmen 
gözlemlenebilir yapıya sahiptir. Oysa, Q-öğrenme yöntemi teorik olarak 
Markovian olarak nitelendirilebilecek ortamlar üzerinde 
tanımlanmıştır. Çok robotlu sistemlerde Q-öğrenmeyi uygulamanın bir 
yolu, merkezi öğrenmedir. Merkezi öğrenme, tüm sistemin durum uzayı 
ve tüm robotların tümleşik hareket uzayları için optimal Q-değerlerini 
öğrenir. Bu durumda, sistem statik olarak değerlendirilmekte ve 
optimal çözüm yakınsama mümkün olmaktadır. Ancak, merkezi 
öğrenme, çevre hakkında tam bilgi edinmeyi, robotlar arası iyi bir 
haberleşme sağlanmasını ve iyi hesaplama gücü gerektirir. Özellikle 
büyük sistemler için, robot sayısındaki artışla birlikte üstel büyüyen 
öğrenme uzayı boyutu nedeniyle hesaplama maliyeti çok yüksek 
olmaktadır. Bu çalışmada önerilen yaklaşım olan subG-CQL, sistemin 
görev yapma yeteneklerini olumsuz yönde etkilemeden genel sistemi 
küçük boyutlu alt gruplara ayırır. Her bir alt grup daha az sayıda 
robottan oluşur, daha az görev yapar ve kendi ekibi için merkezi bir 
şekilde öğrenir. Böylece öğrenme alanı boyutu makul bir düzeye 
indirilir ve gerekli iletişim aynı alt gruptaki robotlarla sınırlı kalır. 
Merkezi öğrenmenin kullanılması nedeniyle başarılı sonuçlara 
ulaşılması beklenmektedir. Deneysel çalışmalar, önerilen algoritmanın 
sistemin görev atama performansında artış ve sistem kaynaklarının 
verimli kullanımını sağladığını göstermektedir. 

Keywords: Multi-Robot systems, Task allocation, Q-Learning, 
Centralized learning. 

 Anahtar kelimeler: Çok robotlu sistemler, Görev atama, Q-Öğrenme, 
Merkezi öğrenme. 

1 Introduction 

With the rapid growth of technology, multi-robot systems 
(MRS) become most popular especially for complex 
applications. MRS has the ability of faster task execution 
because team members can run simultaneously. MRS is highly 
fault-tolerant, when one robot gets out-of-run the others take 
over its role. And also, it has distributed sensing and acting 
facilities which provide wide working area, fast and flexible 
execution. [1]. An MRS environment is partially observable and 
dynamic in nature [2]. The robots in MRS operate with their 
own local sensing and each has its decision-making and acting 
mechanisms. Moreover, robot interaction and information 
sharing are complicated due to noisy and insufficient 
communication [3]. These explain why a precise and accurate 
coordination in MRS should be provided [4]. 

                                                           
*Corresponding author/Yazışılan Yazar 

Multi-robot task allocation (MRTA) is the process of ensuring 
that robots do the appropriate tasks at right time in an 
appropriate order [5]. MRTA has a key function to get the 
necessary coordination and optimize system performance. One 
widely used approach to solve MRTA problems is auction 
protocols, which is a special kind of market-based approaches 
[6]. Auction-based task allocation approaches have advantages 
of implementation simplicity and distributed planning 
centralized decision-making ability [7]. Distributed mapping 
[8], multi-robot box pushing [6], multi-robot path planning [9] 
are some examples of auction based multi robot coordination. 
In auction protocols, it is considered that the tasks are items 
and robots are customers. Tasks are announced by auctioneer 
robot with base price representing their costs. Customer robots 
calculate the cost of announced tasks according to their own 
possibilities and send bids to auctioneer. The cost of a task may 
be travelled distance or execution time for mobile robots [10]. 

https://orcid.org/0000-0002-5456-3613
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Auction process ends up by allocating the tasks to suitable 
robots in a manner that maximizes the system gain [11],[12]. 

In MRS, it is not possible to guarantee perfect coordination by 
traditional ways because of environment’s partially observable 
and ambiguous nature [13]. Generally, tasks arise at 
unpredictable instants in unpredictable sequence while system 
is running. For this reason, it is not possible to pre-plan the 
assignment of tasks to robots. Task allocation needs to be 
performed instantaneously as the tasks appear [14]. Moreover, 
each robot has independent sensing, decision-making and 
acting mechanisms. This prevents robots from predicting 
others’ behaviors. An efficient system coordination is only 
possible if robots can adopt to changing environmental 
conditions. Thanks to the acquisition of learning skills to the 
system, robots would overcome unpredicted and uncertain 
situations [15]. As an example of learning-based coordination, 
robots use their past task allocation experiences for bidding 
future tasks [16]. In [17], a learning-based approach to reason 
about future task allocation. Robots learn the bid values and use 
them in auction process successfully for underwater 
exploration which is a dynamic environment with high level 
uncertainty [18]. Efficient solutions are obtained by using 
reinforcement learning for dynamic task allocation problems in 
fire-disaster response [19],[20]. 

Q-learning (QL) is a value-function based model-free 
reinforcement learning method [21]. It learns optimal Q values 
for each state-action pair in tabular form [4]. QL is suitable to 
apply for complex applications, e.g., robotic systems, because it 
does not require environment formulation. In fact, QL is defined 
for MDP environments theoretically. It is problematic to apply 
for MRS due to dynamic and partially observable 
characteristics of them [22]. One way to use QL in MRS is 
distributed learning approach in which the robots learn only for 
their own state-action pairs. Whereas it is easy to implement, 
that the environment is not stationary so far, contradicts the 
requirement of MDP environment. So, distributed learning does 
not assure to reach optimal solution. The other way is 
centralized learning that works on joint state and joint action 
spaces. This needs perfect inter-agent communication. In 
centralized learning, joint action space dimension increases 
exponentially with the number of robots. Especially for large 
systems, the huge learning space dimension causes 
computational and implementational difficulties [23]. 

