

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

579

An effective method to use centralized Q-learning in multi-robot task
allocation

Çok robotlu görev atama probleminde merkezi Q-öğrenme kullanmak için
etkili bir yöntem

Hatice Hilal EZERCAN KAYIR1*

1Department of Electrical and Electronics Enginering, Engineering Faculty, Pamukkale University, Denizli, Turkey.
hezercan@pau.edu.tr

Received/Geliş Tarihi: 10.01.2021
Accepted/Kabul Tarihi: 07.02.2021

Revision/Düzeltme Tarihi: 05.02.2021 doi: 10.5505/pajes.2021.90490
Research Article/Araştırma Makalesi

Abstract Öz

The use of Q-learning methods in multi-robot systems is a challenging
area. Multi-robot systems have dynamic and partially observable
nature because of robot’s independent decision-making and acting
mechanisms. Whereas, Q-learning is defined on Markovian
environments theoretically. One way to apply Q-learning in multi robot
systems is centralized learning. It learns optimal Q-values for state
space of overall system and joint action spaces of all agents. In this case,
the system can be considered as stationary and optimal solutions can be
converged. But, centralized learning requires full knowledge of the
environment, perfect inter-robot communication and good
computational power. Especially for large systems, the computational
cost becomes huge because of exponentially growing learning space size
with the number of robots. The proposed approach in this study,
subG-CQL, divides the overall system into small-sized sub-groups
without adversely affecting the system's task performing abilities. Each
sub-group consists of less number of robots performing less tasks and
learns in centralized manner for its own team. So, the learning space
dimension is reduced to a reasonable level and required communication
remains limited to the robots in the same the sub-group. Due the
centralized learning is used, it is expected that the successful results are
achieved. Experimental studies show that the proposed algorithm
provides increase in the task assignment performance of the system and
efficient use of system resources.

 Çok robotlu sistemlerde Q-öğrenme yönteminin kullanımı oldukça
problemlidir. Çok robotlu sistemlerde, robotun bağımsız karar verme ve
hareket etme mekanizmaları nedeniyle dinamik ve kısmen
gözlemlenebilir yapıya sahiptir. Oysa, Q-öğrenme yöntemi teorik olarak
Markovian olarak nitelendirilebilecek ortamlar üzerinde
tanımlanmıştır. Çok robotlu sistemlerde Q-öğrenmeyi uygulamanın bir
yolu, merkezi öğrenmedir. Merkezi öğrenme, tüm sistemin durum uzayı
ve tüm robotların tümleşik hareket uzayları için optimal Q-değerlerini
öğrenir. Bu durumda, sistem statik olarak değerlendirilmekte ve
optimal çözüm yakınsama mümkün olmaktadır. Ancak, merkezi
öğrenme, çevre hakkında tam bilgi edinmeyi, robotlar arası iyi bir
haberleşme sağlanmasını ve iyi hesaplama gücü gerektirir. Özellikle
büyük sistemler için, robot sayısındaki artışla birlikte üstel büyüyen
öğrenme uzayı boyutu nedeniyle hesaplama maliyeti çok yüksek
olmaktadır. Bu çalışmada önerilen yaklaşım olan subG-CQL, sistemin
görev yapma yeteneklerini olumsuz yönde etkilemeden genel sistemi
küçük boyutlu alt gruplara ayırır. Her bir alt grup daha az sayıda
robottan oluşur, daha az görev yapar ve kendi ekibi için merkezi bir
şekilde öğrenir. Böylece öğrenme alanı boyutu makul bir düzeye
indirilir ve gerekli iletişim aynı alt gruptaki robotlarla sınırlı kalır.
Merkezi öğrenmenin kullanılması nedeniyle başarılı sonuçlara
ulaşılması beklenmektedir. Deneysel çalışmalar, önerilen algoritmanın
sistemin görev atama performansında artış ve sistem kaynaklarının
verimli kullanımını sağladığını göstermektedir.

Keywords: Multi-Robot systems, Task allocation, Q-Learning,
Centralized learning.

 Anahtar kelimeler: Çok robotlu sistemler, Görev atama, Q-Öğrenme,
Merkezi öğrenme.

1 Introduction

With the rapid growth of technology, multi-robot systems
(MRS) become most popular especially for complex
applications. MRS has the ability of faster task execution
because team members can run simultaneously. MRS is highly
fault-tolerant, when one robot gets out-of-run the others take
over its role. And also, it has distributed sensing and acting
facilities which provide wide working area, fast and flexible
execution. [1]. An MRS environment is partially observable and
dynamic in nature [2]. The robots in MRS operate with their
own local sensing and each has its decision-making and acting
mechanisms. Moreover, robot interaction and information
sharing are complicated due to noisy and insufficient
communication [3]. These explain why a precise and accurate
coordination in MRS should be provided [4].

*Corresponding author/Yazışılan Yazar

Multi-robot task allocation (MRTA) is the process of ensuring
that robots do the appropriate tasks at right time in an
appropriate order [5]. MRTA has a key function to get the
necessary coordination and optimize system performance. One
widely used approach to solve MRTA problems is auction
protocols, which is a special kind of market-based approaches
[6]. Auction-based task allocation approaches have advantages
of implementation simplicity and distributed planning
centralized decision-making ability [7]. Distributed mapping
[8], multi-robot box pushing [6], multi-robot path planning [9]
are some examples of auction based multi robot coordination.
In auction protocols, it is considered that the tasks are items
and robots are customers. Tasks are announced by auctioneer
robot with base price representing their costs. Customer robots
calculate the cost of announced tasks according to their own
possibilities and send bids to auctioneer. The cost of a task may
be travelled distance or execution time for mobile robots [10].

https://orcid.org/0000-0002-5456-3613

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

580

Auction process ends up by allocating the tasks to suitable
robots in a manner that maximizes the system gain [11],[12].

In MRS, it is not possible to guarantee perfect coordination by
traditional ways because of environment’s partially observable
and ambiguous nature [13]. Generally, tasks arise at
unpredictable instants in unpredictable sequence while system
is running. For this reason, it is not possible to pre-plan the
assignment of tasks to robots. Task allocation needs to be
performed instantaneously as the tasks appear [14]. Moreover,
each robot has independent sensing, decision-making and
acting mechanisms. This prevents robots from predicting
others’ behaviors. An efficient system coordination is only
possible if robots can adopt to changing environmental
conditions. Thanks to the acquisition of learning skills to the
system, robots would overcome unpredicted and uncertain
situations [15]. As an example of learning-based coordination,
robots use their past task allocation experiences for bidding
future tasks [16]. In [17], a learning-based approach to reason
about future task allocation. Robots learn the bid values and use
them in auction process successfully for underwater
exploration which is a dynamic environment with high level
uncertainty [18]. Efficient solutions are obtained by using
reinforcement learning for dynamic task allocation problems in
fire-disaster response [19],[20].

Q-learning (QL) is a value-function based model-free
reinforcement learning method [21]. It learns optimal Q values
for each state-action pair in tabular form [4]. QL is suitable to
apply for complex applications, e.g., robotic systems, because it
does not require environment formulation. In fact, QL is defined
for MDP environments theoretically. It is problematic to apply
for MRS due to dynamic and partially observable
characteristics of them [22]. One way to use QL in MRS is
distributed learning approach in which the robots learn only for
their own state-action pairs. Whereas it is easy to implement,
that the environment is not stationary so far, contradicts the
requirement of MDP environment. So, distributed learning does
not assure to reach optimal solution. The other way is
centralized learning that works on joint state and joint action
spaces. This needs perfect inter-agent communication. In
centralized learning, joint action space dimension increases
exponentially with the number of robots. Especially for large
systems, the huge learning space dimension causes
computational and implementational difficulties [23].

In this study, a new method, subG-CQL algorithm, is proposed
to overcome the problems encountered in the use of QL in MRS.
The main goal of this approach is to divide the system into
smaller sub-groups by allowing some robots to concentrate on
specific tasks without adversely affecting the system. subG-CQL
algorithm has a positive all-round impact on system
performance. It becomes possible to use the robots more
efficiently as they deal with less variety of tasks. Learning is
carried out by centralized manner in these sub-groups, which
are completely independent from each other. Thus, it is
possible to exploit the advantage of convergence to the optimal
solution of centralized learning. In addition, the scalability
problem arising from the large learning dimension, which is the
biggest problem of centralized learning, has been solved. The
comparative results show the successful solutions of the
proposed method on system performance.

The arrangement of the paper is as follows: In Section 2, Q-
learning basics for single-agent and multi-agent cases are given
briefly. Section 3 examines the problem handled in this study.

The proposed approach is explained, and algorithm is given in
Section 4. Section 5 is about application details, such as system
structure and performance metrics. Experimental results and
comments are included in Section 6. Conclusion part is in
Section 7.

2 Q-Learning basics

Reinforcement learning is a class of machine learning
techniques that do not need any mentor or system model [24].
Learning process takes place based on the feedback which is the
measure of the changes in environment states as a result of
agent’s action. In reinforcement learning theory, this feedback
is called as reward. If the agent’s action causes the state to
change as desired, the reward receives a value in a way that
reinforces this action. In the opposite case, the reward value is
in the form of penalty obstructing this action. In short,
reinforcement learning techniques are methods of trial-and-
error. Due it does not require any prior information about the
system, reinforcement learning methods seem like a good
learning approach especially for complex environments [21].

Q-learning (QL) is a reinforcement learning method based on
value function approach. In QL proposed by [22], an agent
learns Q values of each state-action pair by using reward
received as a feedback of its actions’ effect on environment
states. Theoretical details of QL for both single-agent and multi-
agent cases are given below.

2.1 Single agent Q-Learning

Single agent Q-learning is defined on the environment defined
as Markov decision process. A Markov decision process (MDP)
is a tuple of < 𝑆, 𝐴, 𝑃, 𝜌 >. Here, 𝑆 is the set of discrete and
finite states of environment, 𝐴 is the set of discrete and finite
actions of agent, 𝑃: 𝑆 × 𝐴 × 𝑆 → 𝛱(𝑆): [0,1] is the probabilistic
state transition function and 𝜌: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward
function in reel numbers [19].

At step 𝑘, agent takes action 𝑎(𝑘) ∈ 𝐴 then environment state,
𝑠(𝑘) ∈ 𝑆, is switched to 𝑠(𝑘 + 1) ∈ 𝑆. Agent receives the
reward, 𝑟(𝑘) = 𝜌(𝑠(𝑘), 𝑎(𝑘), 𝑠(𝑘 + 1)), as feedback of its
action’s effect on environment [24]. Agent’s action 𝑎(𝑘) at state
𝑠(𝑘) is determined by agent’s action policy, ℎ. In MDP, each
agent has a deterministic, static, and optimal action policy [21].
For each step, action policy ℎ leads agent selects its action in a
manner that it maximizes the expected value of overall gain.
Action-value function 𝑄ℎ: 𝑆 𝑥 𝐴 → 𝑅, implies the expected total
gain value of each state-action pair in according to action policy.
Action-value function is the discounted sum of all future reward
and it is expressed as in (1), where 𝛾 is the discount factor.

 𝑄ℎ(𝑠, 𝑎) = 𝐸{∑ 𝛾𝑖∞
𝑖=0 𝑟(𝑘 + 𝑖)| 𝑠 = 𝑠(𝑘), 𝑎 = 𝑎(𝑘), ℎ} (1)

Optimal action-value function is defined as 𝑄-function given in
equation (2) and it satisfies Bellman optimality equation [25].

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥
ℎ

 𝑄ℎ(𝑠, 𝑎), ∀𝑠 ∈ 𝑆 𝑣𝑒 ∀𝑎 ∈ 𝐴 (2)

Q-learning is a value-function based and model-free
reinforcement learning method [26]. In Q-learning, optimal Q-
values for each-state action pair are learned in an iterative
manner by the equation in (3). 𝛾 is the discount factor and 𝛼 is
the learning rate [27].

𝑄(𝑠(𝑘), 𝑎(𝑘)) = 𝑄(𝑠(𝑘), 𝑎(𝑘))

+ 𝛼𝑘 [𝑟(𝑘) + 𝛾 𝑚𝑎𝑥
𝑎′∈𝐴

 𝑄𝑘(𝑠(𝑘 + 1), 𝑎′)

− 𝑄(𝑠(𝑘), 𝑎(𝑘))]

(3)

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

581

This equation does not need environment model and
probabilistic state transition functions. If this equation is
recurred infinitely many times for each state-action pair and 𝛼
is appropriately diminished at each step, the learned Q-values
converge to optimal ones [22].

2.2 Multi agent Q-Learning

Stochastic game (SG) is defined as the tuple of < 𝑆, 𝐴, 𝑃, 𝜌𝑗 >,

where 𝑆 is the set of finite and discrete environment states,
𝐴 = 𝐴1 × 𝐴2 × … .× 𝐴𝑚 is the joint action set for all 𝑠 agents.
𝑃: 𝑆 × 𝐴 × 𝑆 → 𝛱(𝑆): [0,1] is the state transition function
defined for each state and joint action pair and
𝜌𝑗: 𝑆 × 𝐴 × 𝑆 → 𝑅, 𝑗 = 1 … 𝑚 represents the reward of each

agent [27]. With this definition, an SG can be thought as the
generalized form of MDP. For an SG, the state transitions are
realized by joint actions of all agents.