In this study, a new method, subG-CQL algorithm, is proposed 
to overcome the problems encountered in the use of QL in MRS. 
The main goal of this approach is to divide the system into 
smaller sub-groups by allowing some robots to concentrate on 
specific tasks without adversely affecting the system. subG-CQL 
algorithm has a positive all-round impact on system 
performance. It becomes possible to use the robots more 
efficiently as they deal with less variety of tasks. Learning is 
carried out by centralized manner in these sub-groups, which 
are completely independent from each other. Thus, it is 
possible to exploit the advantage of convergence to the optimal 
solution of centralized learning. In addition, the scalability 
problem arising from the large learning dimension, which is the 
biggest problem of centralized learning, has been solved. The 
comparative results show the successful solutions of the 
proposed method on system performance.  

The arrangement of the paper is as follows: In Section 2, Q-
learning basics for single-agent and multi-agent cases are given 
briefly. Section 3 examines the problem handled in this study. 

The proposed approach is explained, and algorithm is given in 
Section 4. Section 5 is about application details, such as system 
structure and performance metrics. Experimental results and 
comments are included in Section 6. Conclusion part is in 
Section 7. 

2 Q-Learning basics 

Reinforcement learning is a class of machine learning 
techniques that do not need any mentor or system model [24]. 
Learning process takes place based on the feedback which is the 
measure of the changes in environment states as a result of 
agent’s action. In reinforcement learning theory, this feedback 
is called as reward. If the agent’s action causes the state to 
change as desired, the reward receives a value in a way that 
reinforces this action. In the opposite case, the reward value is 
in the form of penalty obstructing this action. In short, 
reinforcement learning techniques are methods of trial-and-
error. Due it does not require any prior information about the 
system, reinforcement learning methods seem like a good 
learning approach especially for complex environments [21]. 

Q-learning (QL) is a reinforcement learning method based on 
value function approach. In QL proposed by [22], an agent 
learns Q values of each state-action pair by using reward 
received as a feedback of its actions’ effect on environment 
states. Theoretical details of QL for both single-agent and multi-
agent cases are given below. 

2.1 Single agent Q-Learning  

Single agent Q-learning is defined on the environment defined 
as Markov decision process. A Markov decision process (MDP) 
is a tuple of <  𝑆, 𝐴, 𝑃, 𝜌 >. Here, 𝑆 is the set of discrete and 
finite states of environment, 𝐴 is the set of discrete and finite 
actions of agent, 𝑃: 𝑆 × 𝐴 × 𝑆 → 𝛱(𝑆): [0,1] is the probabilistic 
state transition function and 𝜌: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward 
function in reel numbers [19]. 

At step 𝑘, agent takes action 𝑎(𝑘) ∈ 𝐴 then environment state, 
𝑠(𝑘) ∈ 𝑆, is switched to 𝑠(𝑘 + 1) ∈ 𝑆. Agent receives the 
reward, 𝑟(𝑘) = 𝜌(𝑠(𝑘), 𝑎(𝑘), 𝑠(𝑘 + 1)), as feedback of its 
action’s effect on environment [24]. Agent’s action 𝑎(𝑘) at state 
𝑠(𝑘) is determined by agent’s action policy, ℎ. In MDP, each 
agent has a deterministic, static, and optimal action policy [ 21]. 
For each step, action policy ℎ leads agent selects its action in a 
manner that it maximizes the expected value of overall gain. 
Action-value function 𝑄ℎ: 𝑆 𝑥 𝐴 → 𝑅, implies the expected total 
gain value of each state-action pair in according to action policy. 
Action-value function is the discounted sum of all future reward 
and it is expressed as in (1), where 𝛾 is the discount factor. 

 𝑄ℎ(𝑠, 𝑎) = 𝐸{∑ 𝛾𝑖∞
𝑖=0 𝑟(𝑘 + 𝑖)|  𝑠 = 𝑠(𝑘), 𝑎 = 𝑎(𝑘), ℎ} (1) 

Optimal action-value function is defined as 𝑄-function given in 
equation (2) and it satisfies Bellman optimality equation [25]. 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥
ℎ

 𝑄ℎ(𝑠, 𝑎), ∀𝑠 ∈ 𝑆 𝑣𝑒 ∀𝑎 ∈ 𝐴 (2) 

Q-learning is a value-function based and model-free 
reinforcement learning method [26]. In Q-learning, optimal Q-
values for each-state action pair are learned in an iterative 
manner by the equation in (3). 𝛾 is the discount factor and 𝛼 is 
the learning rate [27]. 

𝑄(𝑠(𝑘), 𝑎(𝑘)) = 𝑄(𝑠(𝑘), 𝑎(𝑘))

+ 𝛼𝑘 [𝑟(𝑘) +  𝛾 𝑚𝑎𝑥
𝑎′∈𝐴

 𝑄𝑘(𝑠(𝑘 + 1), 𝑎′)

−  𝑄(𝑠(𝑘), 𝑎(𝑘))] 

(3) 
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This equation does not need environment model and 
probabilistic state transition functions. If this equation is 
recurred infinitely many times for each state-action pair and 𝛼 
is appropriately diminished at each step, the learned Q-values 
converge to optimal ones [22]. 