The Nash equilibrium states the joint action policy, that each
agent’s action policy ensures maximum total reward value
against other agents’ action policy [21]. In the Nash
equilibrium, total reward cannot be improved by changing one
agent’s action policy in the case that all other agents’ action
policies are kept same. Nash-Q-learning algorithm is a multi-
agent Q-learning aiming to reach Nash equilibrium [22]. For
agent 𝑗, the Q-values are updated according to equation (4) by
using joint actions. 𝑁𝑎𝑠ℎ𝑗 implies the Nash equilibrium for all

agents.

 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚) = 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚)

+ 𝛼[𝜌𝑗 + 𝛾𝑁𝑎𝑠ℎ𝑗(𝑠, 𝑄1, … , 𝑄𝑗 , … , 𝑄𝑚)

− 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚)]

(4)

Nash-Q-learning gives successful solution under some
assumptions, e.g., fully cooperative systems [28]. A fully
cooperative SG can be considered as MDP and optimal solution
can be converged [29].

3 Problem statement

In most real-world MRS applications, the working environment
has partially observable and dynamic nature due to noisy
sensor measurements, limited communication, and
unpredictable effects of agents’ actions [3]. These properties
contradict the theory of reinforcement learning and explain
why an optimal solution in MRS coordination cannot be
reached by traditional QL algorithms [22].

One approach to apply QL for MRS is to use decentralized
learning structure. In decentralized learning, each robot learns
Q values for only its own states and actions by directly applying
QL rules defined for single-agent case [30]. Robots do not
concern with the results of other robots’ actions. So,
decentralized learning is simple to run, and it does not need
inter-robot communication. Dimension of learning space,
which consists of individual state and action spaces, is small
and computational cost is low [30]. On the other hand, the MRS
environment is no longer stationary due to the robots’
independent actions, which contradicts the QL theory. Since
robots perform the learning process individually without
considering the decisions of others, behavioral conflicts are
inevitable [30]. This constitutes the major reason not to reach
optimal solutions [22]. However, the decentralized learning is
preferred in many applications because it is easy to implement
and learning space dimension is small. Successful results have
been achieved for small environments under some constraints
[31]. Independent Q-learning (IQL) is an example having

high-degree of decentralization [32]. Empirical results show
that IQL works well in simple applications only [33]. Hyper Q-
learning try to solve nonstationary problem by observing other
agents’ actions [34]. [35] uses coordination graphs to estimate
global Q values.

In centralized Q-learning, which is another approach for multi-
agent QL, robots learn global Q values using joint actions of
whole team. Since the joint actions and joint states of all team
members are considered, the MRS environment could be
assumed as MDP. It is expected that the optimal solution is
converged [22]. Centralized learning requires full knowledge of
all robots’ actions and all possible forms of states and perfect
communication among robots. Deficiency in these factors
results in failure to achieve the desired success [2].
Furthermore, the dimension of joint action space grows
exponentially in the number of robots. This means that the
learning spaces becomes huge and computational complexity
increases enormously for large MRS’s [28]. Whereas
centralized learning promises to reach optimal solution, it is
very difficult to implement.

Both decentralized and centralized learning approaches have
some trade-offs. In most studies, hybrid learning schemas are
proposed to combine the advantages and discord the
problematic points. In these generally the learning is carried
out in distributed manner, but there is an external coordination
mechanism to obtain global solution. In modular Q-learning
approach, robots learn their own Q values and there exist a
control unit to overcome the behavior conflict [36]. Sequential
Q-learning algorithm proposes the agents learn independently
in a pre-determined order. Each agent observes others’ actions
and then learn for its own state-action pairs [37]. In CTDE
algorithm, learning process is run in distributed manner with
the full knowledge of environment states [38]. VDN [39] and
QMIX [40] are examples which joint-action value functions are
factorized into individual ones. So, learning space scalability
problem is minimized. But they have constraints of being
applicable to systems having at least one optimal solution [41].

In this study, subG-CQL algorithm is proposed to provide the
use of QL in MRS easily. subG-CQL algorithm splits the whole
system sub-groups independent with each other. Each sub-
group behaves as a small-sized system and all of them consists
the overall system. subG-CQL algorithm force the robots refuse
some of their task types. It aims to match the tasks done by large
number of robots to the robots having the ability of performing
less number of task type. So, the robots carrying out large
number of task types drop some of them. As a result, each robot
performs less number of task type and each task type are done
by less number of robots. At the end, the robots performing the
same task types compose a sub-group. For each sub-group, the
learning can be realized in centralized manner easily because
of the small size of them. The details of the algorithm are given
in Section 4.

4 Proposed approach: subG-CQL algorithm

Let a heterogenous MRS consists of 𝑚 different-skilled robots,
𝑅𝑖 , 𝑖 = 1, … , 𝑚. These robots are responsible for fulfilling 𝑛
different type of tasks 𝑇𝑗 , 𝑗 = 1 … 𝑛. In a heterogenous MRS, each

robot is capable of some tasks, not all. And also, some robots are
more likely to perform certain tasks due to their physical
structure. Every robot can perform different number of tasks
types.

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

582

Robot 𝑅𝑖 has the robot task set (RTS), Γ𝑖 , which is a list of tasks
can be executed by 𝑅𝑖 as in (5).

Γ𝑖 = { 〈𝑇𝑧 , 𝑑𝑖𝑧〉 | 𝑑𝑖𝑧 ∈ [0,1] } (5)

𝑑𝑖𝑧 is the willingness parameter of 𝑅𝑖 to do 𝑇𝑧.

Robot-task relation matrix (RTM) carries information about 𝑅𝑖
robots and Γ𝑖 sets, 𝑖 = 1. . 𝑚 and it is defined as in equation (6).

𝑀 = [𝑚𝑖𝑗] = {
𝑚𝑖𝑗 = 1 , 𝑇𝑗 ∈ Γ𝑖

𝑚𝑖𝑗 = 0 , 𝑇𝑗 ∉ Γ𝑖
 (6)

Row-sum of RTM, 𝑟𝑖 = ∑ 𝑚𝑖𝑗
𝑛
𝑗=1 , is the number of all tasks can

be done by 𝑅𝑖 and it is equal to the size of Γ𝑖 . Column-sum of
RTM, 𝑐𝑗 = ∑ 𝑚𝑖𝑗

𝑚
𝑖=1 , is the number of robots that can perform

𝑇𝑗 tasks.

subG-CQL algorithm, proposed approach in this study, aims to
divide the system into sub-groups with less number robots
performing limited number of tasks for each. The idea behind
of subG-CQL algorithm is that the tasks executed by large
number of robots are matched to the robots having the
responsibility of fewer tasks types. Thus, the variety of tasks
that robots have to do will decrease and the robots performing
the same type of tasks will form small-sized groups. So, it is
possible to concentrate the robots on less number of task type.