2.2 Multi agent Q-Learning  

Stochastic game (SG) is defined as the tuple of < 𝑆, 𝐴, 𝑃, 𝜌𝑗 >, 

where 𝑆 is the set of finite and discrete environment states, 
𝐴 = 𝐴1 × 𝐴2 × … .× 𝐴𝑚 is the joint action set for all 𝑠 agents. 
𝑃: 𝑆 × 𝐴 × 𝑆 → 𝛱(𝑆): [0,1] is the state transition function 
defined for each state and joint action pair and 
𝜌𝑗: 𝑆 × 𝐴 × 𝑆 → 𝑅, 𝑗 = 1 … 𝑚 represents the reward of each 

agent [27]. With this definition, an SG can be thought as the 
generalized form of MDP. For an SG, the state transitions are 
realized by joint actions of all agents. 

The Nash equilibrium states the joint action policy, that each 
agent’s action policy ensures maximum total reward value 
against other agents’ action policy [21]. In the Nash 
equilibrium, total reward cannot be improved by changing one 
agent’s action policy in the case that all other agents’ action 
policies are kept same. Nash-Q-learning algorithm is a multi-
agent Q-learning aiming to reach Nash equilibrium [22]. For 
agent 𝑗, the Q-values are updated according to equation (4) by 
using joint actions. 𝑁𝑎𝑠ℎ𝑗 implies the Nash equilibrium for all 

agents. 

 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚) = 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚)

+ 𝛼[𝜌𝑗 + 𝛾𝑁𝑎𝑠ℎ𝑗(𝑠, 𝑄1, … , 𝑄𝑗 , … , 𝑄𝑚)

−  𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚) ] 

(4) 

Nash-Q-learning gives successful solution under some 
assumptions, e.g., fully cooperative systems [28]. A fully 
cooperative SG can be considered as MDP and optimal solution 
can be converged [29]. 

3 Problem statement 

In most real-world MRS applications, the working environment 
has partially observable and dynamic nature due to noisy 
sensor measurements, limited communication, and 
unpredictable effects of agents’ actions [3]. These properties 
contradict the theory of reinforcement learning and explain 
why an optimal solution in MRS coordination cannot be 
reached by traditional QL algorithms [22]. 

One approach to apply QL for MRS is to use decentralized 
learning structure. In decentralized learning, each robot learns 
Q values for only its own states and actions by directly applying 
QL rules defined for single-agent case [30]. Robots do not 
concern with the results of other robots’ actions. So, 
decentralized learning is simple to run, and it does not need 
inter-robot communication. Dimension of learning space, 
which consists of individual state and action spaces, is small 
and computational cost is low [30]. On the other hand, the MRS 
environment is no longer stationary due to the robots’ 
independent actions, which contradicts the QL theory. Since 
robots perform the learning process individually without 
considering the decisions of others, behavioral conflicts are 
inevitable [30]. This constitutes the major reason not to reach 
optimal solutions [22]. However, the decentralized learning is 
preferred in many applications because it is easy to implement 
and learning space dimension is small. Successful results have 
been achieved for small environments under some constraints 
[31]. Independent Q-learning (IQL) is an example having  

high-degree of decentralization [32]. Empirical results show 
that IQL works well in simple applications only [33]. Hyper Q-
learning try to solve nonstationary problem by observing other 
agents’ actions [34]. [35] uses coordination graphs to estimate 
global Q values. 

In centralized Q-learning, which is another approach for multi-
agent QL, robots learn global Q values using joint actions of 
whole team. Since the joint actions and joint states of all team 
members are considered, the MRS environment could be 
assumed as MDP. It is expected that the optimal solution is 
converged [22]. Centralized learning requires full knowledge of 
all robots’ actions and all possible forms of states and perfect 
communication among robots. Deficiency in these factors 
results in failure to achieve the desired success [2]. 
Furthermore, the dimension of joint action space grows 
exponentially in the number of robots. This means that the 
learning spaces becomes huge and computational complexity 
increases enormously for large MRS’s [28]. Whereas 
centralized learning promises to reach optimal solution, it is 
very difficult to implement. 

Both decentralized and centralized learning approaches have 
some trade-offs. In most studies, hybrid learning schemas are 
proposed to combine the advantages and discord the 
problematic points. In these generally the learning is carried 
out in distributed manner, but there is an external coordination 
mechanism to obtain global solution. In modular Q-learning 
approach, robots learn their own Q values and there exist a 
control unit to overcome the behavior conflict [36]. Sequential 
Q-learning algorithm proposes the agents learn independently 
in a pre-determined order. Each agent observes others’ actions 
and then learn for its own state-action pairs [37]. In CTDE 
algorithm, learning process is run in distributed manner with 
the full knowledge of environment states [38]. VDN [39] and 
QMIX [40] are examples which joint-action value functions are 
factorized into individual ones. So, learning space scalability 
problem is minimized. But they have constraints of being 
applicable to systems having at least one optimal solution [41]. 

In this study, subG-CQL algorithm is proposed to provide the 
use of QL in MRS easily. subG-CQL algorithm splits the whole 
system sub-groups independent with each other. Each sub-
group behaves as a small-sized system and all of them consists 
the overall system. subG-CQL algorithm force the robots refuse 
some of their task types. It aims to match the tasks done by large 
number of robots to the robots having the ability of performing 
less number of task type. So, the robots carrying out large 
number of task types drop some of them. As a result, each robot 
performs less number of task type and each task type are done 
by less number of robots.  At the end, the robots performing the 
same task types compose a sub-group. For each sub-group, the 
learning can be realized in centralized manner easily because 
of the small size of them. The details of the algorithm are given 
in Section 4. 