Initially, there is no sub-group, all robots form just one team. At
each iteration, the algorithm selects the task performed
maximum number of robots. This corresponds to task 𝑇𝑗 such

that RTM column having the highest 𝑐𝑗 value. This 𝑇𝑗 task is

matched to the robot 𝑅𝑖 with the least 𝑟𝑖 value. If task 𝑇𝑗 or robot

𝑅𝑖 is already present in one of the existing sub-groups, then
 < 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 > triplet is added to this sub-group. If not, a new

sub-group is created with this triplet, the first element of it. 𝑤𝑖𝑗 ,

represents the degree of 𝑅𝑖-𝑇𝑗 pair and it is calculated as in (7).

𝑤𝑖𝑗 =
𝑑𝑖𝑗

𝑟𝑖 𝑐𝑗
 (7)

If there are more than one task having same 𝑐𝑗 value, the

algorithm consults to the column weight which is the measure
of how many robots do these tasks. The task with the lowest
column weight is selected. Column weight, 𝜔𝑗 is calculated by

using equation (8).

𝜔𝑗 = ∑ 𝑚𝑖𝑗𝑟𝑖

𝑚

𝑖=1

 (8)

In the case of more than one row having minimum 𝑟𝑖 value, the
robot with the highest willingness parameter 𝑑𝑖𝑗 is matched to

the task.

Each robot 𝑅𝑖 is connected to a sub-group 𝐿𝑔 with a dependency

parameter 𝜂𝑖𝑔 calculated as the sum of 𝑤𝑖𝑗 for the sub-group 𝐿𝑔.

In some cases, both 𝑅𝑖 and 𝑇𝑗 matched with each other exist in

present sub-groups but different ones. Then the triplet
< 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 > is added to all of them. Such robots belonging to

multiple sub-groups are stored in set 𝐶. During the algorithm,
robots’ new task sets are constituted. Λ𝑖 is the new task set of
robot 𝑅𝑖 and it contains the task type 𝑇𝑗’s which are matched to

𝑅𝑖 with the 𝑤𝑖𝑗 weights.

After the formation of sub-groups is completed, the robots in 𝐶
are forced to choose one sub-group which has the highest 𝜂𝑖𝑔.

The triplets related to 𝑅𝑖 robot are excluded from other sub-
groups. New task sets are edited by deleting the dropped task

types dropped by 𝑅𝑖. Although this task refusing procedure,
subG-cQL algorithm provides each task type is performed by
enough robots thanks to its matching strategy.

At the end of this step, subG-CQL algorithm has finished. Overall
system is divided into sub-groups that each of them acts as an
independent small-sized system. In each sub-group, learning is
run in centralized manner with its own state space and joint
action space of robots in this sub-group. subG-CQL algorithm is
given below in detail.

subG_CQL Algorithm

Input: Robot-task relation matrix, 𝑀
Output: Sub-groups 𝐿𝑓, 𝑓 = 1 … 𝑝

 Robots’ new task set Λ𝑖, 𝑖 = 1 … 𝑚

𝑥 = 0, 𝑝 = 0, 𝐶 = ∅, Λ𝑖 = ∅
for ∀𝑐𝑗 ≠ 0, 𝑗 = 1 … . 𝑛

 Select task 𝑇𝑗 such that argmax
𝑗

𝑐𝑗

Select robot 𝑅𝑖 such that argmin
𝑖

𝑟𝑖, 𝑟𝑖 ≠ 0

 if multiple 𝑐𝑗

 Select 𝑇𝑗 such that argmin
𝑗

𝜔𝑗

 end

 if multiple 𝑟𝑖
 Select 𝑅𝑖 such that argmax

𝑖
𝑑𝑖𝑗

 end
 Match 𝑇𝑗 − 𝑅𝑖, such that argmin

𝑖
𝑟𝑖, 𝑟𝑖 ≠ 0

 Calculate 𝑤𝑖𝑗

 if 𝑅𝑖 ∉ 𝐿𝑓 ∧ 𝑇𝑗 ∉ 𝐿𝑔, 𝑓 = 1 … 𝑝, 𝑔 = 1 … 𝑝

 𝑝 = 𝑝 + 1
 Create new sub-group 𝐿𝑝 = ∅

 𝐿𝑝 = 𝐿𝑝 ∪ < 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 >

 Calculate 𝜂𝑖𝑝

 end
 if 𝑅𝑖 ∈ 𝐿𝑓, 𝑓 = 1 … 𝑝

 𝐿𝑓 = 𝐿𝑓 ∪ < 𝑅𝑖, 𝑇𝑗 , 𝑤𝑖𝑗 >

 Calculate 𝜂𝑖𝑓

 end
 if 𝑇𝑗 ∈ 𝐿𝑔, 𝑔 = 1 … 𝑝

 𝐿𝑔 = 𝐿𝑔 ∪ < 𝑅𝑖 , 𝑇𝑗 , 𝑤𝑖𝑗 >

 Calculate 𝜂𝑖𝑔

 end
 if there exists f and g such that 𝑓 ≠ 𝑔
 𝐶 = 𝐶 ∪ 𝑅𝑖
 end
 Λ𝑖 = Λ𝑖 ∪ 𝑇𝑗

 𝑚𝑖𝑗 = 0

 𝑟𝑖 = 𝑟𝑖 − 1, 𝑐𝑗 = 𝑐𝑗 − 1

 Update 𝜔𝑗

end

if 𝐶 ≠ ∅
 for ∀𝑅𝑞 ∈ 𝐶

 Select 𝐿𝑡 such that argmax
𝑣

𝜂𝑞𝑓, 𝑓 = 1 … 𝑝

 for ∀(𝑅𝑞 ∈ 𝐿ℎ)

 if ℎ ≠ 𝑣
 𝐿ℎ = 𝐿ℎ \ < 𝑅𝑞 , 𝑇𝑗 , 𝑤𝑞𝑗 >

 Λ𝑖 = Λ𝑖 \ 𝑇𝑗

 end
 end
 end
end

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

583

5 Application

5.1 System structure

For experimental studies, two different MRS, that one is a small-
sized system, and the other is a great and much more complex
system, are prepared.

In System-I, there exist six robots having the ability to do five
different type of tasks. System-I is fully heterogenous nature
due to the robots’ different physical properties and different
skills. Robots and related tasks in System-I are given in Table 1.

Table 1. Robots and related tasks for system-I.

Robots Related Task Type

𝑹𝟏 𝑇1, 𝑇4, 𝑇5

𝑹𝟐 𝑇2, 𝑇4

𝑹𝟑 𝑇1, 𝑇3

𝑹𝟒 𝑇4, 𝑇5

𝑹𝟓 𝑇1

𝑹𝟔 𝑇1, 𝑇3, 𝑇5

System-II is like System-I, but it is much bigger and has more
complex structure with ten robots and eight different type of
tasks should be done. System-II is also highly heterogenous.
Robots and task relation for System-II are shown in Table 2.

Table 2. Robots and related tasks for system-II.

Robots Related Task Type

𝑹𝟏 𝑇3, 𝑇5

𝑹𝟐 𝑇1, 𝑇2, 𝑇5, 𝑇7, 𝑇8

𝑹𝟑 𝑇3, 𝑇6, 𝑇7

𝑹𝟒 𝑇1, 𝑇3, 𝑇4, 𝑇6

𝑹𝟓 𝑇2, 𝑇5, 𝑇7, 𝑇8

𝑹𝟔 𝑇1, 𝑇2

𝑹𝟕 𝑇4, 𝑇6, 𝑇7

𝑹𝟖 𝑇2, 𝑇5, 𝑇8

𝑹𝟗 𝑇2, 𝑇6, 𝑇7

𝑹𝟏𝟎 𝑇3, 𝑇5, 𝑇8

For both systems, all types of tasks are equally probable. Each
task type has two priority level named as high-priority and low-
priority. High-priority tasks have should be done absolutely
and primarily and they are more time-consuming than the low-
priority tasks. High-priority tasks is 30%-35% of all tasks and
remains are low-priority tasks.

Tasks appear at any time and in random sequence during
system operation. Task allocation process is executed in
auction-based manner. The tasks, that are announced but not
assigned, auctioned once more at a certain time later. If it is not
assigned, it will be dropped from the list. It is assumed that the
tasks are allocated to any robot absolutely done.

5.2 Performance metrics

The learning-based task allocation methods are applied to the
systems described above. The experimental results are
evaluated in terms of three performance metric; completed
task ratio, idle time ratio, and learning space dimension.

Completed task ratio (CTR) is the ratio of the number of tasks
executed to the total number of tasks announced. The assigned
task number is used instead of the completed task number. CTR
is calculated in percent.

Idle time ratio (ITR) represents the ratio of robot’s free time to
whole execution time. ITR is determined by following equation
(9).

𝐼𝑇𝑅 =
𝑡𝑒𝑥𝑒 − 𝑡𝑏𝑢𝑠𝑦

𝑡𝑒𝑥𝑒
 (9)

Here, 𝑡𝑒𝑥𝑒 is the total execution time of a robot and 𝑡𝑏𝑢𝑠𝑦 is the

duration that robot is busy with auction process, performing
any task or charging.

In literature, it is given that the computational cost of Q-
learning is directly related to the learning space dimension
calculated as the product of state space dimension and action
space dimension [23],[28]. Let 𝑈 be the learning space and | ∙ |
represent space dimension. The individual learning space
dimension of robot 𝑅𝑖 is determined by equation (10), where
 𝑆𝑖 is the state space of 𝑅𝑖 and 𝐴𝑖 is the action space of 𝑅𝑖.

| 𝑈𝑖 | = | 𝑆𝑖 | 𝑥 | 𝐴𝑖| (10)

In decentralized learning, the learning space dimension of
overall system with 𝑚 robot is equal to the sum of individual
learning spaces given in equation (11).

| 𝑈 | = ∑| 𝑆𝑖 | 𝑥 | 𝐴𝑖|

𝑚

𝑖=1

 (11)

Centralized learning uses joint action and state spaces. State
space of whole system is the union of individual state spaces as
in equation (12) and the dimension of it is in equation (13).

𝑆 = ⋃ 𝑆𝑖

𝑚

𝑖=1

(12)

| 𝑆 | ≤ ∑| 𝑆𝑖 |

𝑚

𝑖=1

(13)

Joint action space is the cartesian product of individual action
spaces as in equation (14) and dimension of joint action space
is calculated by equation (15).

𝐴 = ∏ 𝐴𝑖

𝑚

𝑖=1

 (14)

| 𝐴 | = ∏| 𝐴𝑖 |

𝑚

𝑖=1

 (15)

In worst case, the joint action space is in its largest form of
| 𝐴 | = | 𝐴𝑖 |

𝑚 and this occurs when the system is fully
cooperative. Learning space dimension in centralized learning
is simply calculate by using equation (16).

|𝑈| = |𝑆| 𝑥 | 𝐴| (16)

In the proposed algorithm, the system is divided into p sub-
groups. Each sub-group run the learning process in centralized
manner. But these sub-groups act as if it was an individual
agent of whole system. So, the state space and action space
dimension of each sub-group are determined by equations (13)
and (15) respectively and learning space of overall system is
calculated by adding up the learning space of all sub-groups.

6 Experimental results

Experimental studies are realized on two different systems
Whose details are given in Section 4. To emphasize the impact
and successful results of the proposed approach, subG-CQL,
algorithm, it is compared with the three other methods given in

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

584

literature, centralized Q-learning, semi-centralized Q-learning
and decentralized Q-learning.

A well-known example of centralized Q-learning (CQL) method
is studied in [28]. CQL method assumes the environment as an
SG which is primary requirement of multi-agent Q-learning
theory. Learning is carried out on the overall state space of the
environment and joint action space of robots. Robots’ main aim
is to reach Nash equilibrium.

In semi-centralized Q-learning (semi-CQL) method, robots
gather information about states of whole system and use it to
determine their own behavior. But each robot learns the Q-
values of its own state-action pairs in a similar way of [38].

In decentralized Q-learning (DQL) method, each robot acts as
an independent learner in [32]. The robots run learning process
individually by using their own state and action spaces. And
they do not care the behavior of their teammates.

subG-CQL algorithm, proposed in this study, divides the system
into small groups uncorrelated with each other. Every sub-
group behaves as a different system and learning is managed in
centralized manner for each of them. Because the system size is
diminished to small ones, the scalability problem of in CQL can
be handled. As a result of subG-CQL algorithm, two sub-groups
are formed in System-I. 𝑅1 robot drops 𝑇1 task from its RTS.
Similarly, 𝑅6 robot renounces 𝑇5 as it can do this type of task.
The sub-group structure of System-I is in Table 3.

Table 3. Sub-groups formed after subG-CQL for system-I.

Sub-Group-1:

Robots Related Task Type

𝑹𝟏 𝑇4, 𝑇5

𝑹𝟐 𝑇2, 𝑇4

𝑹𝟒 𝑇4, 𝑇5

Sub-Group-2:

Robots Related Task Type

𝑹𝟑 𝑇1, 𝑇3

𝑹𝟓 𝑇1

𝑹𝟔 𝑇1, 𝑇3

subG-CQL algorithm creates three sub-groups in System-II.
Many robots have stopped performing multiple tasks as shown
in Table 4. For example, 𝑅2 robot drops 𝑇5 and 𝑇7 tasks, it
performs only three types of task after subG-CQL whereas it has
five types of task in its RTS originally.

Table 4. Sub-groups formed after subG-CQL for system-II.