4 Proposed approach: subG-CQL algorithm 

Let a heterogenous MRS consists of 𝑚 different-skilled robots, 
𝑅𝑖 , 𝑖 = 1, … , 𝑚. These robots are responsible for fulfilling 𝑛 
different type of tasks 𝑇𝑗 , 𝑗 = 1 … 𝑛. In a heterogenous MRS, each 

robot is capable of some tasks, not all. And also, some robots are 
more likely to perform certain tasks due to their physical 
structure. Every robot can perform different number of tasks 
types. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021 
H.H. Ezercan Kayır 

 

582 
 

Robot 𝑅𝑖 has the robot task set (RTS), Γ𝑖 , which is a list of tasks 
can be executed by 𝑅𝑖 as in (5). 

Γ𝑖 =  { 〈𝑇𝑧 , 𝑑𝑖𝑧〉 |  𝑑𝑖𝑧  ∈ [0,1] } (5) 

𝑑𝑖𝑧 is the willingness parameter of 𝑅𝑖 to do 𝑇𝑧. 

Robot-task relation matrix (RTM) carries information about 𝑅𝑖 
robots and Γ𝑖  sets, 𝑖 =  1. . 𝑚 and it is defined as in equation (6). 

𝑀 =  [𝑚𝑖𝑗] =  {
𝑚𝑖𝑗 = 1  , 𝑇𝑗 ∈  Γ𝑖  

𝑚𝑖𝑗 = 0  , 𝑇𝑗 ∉  Γ𝑖
 (6) 

Row-sum of RTM, 𝑟𝑖 =  ∑ 𝑚𝑖𝑗
𝑛
𝑗=1 , is the number of all tasks can 

be done by 𝑅𝑖 and it is equal to the size of Γ𝑖 . Column-sum of 
RTM, 𝑐𝑗 =  ∑ 𝑚𝑖𝑗

𝑚
𝑖=1  , is the number of robots that can perform 

𝑇𝑗 tasks. 

subG-CQL algorithm, proposed approach in this study, aims to 
divide the system into sub-groups with less number robots 
performing limited number of tasks for each. The idea behind 
of subG-CQL algorithm is that the tasks executed by large 
number of robots are matched to the robots having the 
responsibility of fewer tasks types. Thus, the variety of tasks 
that robots have to do will decrease and the robots performing 
the same type of tasks will form small-sized groups. So, it is 
possible to concentrate the robots on less number of task type.  

Initially, there is no sub-group, all robots form just one team. At 
each iteration, the algorithm selects the task performed 
maximum number of robots. This corresponds to task 𝑇𝑗 such 

that RTM column having the highest 𝑐𝑗 value. This 𝑇𝑗 task is 

matched to the robot 𝑅𝑖 with the least 𝑟𝑖 value. If task 𝑇𝑗 or robot 

𝑅𝑖 is already present in one of the existing sub-groups, then 
 < 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 > triplet is added to this sub-group. If not, a new 

sub-group is created with this triplet, the first element of it. 𝑤𝑖𝑗 , 

represents the degree of 𝑅𝑖-𝑇𝑗 pair and it is calculated as in (7). 

𝑤𝑖𝑗 =
𝑑𝑖𝑗

𝑟𝑖 𝑐𝑗
 (7) 

If there are more than one task having same 𝑐𝑗 value, the 

algorithm consults to the column weight which is the measure 
of how many robots do these tasks. The task with the lowest 
column weight is selected. Column weight, 𝜔𝑗  is calculated by 

using equation (8). 

𝜔𝑗 =  ∑ 𝑚𝑖𝑗𝑟𝑖

𝑚

𝑖=1

 (8) 

In the case of more than one row having minimum 𝑟𝑖 value, the 
robot with the highest willingness parameter 𝑑𝑖𝑗  is matched to 

the task. 

Each robot 𝑅𝑖 is connected to a sub-group 𝐿𝑔 with a dependency 

parameter 𝜂𝑖𝑔 calculated as the sum of 𝑤𝑖𝑗 for the sub-group 𝐿𝑔. 

In some cases, both 𝑅𝑖 and 𝑇𝑗 matched with each other exist in 

present sub-groups but different ones. Then the triplet 
< 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 > is added to all of them. Such robots belonging to 

multiple sub-groups are stored in set 𝐶. During the algorithm, 
robots’ new task sets are constituted. Λ𝑖  is the new task set of 
robot 𝑅𝑖 and it contains the task type 𝑇𝑗’s which are matched to 

𝑅𝑖 with the 𝑤𝑖𝑗 weights. 

After the formation of sub-groups is completed, the robots in 𝐶 
are forced to choose one sub-group which has the highest 𝜂𝑖𝑔. 

The triplets related to 𝑅𝑖 robot are excluded from other sub-
groups. New task sets are edited by deleting the dropped task 

types dropped by 𝑅𝑖. Although this task refusing procedure, 
subG-cQL algorithm provides each task type is performed by 
enough robots thanks to its matching strategy. 

At the end of this step, subG-CQL algorithm has finished. Overall 
system is divided into sub-groups that each of them acts as an 
independent small-sized system. In each sub-group, learning is 
run in centralized manner with its own state space and joint 
action space of robots in this sub-group. subG-CQL algorithm is 
given below in detail. 
 

subG_CQL Algorithm 

Input:     Robot-task relation matrix, 𝑀 
Output:  Sub-groups  𝐿𝑓, 𝑓 = 1 … 𝑝 

                  Robots’ new task set Λ𝑖, 𝑖 = 1 … 𝑚 

𝑥 =  0, 𝑝 =  0, 𝐶 = ∅,  Λ𝑖 = ∅ 
for ∀𝑐𝑗 ≠ 0, 𝑗 = 1 … . 𝑛 

 Select task 𝑇𝑗  such that argmax
𝑗

𝑐𝑗   

Select robot 𝑅𝑖  such that argmin
𝑖

𝑟𝑖, 𝑟𝑖 ≠ 0 

 if multiple 𝑐𝑗  

  Select 𝑇𝑗  such that argmin
𝑗

𝜔𝑗  

 end 
  
 if multiple 𝑟𝑖 
  Select 𝑅𝑖 such that argmax

𝑖
𝑑𝑖𝑗  

 end 
 Match 𝑇𝑗 − 𝑅𝑖, such that argmin

𝑖
𝑟𝑖, 𝑟𝑖 ≠ 0 

 Calculate 𝑤𝑖𝑗 

 if 𝑅𝑖 ∉  𝐿𝑓  ∧   𝑇𝑗 ∉  𝐿𝑔, 𝑓 = 1 … 𝑝, 𝑔 = 1 … 𝑝 

  𝑝 =  𝑝 +  1  
  Create new sub-group 𝐿𝑝 = ∅ 

  𝐿𝑝 = 𝐿𝑝   ∪  < 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 >  

  Calculate 𝜂𝑖𝑝 

 end 
 if 𝑅𝑖 ∈  𝐿𝑓, 𝑓 = 1 … 𝑝 

  𝐿𝑓 = 𝐿𝑓   ∪  < 𝑅𝑖, 𝑇𝑗 , 𝑤𝑖𝑗 >  

  Calculate 𝜂𝑖𝑓 

 end 
 if 𝑇𝑗 ∈  𝐿𝑔, 𝑔 = 1 … 𝑝 

  𝐿𝑔 = 𝐿𝑔   ∪  < 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 >  

  Calculate 𝜂𝑖𝑔 

 end 
 if there exists f and g such that 𝑓 ≠ 𝑔 
  𝐶 = 𝐶 ∪ 𝑅𝑖  
 end 
 Λ𝑖 = Λ𝑖 ∪ 𝑇𝑗   

 𝑚𝑖𝑗 = 0  

 𝑟𝑖 = 𝑟𝑖 − 1, 𝑐𝑗 = 𝑐𝑗 − 1 

 Update 𝜔𝑗  

end 
 
if 𝐶 ≠ ∅ 
 for ∀𝑅𝑞 ∈ 𝐶 

  Select 𝐿𝑡 such that argmax
𝑣

𝜂𝑞𝑓, 𝑓 = 1 … 𝑝 

  for ∀(𝑅𝑞 ∈ 𝐿ℎ)  

          if ℎ ≠ 𝑣 
   𝐿ℎ = 𝐿ℎ  \ < 𝑅𝑞 , 𝑇𝑗 , 𝑤𝑞𝑗 >   

   Λ𝑖 =  Λ𝑖  \ 𝑇𝑗 

  end 
  end 
 end 
end 
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5 Application 

5.1 System structure 

For experimental studies, two different MRS, that one is a small-
sized system, and the other is a great and much more complex 
system, are prepared. 

In System-I, there exist six robots having the ability to do five 
different type of tasks. System-I is fully heterogenous nature 
due to the robots’ different physical properties and different 
skills. Robots and related tasks in System-I are given in Table 1. 

Table 1. Robots and related tasks for system-I. 

Robots Related Task Type 

𝑹𝟏 𝑇1, 𝑇4, 𝑇5 

𝑹𝟐 𝑇2, 𝑇4 

𝑹𝟑 𝑇1, 𝑇3 

𝑹𝟒 𝑇4, 𝑇5 

𝑹𝟓 𝑇1 

𝑹𝟔 𝑇1, 𝑇3, 𝑇5 

System-II is like System-I, but it is much bigger and has more 
complex structure with ten robots and eight different type of 
tasks should be done. System-II is also highly heterogenous. 
Robots and task relation for System-II are shown in Table 2. 

Table 2. Robots and related tasks for system-II. 

Robots Related Task Type 

𝑹𝟏 𝑇3, 𝑇5 

𝑹𝟐 𝑇1, 𝑇2, 𝑇5, 𝑇7, 𝑇8 

𝑹𝟑 𝑇3, 𝑇6, 𝑇7 

𝑹𝟒 𝑇1, 𝑇3, 𝑇4, 𝑇6 

𝑹𝟓 𝑇2, 𝑇5, 𝑇7, 𝑇8 

𝑹𝟔 𝑇1, 𝑇2 

𝑹𝟕 𝑇4, 𝑇6, 𝑇7 

𝑹𝟖 𝑇2, 𝑇5, 𝑇8 

𝑹𝟗 𝑇2, 𝑇6, 𝑇7 

𝑹𝟏𝟎 𝑇3, 𝑇5, 𝑇8 

For both systems, all types of tasks are equally probable. Each 
task type has two priority level named as high-priority and low-
priority. High-priority tasks have should be done absolutely 
and primarily and they are more time-consuming than the low-
priority tasks. High-priority tasks is 30%-35% of all tasks and 
remains are low-priority tasks.  

Tasks appear at any time and in random sequence during 
system operation. Task allocation process is executed in 
auction-based manner. The tasks, that are announced but not 
assigned, auctioned once more at a certain time later. If it is not 
assigned, it will be dropped from the list. It is assumed that the 
tasks are allocated to any robot absolutely done. 

5.2 Performance metrics  

The learning-based task allocation methods are applied to the 
systems described above. The experimental results are 
evaluated in terms of three performance metric; completed 
task ratio, idle time ratio, and learning space dimension. 

Completed task ratio (CTR) is the ratio of the number of tasks 
executed to the total number of tasks announced. The assigned 
task number is used instead of the completed task number. CTR 
is calculated in percent.  

Idle time ratio (ITR) represents the ratio of robot’s free time to 
whole execution time. ITR is determined by following equation 
(9). 