Sub-Group-1:

Robots Related Task Type

𝑹𝟏 𝑇3, 𝑇5

𝑹𝟏𝟎 𝑇3, 𝑇5

Sub-Group-2:

Robots Related Task Type

𝑹𝟐 𝑇1, 𝑇2, 𝑇8

𝑹𝟓 𝑇2, 𝑇8

𝑹𝟔 𝑇1, 𝑇2

𝑹𝟖 𝑇2, 𝑇8

Sub-Group-3:

Robots Related Task Type

𝑹𝟑 𝑇6, 𝑇7

𝑹𝟒 𝑇4, 𝑇6

𝑹𝟕 𝑇4, 𝑇6, 𝑇7

𝑹𝟗 𝑇6, 𝑇7

The experimental results for four different method are
analyzed below separately.

6.1 Completed task ratio (CTR)

CTR gives the ratio of completed tasks and it can be considered
as the success of task allocation process. CTR values of all task
types for both systems are also written in Table 5 and Table 6
for both systems. CTR values are in percent and they are
rounded to the nearest integer for simplicity.

CTR values are shown by graphs in for all approaches
comparatively in the figures below. CTR for low-priority and
high priority tasks separately in Figure 1 and Figure 2 for
System-I and in Figure 3 and Figure 4 for System-II
respectively. In the graphs, 𝑇𝑗𝐿 represents the low priority
tasks of task type 𝑇𝑗 . Similarly 𝑇𝑗𝐻 shows the high-priority

tasks.

When the graphs are examined, the behavior of all methods is
nearly similar for both systems. Some variations are caused
from the differences in the systems. For every task, the number
of robots that perform it is not same. In particular, the tasks that
can be done by more robots have greater CTR values than
others.

Table 5. CTR values for system-I.

 𝑻𝟏𝑳 𝑻𝟏𝑯 𝑻𝟐𝑳 𝑻𝟐𝑯 𝑻𝟑𝑳 𝑻𝟑𝑯 𝑻𝟒𝑳 𝑻𝟒𝑯 𝑻𝟓𝑳 𝑻𝟓𝑯

CQL 74 93 52 78 57 87 65 94 61 88
Semi-CQL 62 86 41 59 47 65 52 82 49 74

DQL 57 81 32 63 37 79 40 83 42 75
subG-CQL 76 94 55 68 53 89 62 92 58 82

Table 6. CTR values for system-II.

 𝑻𝟏𝑳 𝑻𝟏𝑯 𝑻𝟐𝑳 𝑻𝟐𝑯 𝑻𝟑𝑳 𝑻𝟑𝑯 𝑻𝟒𝑳 𝑻𝟒𝑯 𝑻𝟓𝑳 𝑻𝟓𝑯 𝑻𝟔𝑳 𝑻𝟔𝑯 𝑻𝟕𝑳 𝑻𝟕𝑯 𝑻𝟖𝑳 𝑻𝟖𝑯

CQL 42 87 62 92 55 87 53 84 61 91 59 86 66 94 60 92
Semi-
CQL

38 73 54 82 49 72 46 68 53 82 54 72 59 81 52 78

DQL 35 77 50 85 45 77 42 72 50 85 46 77 56 84 49 81
subG-
CQL

46 85 68 96 51 84 50 87 60 92 64 94 65 93 54 89

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

585

Figure 1. CTR for low-priority tasks for System-I.

Figure 2. CTR for high-priority tasks for System-I.

Figure 3. CTR for low-priority tasks for System-II.

Figure 4. CTR for high-priority tasks for System-II.

The aim of the learning based MRTA is to increase the number
of completed tasks, especially for the tasks with high-priority.
Experimental results indicate that CTR values of high-priority
tasks are higher than that of low-priority tasks thanks to
auction-based task allocation.

As expected, CQL algorithm has the highest CTR values for each
type of task. In CQL, it can be thought that the environment is
nearly stationary and contains no uncertainty because overall

state space of the environment and joint action spaces of all
agents are considered. On the contrary, DQL algorithm results
in the lowest CTR values for low-priority tasks. CTR of high-
priority tasks are reasonably high. In DQL, robots learn
individually for their state and action spaces. As a result of this,
robots force themselves to do high-priority tasks rather than
low-priority ones. semi-CQL algorithm’s CTR values for low-
priority tasks are a bit higher than DQL and for high-priority
tasks are lower than DQL, but not so poor. semi-CQL gather
information about overall system states but it uses
decentralized learning structure. This explains why its results
are so similar to DQL.

subQ-CQL algorithm, proposed in this study, has satisfactorily
good results of CTR for both high-priority and low-priority
tasks although these values are a bit lower than the results of
CQL. subG-CQL learns in centralized manner but in smaller size.
Whole system is divided into sub-groups which have no
common task or robot with each other. One advantage of this
algorithm is that it provides easy-to-apply centralized learning
for each small-sized sub-group. The other advantage is to
concentrate the robots on less variety of task type. To deal with
the same task type makes much more tasks completed because
every task type has different features such that duration,
difficulties etc.…

6.2 Idle Time Ratio (ITR)

Robots and their abilities are considered as system resources.
In most cases, all tasks could not be done due to the scarcity of
resources in MRS applications. Insufficiencies in the number of
robots causes that a lot of tasks announced cannot be assigned
to the robots because all robots are busy with another task at
auction duration. ITR values are meaningful for effective use of
resources. The reduction in the free time of the robots means
that robots do right tasks at the right time. ITR values of all
robots for System-I and System-II are given in Table 7 and
Table 8 respectively in percent.

Table 7. ITR values for system-I.

 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔

CQL 21 17 19 18 15 22

Semi-CQL 27 20 23 27 37 28

DQL 32 21 29 34 44 31

subG-CQL 12 14 17 15 13 18

Table 8. ITR values for system-II.

 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔 𝑹𝟕 𝑹𝟖 𝑹𝟗 𝑹𝟏𝟎

CQL 19 21 23 14 17 16 13 21 18 21

semi-
CQL

25 23 27 19 23 35 19 18 24 29

DQL 27 24 31 21 26 39 21 24 27 33

subG-
CQL

12 14 9 11 13 10 12 15 13 14

subG-CQL algorithm provides low ITR values because it knows
all existing situations of the environment and use this
information in learning process. So, task allocation process is
managed in balance and robots are run effectively. The highest
ITR values are obtained by DQL algorithm. In DQL, robots learn
independently, and they do not concern their teammates’
behavior. This causes behavior conflicts, which is the major
disadvantage of decentralized learning, among team members.
For example, two robots learn same action for the same task
and this task is assigned one of them, the other goes to idle

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

586

mode. The ITR values of semi-CQL algorithm is better than DQL
and worse than CQL. This is because it knows the other robots’
actions but learn in decentralized manner.

The best ITR values is achieved by subG-CQL algorithm. It
forces some robots drop some of its type of task and
concentrate on less task type. Thus, it becomes possible to
utilize the robots effectively and idle time of robots decreases
as desired. ITR values of robots are drawn graphically Figure 5
and Figure 6 for System-I and System-II respectively.