𝐼𝑇𝑅 =  
𝑡𝑒𝑥𝑒 − 𝑡𝑏𝑢𝑠𝑦

𝑡𝑒𝑥𝑒
 (9) 

Here, 𝑡𝑒𝑥𝑒 is the total execution time of a robot and 𝑡𝑏𝑢𝑠𝑦 is the 

duration that robot is busy with auction process, performing 
any task or charging. 

In literature, it is given that the computational cost of Q-
learning is directly related to the learning space dimension 
calculated as the product of state space dimension and action 
space dimension [23],[28]. Let 𝑈 be the learning space and | ∙ | 
represent space dimension. The individual learning space 
dimension of robot 𝑅𝑖 is determined by equation (10), where 
 𝑆𝑖  is the state space of 𝑅𝑖 and 𝐴𝑖 is the action space of 𝑅𝑖. 

| 𝑈𝑖 | =  | 𝑆𝑖 | 𝑥 | 𝐴𝑖| (10) 

In decentralized learning, the learning space dimension of 
overall system with 𝑚 robot is equal to the sum of individual 
learning spaces given in equation (11). 

| 𝑈 | = ∑| 𝑆𝑖 | 𝑥 | 𝐴𝑖|

𝑚

𝑖=1

 (11) 

Centralized learning uses joint action and state spaces. State 
space of whole system is the union of individual state spaces as 
in equation (12) and the dimension of it is in equation (13). 

𝑆 =  ⋃  𝑆𝑖 

𝑚

𝑖=1

 
(12) 

| 𝑆 | ≤ ∑| 𝑆𝑖 | 

𝑚

𝑖=1

 
(13) 

Joint action space is the cartesian product of individual action 
spaces as in equation (14) and dimension of joint action space 
is calculated by equation (15). 

𝐴 =  ∏  𝐴𝑖 

𝑚

𝑖=1

 (14) 

| 𝐴 | =  ∏| 𝐴𝑖 | 

𝑚

𝑖=1

 (15) 

In worst case, the joint action space is in its largest form of 
| 𝐴 | = | 𝐴𝑖 |

𝑚 and this occurs when the system is fully 
cooperative. Learning space dimension in centralized learning 
is simply calculate by using equation (16). 

|𝑈| =  |𝑆| 𝑥 | 𝐴| (16) 

In the proposed algorithm, the system is divided into p sub-
groups. Each sub-group run the learning process in centralized 
manner. But these sub-groups act as if it was an individual 
agent of whole system. So, the state space and action space 
dimension of each sub-group are determined by equations (13) 
and (15) respectively and learning space of overall system is 
calculated by adding up the learning space of all sub-groups.  

6 Experimental results 

Experimental studies are realized on two different systems 
Whose details are given in Section 4. To emphasize the impact 
and successful results of the proposed approach, subG-CQL, 
algorithm, it is compared with the three other methods given in 
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literature, centralized Q-learning, semi-centralized Q-learning 
and decentralized Q-learning. 

A well-known example of centralized Q-learning (CQL) method 
is studied in [28]. CQL method assumes the environment as an 
SG which is primary requirement of multi-agent Q-learning 
theory. Learning is carried out on the overall state space of the 
environment and joint action space of robots. Robots’ main aim 
is to reach Nash equilibrium. 

In semi-centralized Q-learning (semi-CQL) method, robots 
gather information about states of whole system and use it to 
determine their own behavior. But each robot learns the Q-
values of its own state-action pairs in a similar way of [38].  

In decentralized Q-learning (DQL) method, each robot acts as 
an independent learner in [32]. The robots run learning process 
individually by using their own state and action spaces. And 
they do not care the behavior of their teammates.  

subG-CQL algorithm, proposed in this study, divides the system 
into small groups uncorrelated with each other. Every sub-
group behaves as a different system and learning is managed in 
centralized manner for each of them. Because the system size is 
diminished to small ones, the scalability problem of in CQL can 
be handled. As a result of subG-CQL algorithm, two sub-groups 
are formed in System-I. 𝑅1 robot drops 𝑇1 task from its RTS. 
Similarly, 𝑅6 robot renounces 𝑇5 as it can do this type of task. 
The sub-group structure of System-I is in Table 3. 

Table 3. Sub-groups formed after subG-CQL for system-I. 

Sub-Group-1: 

Robots Related Task Type 

𝑹𝟏 𝑇4, 𝑇5 

𝑹𝟐 𝑇2, 𝑇4 

𝑹𝟒 𝑇4, 𝑇5 

Sub-Group-2: 

Robots Related Task Type 

𝑹𝟑 𝑇1, 𝑇3 

𝑹𝟓 𝑇1 

𝑹𝟔 𝑇1, 𝑇3 

subG-CQL algorithm creates three sub-groups in System-II. 
Many robots have stopped performing multiple tasks as shown 
in Table 4. For example, 𝑅2 robot drops 𝑇5 and 𝑇7 tasks, it 
performs only three types of task after subG-CQL whereas it has 
five types of task in its RTS originally. 

Table 4. Sub-groups formed after subG-CQL for system-II. 

Sub-Group-1: 

Robots Related Task Type 

𝑹𝟏 𝑇3, 𝑇5 

𝑹𝟏𝟎 𝑇3, 𝑇5 

Sub-Group-2: 

Robots Related Task Type 

𝑹𝟐 𝑇1, 𝑇2, 𝑇8 

𝑹𝟓 𝑇2, 𝑇8 

𝑹𝟔 𝑇1, 𝑇2 

𝑹𝟖 𝑇2, 𝑇8 

  

Sub-Group-3: 

Robots Related Task Type 

𝑹𝟑 𝑇6, 𝑇7 

𝑹𝟒 𝑇4, 𝑇6 

𝑹𝟕 𝑇4, 𝑇6, 𝑇7 

𝑹𝟗 𝑇6, 𝑇7 

The experimental results for four different method are 
analyzed below separately. 

6.1 Completed task ratio (CTR) 

CTR gives the ratio of completed tasks and it can be considered 
as the success of task allocation process. CTR values of all task 
types for both systems are also written in Table 5 and Table 6 
for both systems. CTR values are in percent and they are 
rounded to the nearest integer for simplicity.  

CTR values are shown by graphs in for all approaches 
comparatively in the figures below. CTR for low-priority and 
high priority tasks separately in Figure 1 and Figure 2 for 
System-I and in Figure 3 and Figure 4 for System-II 
respectively. In the graphs, 𝑇𝑗𝐿 represents the low priority 
tasks of task type 𝑇𝑗 . Similarly 𝑇𝑗𝐻 shows the high-priority 

tasks. 

When the graphs are examined, the behavior of all methods is 
nearly similar for both systems. Some variations are caused 
from the differences in the systems. For every task, the number 
of robots that perform it is not same. In particular, the tasks that 
can be done by more robots have greater CTR values than 
others. 

 

Table 5. CTR values for system-I. 

 𝑻𝟏𝑳 𝑻𝟏𝑯 𝑻𝟐𝑳 𝑻𝟐𝑯 𝑻𝟑𝑳 𝑻𝟑𝑯 𝑻𝟒𝑳 𝑻𝟒𝑯 𝑻𝟓𝑳 𝑻𝟓𝑯 

CQL 74 93 52 78 57 87 65 94 61 88 
Semi-CQL 62 86 41 59 47 65 52 82 49 74 

DQL 57 81 32 63 37 79 40 83 42 75 
subG-CQL 76 94 55 68 53 89 62 92 58 82 

Table 6. CTR values for system-II. 

 𝑻𝟏𝑳 𝑻𝟏𝑯 𝑻𝟐𝑳 𝑻𝟐𝑯 𝑻𝟑𝑳 𝑻𝟑𝑯 𝑻𝟒𝑳 𝑻𝟒𝑯 𝑻𝟓𝑳 𝑻𝟓𝑯 𝑻𝟔𝑳 𝑻𝟔𝑯 𝑻𝟕𝑳 𝑻𝟕𝑯 𝑻𝟖𝑳 𝑻𝟖𝑯 

CQL 42 87 62 92 55 87 53 84 61 91 59 86 66 94 60 92 
Semi-
CQL 

38 73 54 82 49 72 46 68 53 82 54 72 59 81 52 78 

DQL 35 77 50 85 45 77 42 72 50 85 46 77 56 84 49 81 
subG-
CQL 

46 85 68 96 51 84 50 87 60 92 64 94 65 93 54 89 
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Figure 1. CTR for low-priority tasks for System-I. 

 

Figure 2. CTR for high-priority tasks for System-I. 

 

Figure 3. CTR for low-priority tasks for System-II. 

 

Figure 4. CTR for high-priority tasks for System-II. 

The aim of the learning based MRTA is to increase the number 
of completed tasks, especially for the tasks with high-priority. 
Experimental results indicate that CTR values of high-priority 
tasks are higher than that of low-priority tasks thanks to 
auction-based task allocation. 

As expected, CQL algorithm has the highest CTR values for each 
type of task. In CQL, it can be thought that the environment is 
nearly stationary and contains no uncertainty because overall 

state space of the environment and joint action spaces of all 
agents are considered. On the contrary, DQL algorithm results 
in the lowest CTR values for low-priority tasks. CTR of high-
priority tasks are reasonably high. In DQL, robots learn 
individually for their state and action spaces. As a result of this, 
robots force themselves to do high-priority tasks rather than 
low-priority ones. semi-CQL algorithm’s CTR values for low-
priority tasks are a bit higher than DQL and for high-priority 
tasks are lower than DQL, but not so poor. semi-CQL gather 
information about overall system states but it uses 
decentralized learning structure. This explains why its results 
are so similar to DQL. 

subQ-CQL algorithm, proposed in this study, has satisfactorily 
good results of CTR for both high-priority and low-priority 
tasks although these values are a bit lower than the results of 
CQL. subG-CQL learns in centralized manner but in smaller size. 
Whole system is divided into sub-groups which have no 
common task or robot with each other. One advantage of this 
algorithm is that it provides easy-to-apply centralized learning 
for each small-sized sub-group. The other advantage is to 
concentrate the robots on less variety of task type. To deal with 
the same task type makes much more tasks completed because 
every task type has different features such that duration, 
difficulties etc.…  

6.2 Idle Time Ratio (ITR) 

Robots and their abilities are considered as system resources. 
In most cases, all tasks could not be done due to the scarcity of 
resources in MRS applications. Insufficiencies in the number of 
robots causes that a lot of tasks announced cannot be assigned 
to the robots because all robots are busy with another task at 
auction duration. ITR values are meaningful for effective use of 
resources. The reduction in the free time of the robots means 
that robots do right tasks at the right time. ITR values of all 
robots for System-I and System-II are given in Table 7 and 
Table 8 respectively in percent. 

Table 7. ITR values for system-I. 

 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔 

CQL 21 17 19 18 15 22 

Semi-CQL 27 20 23 27 37 28 

DQL 32 21 29 34 44 31 

subG-CQL 12 14 17 15 13 18 

Table 8. ITR values for system-II. 