Figure 5. ITR of robots for System-I.

Figure 6. ITR of robots for System-II.

6.3 Learning space dimension

Learning space dimension whose details are explained in
Section 5.2, is directly related to the learning schema and
system size. The learning space dimensions for both systems
are given in Table 9.

Table 9. Learning Space Dimensions.

 System-I System-II

CQL 17 ∗ 212 ∗ 34 7 ∗ 229 ∗ 38 ∗ 52

Semi-CQL 426 3 ∗ 210
DQL 426 3 ∗ 210

subG-CQL 212 28 ∗ (22 ∗ 34 + 1)

The learning space dimension of System-II is higher than that
of System-I, because the size of System-II much larger than
System-I in all algorithms. The smallest learning space
dimension is obtained for DQL and semi-CQL which use
decentralized learning. CQL algorithm has the highest learning
space dimension caused by the joint action space dimension.
Especially for System-II, the learning space dimension is huge.
It is a big obstruction in apply centralized learning which has a
great success to reach optimal solution.

subG-CQL algorithm provides a reasonable learning space
dimension compared to CQL, although both learn in centralized
manner. subG-CQL algorithm divides the system into small-
sized sub-groups and each one uses its own joint action and
state spaces. Its learning space dimension is equal to the sum of

sub-group’s learning space dimensions. Whereas, CQL
considers joint action and state space of whole system.

The results of the experimental studies can be summarized as
follows in terms of the performance metrics discussed.

 As expected, the best CTR values, which is a sign of
successful MRTA process, are obtained in CQL method
for both high-priority and low-priority tasks. CTR
values of the proposed algorithm, subG-CQL, are a bit
lower than CQL,

 The lowest ITR values are achieved by subG-CQL
algorithm. Low ITR means that the robots and their
abilities are effectively used and their waste time is
decreased,

 semi-CQL and DQL methods, both of which learns in
decentralized manner, have the lowest learning space
dimension. subQ-CQL algorithm propose a learning
space dimension which is higher than DQL but
reasonably less than CQL method. Huge learning space
dimension which is the case of CQL brings the scalability
problems and results in high computational cost and
application difficulties.

When all metrics are evaluated together, it is seen that
subG-CQL algorithm offers the optimal solution among all
approaches. It has sufficiently high CTR values, good ITR values
and acceptable learning space dimension. These results
indicate that division of the system into sub-groups have no
adverse effect on system also.

7 Conclusions

Multi-robot system environments are dynamic and contains
high-level uncertainty due to independent sensing, decision-
making and acting facilities of robots. Q-learning method
provides optimal solution for robotic applications, but it is
problematic to use in multi-robot domains. When decentralized
learning structure is processed, robots do not take care the
behaviors of their teammates and they ignore the effects of
dynamic environment characteristics. These are the main
reasons that the optimal task allocation cannot be reached.
Additionally, behavior conflicts occur because of the
independent actions of team members. The biggest advantage
of this structure is that the small learning space dimension
brings low computational load and easy application. When
centralized Q-learning is used, the multi-robot system can be
considered as Markovian, because the overall state space of the
environment and joint action spaces of all robots are taken into
account. This means that the major requirement of Q-learning
to converge the optimal solution, is ensured. However, it is
quite difficult to use centralized Q-learning especially for large
systems. Computational cost is so high due the huge joint action
space dimension increasing exponentially in the number of
robots. Also, gathering the full knowledge of environment
states and agents' actions needs perfect communication
capability among robots. In this study, an efficient solution has
been developed to use Q-learning in multi-robot systems. The
subG-CQL algorithm, proposed here, divides the whole system
into sub-groups which each of them behaves as an independent
small-sized system. This process is carried out in a way that
does not lose the task performance of the system. The
combination of these sub-groups constitutes the whole system.
Each sub-group use Q-learning in centralized manner. Because
they have small system size in number of robots and number of
tasks performed, the computational cost and communication

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

587

requirement is reduced to a reasonable level. Thus, all the
advantages of centralized learning are utilized. The
experiments are realized comparatively for four different
approaches: centralized Q-learning, semi-centralized Q-
learning, decentralized Q-learning, and the proposed algorithm,
subG-CQL. It is seen that a fairly good system performance is
obtained by the proposed algorithm, subG-CQL, in terms of
completed task ratio, idle time ratio of robots and learning
space dimension. It successfully combines the advantages of
decentralized and centralized learning schemas such as
convergence to optimal solution, low learning space dimension,
low computational and communication cost, and easy
application. The experimental results emphasize the
effectiveness of the proposed algorithm.

8 Author contribution statements

In the scope of this study, the Hatice Hilal EZERCAN KAYIR
contributed for all stages which include the formation of the
idea, the literature review, the construction of the theoretical
background, the design and application of the study, supplying
the materials used, the assessment of obtained results, the
spelling and checking the article in terms of content.

9 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared.

There is no conflict of interest with any person/institution in
the article prepared.

10 References
[1] Arkin RC., Behavior-Based Robotics. Massachusetts, USA,

MIT Press, 1998.
[2] Dai W, Lu H, Xiao J, Zeng Z, Zheng Z. “Multi-robot dynamic

task allocation for exploration and destruction”. Journal of
Intelligent & Robotics Systems, 98, 455-479, 2020.

[3] Bernstein DS, Givan R, Immerman N, Zilberstein S. “The
complexity of decentralized control of Markov decision
processes”. Mathematics of Operation<s Research, 27(4),
819-840, 2002.

[4] Mataric MJ. “Reinforcement learning in multi-robot
domain”, Autonomous Robots, 4(1), 73-83, 1997.

[5] Gerkey BP, Mataric MJ. “A formal analysis and taxonomy
of task allocation in multi-robot systems”. The
International Journal of Robotics Research, 23(9), 939-954,
2004.

[6] Gerkey BP, Mataric MJ. “Sold!: auction methods for multi
robot coordination”. IEEE Transactions on Robotics and
Automation, 18(5), 758-768, 2002.

[7] Dias MB, Zlot RM, Kaltra N, Stentz A. “Market-based
multirobot coordination: a survey and analysis”. in
Proceedings of the IEEE, 94(7), 1257-1270, 2006.

[8] Zlot R, Stentz A, Dias MB, Thayer S. “Multi-robot
exploration controlled by a market economy”. IEEE
International Conference on Robotics and Automation,
Washington DC, USA, 11-15 May 2002.

[9] Lagoudakis MG, Markakis E, Kempe D, Keskinocak P,
Kleywegt AJ, Koenig S, Tovey CA, Meyerson A, Jain S.
“Auction-based multi-robot routing”. Robotics: Science &
Systems, Massachusetts, USA, 8-10 June 2005.