 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔 𝑹𝟕 𝑹𝟖 𝑹𝟗 𝑹𝟏𝟎 

CQL 19 21 23 14 17 16 13 21 18 21 

semi-
CQL 

25 23 27 19 23 35 19 18 24 29 

DQL 27 24 31 21 26 39 21 24 27 33 

subG-
CQL 

12 14 9 11 13 10 12 15 13 14 

subG-CQL algorithm provides low ITR values because it knows 
all existing situations of the environment and use this 
information in learning process. So, task allocation process is 
managed in balance and robots are run effectively. The highest 
ITR values are obtained by DQL algorithm. In DQL, robots learn 
independently, and they do not concern their teammates’ 
behavior. This causes behavior conflicts, which is the major 
disadvantage of decentralized learning, among team members. 
For example, two robots learn same action for the same task 
and this task is assigned one of them, the other goes to idle 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021 
H.H. Ezercan Kayır 

 

586 
 

mode. The ITR values of semi-CQL algorithm is better than DQL 
and worse than CQL. This is because it knows the other robots’ 
actions but learn in decentralized manner. 

The best ITR values is achieved by subG-CQL algorithm. It 
forces some robots drop some of its type of task and 
concentrate on less task type. Thus, it becomes possible to 
utilize the robots effectively and idle time of robots decreases 
as desired. ITR values of robots are drawn graphically Figure 5 
and Figure 6 for System-I and System-II respectively.  

 

Figure 5. ITR of robots for System-I. 

 

Figure 6. ITR of robots for System-II. 

6.3 Learning space dimension 

Learning space dimension whose details are explained in 
Section 5.2, is directly related to the learning schema and 
system size. The learning space dimensions for both systems 
are given in Table 9.  

Table 9. Learning Space Dimensions. 

 System-I System-II 

CQL 17 ∗ 212 ∗ 34 7 ∗ 229 ∗ 38 ∗ 52 

Semi-CQL 426 3 ∗ 210 
DQL 426 3 ∗ 210 

subG-CQL 212 28 ∗ (22 ∗ 34 + 1) 

The learning space dimension of System-II is higher than that 
of System-I, because the size of System-II much larger than 
System-I in all algorithms. The smallest learning space 
dimension is obtained for DQL and semi-CQL which use 
decentralized learning. CQL algorithm has the highest learning 
space dimension caused by the joint action space dimension. 
Especially for System-II, the learning space dimension is huge. 
It is a big obstruction in apply centralized learning which has a 
great success to reach optimal solution. 

subG-CQL algorithm provides a reasonable learning space 
dimension compared to CQL, although both learn in centralized 
manner. subG-CQL algorithm divides the system into small-
sized sub-groups and each one uses its own joint action and 
state spaces. Its learning space dimension is equal to the sum of 

sub-group’s learning space dimensions. Whereas, CQL 
considers joint action and state space of whole system. 

The results of the experimental studies can be summarized as 
follows in terms of the performance metrics discussed. 

 As expected, the best CTR values, which is a sign of 
successful MRTA process, are obtained in CQL method 
for both high-priority and low-priority tasks. CTR 
values of the proposed algorithm, subG-CQL, are a bit 
lower than CQL, 

 The lowest ITR values are achieved by subG-CQL 
algorithm. Low ITR means that the robots and their 
abilities are effectively used and their waste time is 
decreased, 

 semi-CQL and DQL methods, both of which learns in 
decentralized manner, have the lowest learning space 
dimension. subQ-CQL algorithm propose a learning 
space dimension which is higher than DQL but 
reasonably less than CQL method. Huge learning space 
dimension which is the case of CQL brings the scalability 
problems and results in high computational cost and 
application difficulties. 

When all metrics are evaluated together, it is seen that  
subG-CQL algorithm offers the optimal solution among all 
approaches. It has sufficiently high CTR values, good ITR values 
and acceptable learning space dimension. These results 
indicate that division of the system into sub-groups have no 
adverse effect on system also. 

7 Conclusions 

Multi-robot system environments are dynamic and contains 
high-level uncertainty due to independent sensing, decision-
making and acting facilities of robots. Q-learning method 
provides optimal solution for robotic applications, but it is 
problematic to use in multi-robot domains. When decentralized 
learning structure is processed, robots do not take care the 
behaviors of their teammates and they ignore the effects of 
dynamic environment characteristics. These are the main 
reasons that the optimal task allocation cannot be reached. 
Additionally, behavior conflicts occur because of the 
independent actions of team members. The biggest advantage 
of this structure is that the small learning space dimension 
brings low computational load and easy application. When 
centralized Q-learning is used, the multi-robot system can be 
considered as Markovian, because the overall state space of the 
environment and joint action spaces of all robots are taken into 
account. This means that the major requirement of Q-learning 
to converge the optimal solution, is ensured. However, it is 
quite difficult to use centralized Q-learning especially for large 
systems. Computational cost is so high due the huge joint action 
space dimension increasing exponentially in the number of 
robots. Also, gathering the full knowledge of environment 
states and agents' actions needs perfect communication 
capability among robots. In this study, an efficient solution has 
been developed to use Q-learning in multi-robot systems. The 
subG-CQL algorithm, proposed here, divides the whole system 
into sub-groups which each of them behaves as an independent 
small-sized system. This process is carried out in a way that 
does not lose the task performance of the system. The 
combination of these sub-groups constitutes the whole system. 
Each sub-group use Q-learning in centralized manner. Because 
they have small system size in number of robots and number of 
tasks performed, the computational cost and communication 
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requirement is reduced to a reasonable level. Thus, all the 
advantages of centralized learning are utilized. The 
experiments are realized comparatively for four different 
approaches: centralized Q-learning, semi-centralized Q-
learning, decentralized Q-learning, and the proposed algorithm, 
subG-CQL. It is seen that a fairly good system performance is 
obtained by the proposed algorithm, subG-CQL, in terms of 
completed task ratio, idle time ratio of robots and learning 
space dimension. It successfully combines the advantages of 
decentralized and centralized learning schemas such as 
convergence to optimal solution, low learning space dimension, 
low computational and communication cost, and easy 
application. The experimental results emphasize the 
effectiveness of the proposed algorithm. 
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