[10] Mosteo AR, Montano L. “Comparative experiments on
optimization criteria and algorithms for auction based
multi-robot task allocation”. IEEE International
Conference on Robotics and Automation, Roma, Italy, 10-
14 April 2007.

[11] Zlot R, Stentz A. “Market-based multirobot coordination
for complex tasks”. International Journal of Robotics
Research Special Issue on the 4th International Conference
on Field and Service Robotics. 25(1), 73-101, 2006.

[12] Hanna H. “Decentralized approach for multi-robot task
allocation problem with uncertain task execution”.
IEEE/RSJ International Conference on Intelligent Robots
and Systems, Alberta, Canada, 2-6 August 2005.

[13] Ezercan Kayir HH, Parlaktuna O. “Strategy planned
Q-learning approach for multi-robot task allocation”.
Proc. 11th International Conference on Informatics in
Control, Automation and Robotics, Vienna, Austria,
1-3 September 2014.

[14] Ezercan Kayir HH. “Experienced-task based multi robot
task allocation”. Anadolu University of Sciences &
Technology-A: Applied Sciences & Engineering,
18(4), 864-875, 2017.

[15] Ezercan Kayir HH. “Q-Learning Based Failure Detection
and Self-Self-Recovery Algorithm for Multi Multi-Robot
Domains”. Elektronika Ir Elektrotechnika, 25(1), 3-7, 2019.

[16] Busquets D, Simmons R. “Learning when to auction and
when to bid”. Distributed Autonomous Robotic Systems,
7, 21-30, 2006.

[17] Farinelli A, Iocchi L, Nardi D. “Distributed on-line dynamic
task assignment for multi-robot patrolling”. Autonomous
Robots, 41(6), 1321-1345, 2017.

[18] Scheider J, Apfelbaum J, Bagnell D, Simmons R. “Learning
opportunity costs in multi-robot market based planners”.
International Conference on Robotics and Automation,
Barcelona, Spain, 18-22 April 2005.

[19] Jones EG, Dias MB, Stentz A. “Learning-enhanced market-
based task allocation for oversubscribed domains”.
IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Diego, USA, 29 October-2 November
2007.

[20] Tian YT, Yang M, Qi XY, Yang YM. “Multi-robot task
allocation for fire-disaster response based on
reinforcement learning”. Eighth International Conference
on Machine Learning and Cybernetics, Baoding, China,
12-15 July 2009.

[21] Yang E, Gu D. “Multiagent reinforcement learning for
multi-robot systems: a survey”, Department of Computer
Sciences, University of Essex, UK, Technical Report, 2004.

[22] Matignon L, Laurent GJ, Le Fort-Piat N. “Hysteretic Q-
learning: an algorithm for decentralized reinforcement
learning in cooperative multi-agent teams”. IEEE/RSJ
International Conference on Intelligent Robots and Systems,
San Diego, USA, 29 October-2 November 2007.

[23] Buşoniu L, Babuška R, Schutter B. “A comprehensive
survey of multiagent reinforcement learning”. IEEE
Transactions on Systems, Man, and Cybernetics-Part C:
Applications and Reviews, 38(2), 156-172, 2008.

[24] Russel S, Norvig P. Artificial Intelligence a Modern
Approach. 2nd ed. New Jersey, USA, Prentice Hall, 2003.

[25] Tuyls K, Nowè A. “Evolutionary game theory and
multi-agent reinforcement learning”. The Knowledge
Engineering Review, 20(1), 63-90, 2005.

Pamukkale Univ Muh Bilim Derg, 27(5), 579-588, 2021
H.H. Ezercan Kayır

588

[26] Sutton RS, Barto AG. Reinforcement Learning: An
Introduction. Massachusetts, USA, MIT Press, 1998.

[27] Watkins CJ, Dayan P. “Q-learning”. Machine Learning,
8, 279-292, 1992.

[28] Hu J, Wellman MP. “Nash Q-learning for general sum
games”. Journal of Machine Learning Research,
4, 1039-1069, 2003.

[29] Boutlier C. “Planning learning and coordination in
multiagent decision processes”. 6th Conference on
Theoretical Aspects of Rationality and Knowledge,
TARK'96, Renesse, The Netherlands, 17-20 March 1996.

[30] Wang Y, de Silva CW. “Extend single-agent reinforcement
learning approach to a multi-robot cooperative task in an
unknown dynamic environment”. IEEE International Joint
Conference on Neural Networks, Vancouver, Canada,
16-21 July 2006.

[31] Martinson E, Arkin RC. “Learning to role-switch in multi-
robot systems”. IEEE International Conference on Robotics
and Automation, Taibei, Taiwan, 14-19 September 2003.

[32] Tan M. “Multi-agent reinforcement learning: Independent
vs. cooperative agents”. Tenth international Conference on
Machine Learning, Massachusetts, USA, 27-29 June 1993.

[33] Matignon L, Laurent GJ, Le Fort-Piat N. “Independent
reinforcement learners in cooperative markov games: a
survey regarding coordination problems”. The Knowledge
Engineering Review, 27(01), 1-31, 2012.

[34] Tesauro G. “Extending q-learning to general adaptive
multi-agent systems”. 16th International Conference on
Neural Information Processing Systems, Vancouver,
Canada, 8-13 December 2003.

[35] Kok JR, Vlassis N. “Collaborative multiagent reinforcement
learning by payoff propagation”. Journal of Machine
Learning Research, 7, 1789-1828, 2006.

[36] Park KH, Kim YJ, Kim JH. “Modular Q-learning based multi-
agent cooperation for robot soccer”. Robotics and
Autonomous Systems, 35, 109-122, 2001.

[37] Wang Y, de Silva CW. “A machine-learning approach to
multi-robot coordination”. Engineering Applications of
Artificial Intelligence, 21(3), 470-488, 2008.

[38] Oliehoek FA, Amato C. A Concise Introduction to
Decentralized POMDPs. Switzerland, Springer, 2016.

[39] Sunehag P, Lever G, Gruslys A, Czarnecki WM, Zambaldi
VF, Jaderberg M, Lanctot M, Sonnerat N, Leibo JZ, Tuyls K,
Graepel T. “Value decomposition networks for
cooperative multi-agent learning based on team reward”.
17th International Conference on Autonomous Agents and
Multiagent Systems, Stockholm, Sweeden, 10-15 July 2018.

[40] Rashid T, Samvelyan M, Schroeder C, Farquhar G, Foerster
J, Whiteson S. “QMIX: Monotonic value function
factorisation for deep multi-agent reinforcement
learning”. Journal of Machine Learning Research,
 21, 1-51, 2020.

[41] Son K, Kim D, Kang WJ, Hostallero D, Yi Y. “QTRAN:
Learning to Factorize with Transformation for
Cooperative Multi-Agent Reinforcement learning”.
36th International Conference on Machine Learning,
Long Beach, California, USA, 9-15 June 2019.

