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Abstract  Öz 

Balancing nurse workload while scheduling outpatient chemotherapy 
appointments under uncertainty is a challenging problem. In this study, 
a two-stage stochastic mixed-integer programming model is proposed 
for setting appointment times of patients and assigning patients to 
chairs and nurses without distorting the workload balance among 
nurses. The uncertainty in pre-medication and infusion durations is 
considered. The objective function of the model minimizes the expected 
weighted sum of patient waiting time and nurse overtime. 
Computational experiments are conducted based on data from an 
outpatient chemotherapy unit of a large hospital. The trade-off between 
the two competing criteria of the study is investigated. The relationship 
between the numbers of chairs and nurses in the clinic with the 
performance measures is examined. The benefit of considering 
uncertainty is assessed by calculating the value of stochastic solution  

 Belirsizlik varken ayaktan kemoterapi randevularının çizelgelenmesi 
esnasında hemşirelerin iş yükünü dengelemek zor bir problemdir. Bu 
çalışmada, hastaların randevu vakitlerinin belirlenmesini ve 
hemşirelerin kendi aralarındaki iş yükü dengesini bozmadan hastaların 
koltuklara ve hemşirelere atanmasını sağlayan iki aşamalı stokastik 
karışık tamsayılı programlama modeli tasarlanmıştır. Çalışmada pre-
medikasyon ve infüzyon sürelerindeki belirsizlik dikkate alınmıştır. 
Modelin amaç fonksiyonu, hastaların bekleme süreleri ve hemşirelerin 
fazla mesai sürelerinin ağırlıklandırılmış toplamının beklenen değerini 
enküçüklemektedir. Büyük bir hastanenin ayaktan kemoterapi 
ünitesinden elde edilmiş veriler kullanılarak bilgisayısal deneyler 
yapılmıştır. Çalışmada gözetilen iki rakip ölçüt arasındaki denge 
incelenmiştir. Klinikte bulunan koltuk ve hemşire sayısı ile performans 
ölçütleri arasındaki ilişki irdelenmiştir. Stokastik çözüm değeri 
hesaplanarak, belirsizliği dikkate alarak çözüm bulmanın faydası 
ölçülmüştür. 

Keywords: Chemotherapy scheduling, Stochastic programming, 
Healthcare operations. 

 Anahtar kelimeler: Kemoterapi çizelgeleme, Stokastik 
programlama, Sağlık hizmeti operasyonları. 

1 Introduction 

The number of patients going through chemotherapy treatment 
was 9.8 million worldwide in 2018, while this number is 
expected to increase by 53 percent by 2040 [1]. Due to the 
increasing demand, managing clinic operations has become a 
difficult task for chemotherapy unit directors. 

Chemotherapy treatment consists of two phases: pre-
medication and infusion. Pre-medication is administered to 
prepare patients against the side effects of chemotherapy 
drugs. After the pre-medication phase is completed, the drugs 
are slowly given to patients using a catheter which is a tiny and 
plastic tube placed into the veins of the patients. The drugs flow 
from an intravenous (IV) bag through a tube connected to the 
catheter. These drugs are dripped from the bag based on the 
doses prescribed by an oncologist. 

Appointment scheduling for chemotherapy patients must be 
carefully conducted in an outpatient clinic due to the need for 
coordinating multiple resources and uncertainty in durations. 
Balancing the workload among nurses is also critical during this 
task. The competing nature of patient and provider related 
criteria make the task further challenging. In general, the first 
draft of chemotherapy schedules are generated in two steps. 

                                                           
*Corresponding author/Yazışılan Yazar 

First, patients are allocated to days; next, the patient 
appointment times are set for each daily schedule. One or two 
days before the schedule is implemented, the schedules are 
finalized by fine-tuning the patient appointment times without 
making substantial changes [2]. We focus on the fine-tuning 
phase and reset the appointment times of a given schedule 
without making a change in the patient sequence. 

Nurse overtime and patient waiting time are two important 
criteria for chemotherapy clinic managers. Nurse overtime 
negatively affects operating costs of the clinic. An excessive 
amount of overtime also reduces the workplace satisfaction 
level of nurses. Patient waiting time is a relevant measure 
representing service and patient satisfaction levels. Designing 
appointment schedules based on treatment duration estimates 
may lead to unacceptable amount of overtime and waiting time, 
especially at the clinics where the variability in durations is 
high. 

The uncertainty in treatment durations must be given 
particular emphasis while scheduling appointments. The 
treatment duration may deviate from the expected value due to 
one of the following reasons: (i) need for early termination 
after the patient's resistance against given drugs, (ii) an 
increase in the effort spent after observing complications, (iii) 
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revision in the medication list [2]. In case a manager allocates 
more than expected duration to the cases, this may result in low 
amount of waiting times. On the other hand, this may cause an 
increase in nurse overtime. As expected, allocating less than 
needed amount of time may lead to large amount of waiting 
times and low amount of nurse overtime. The trade-off between 
these two measures must be carefully addressed by the 
decision maker. 

It is important to maintain workload balance while allocating 
tasks among employees to improve personnel satisfaction in 
any service system. This issue needs particular attention in 
healthcare systems, because the medical conditions of patients 
may be negatively influenced if the care is provided by 
overloaded caregivers. Consideration of the limited availability 
of chairs and nurses in the clinic is also necessary while 
scheduling appointments. Nurses and chairs are 
simultaneously utilized by patients throughout the treatment. 
Furthermore, a nurse cannot perform more than one pre-
medication at a given time. On the other hand, she can proctor 
multiple patients at any time during the infusion phase. 

In this article, we study the problem of setting appointment 
times for a chemotherapy clinic while considering the nurse 
workload balance and limited availability of nurses and chairs 
under uncertainty related to pre-medication and infusion 
durations. We assume that a first draft of a schedule is already 
created, and appointment times are reset by preserving the 
original sequence of patients. The following decisions are given: 
(1) appointment time-setting; (2) patient-to-nurse assignment; 
and (3) patient-to-chair assignment. We model our problem as 
a two-stage stochastic mixed-integer programming (2SMIP) 
formulation. The objective function minimizes the expected 
weighted sum of patient waiting time and nurse overtime, 
where the expectation is taken over a large set of scenarios 
generated by sampling from distributions of pre-medication 
and infusion durations. We enhance the model by adding a 
symmetry-breaking constraint into the constraint set. We 
generate instances using data of a major oncology hospital, and 
conduct numerical experiments to investigate the optimal 
solutions. We evaluate the sensitivity of the performance 
measures to the changes in the weights for patient waiting time 
and nurse overtime. We analyze the impact of the variation in 
the number of chairs and nurses on the optimal schedules. We 
also assess the benefit of considering uncertainty in pre-
medication and infusion durations during the task of 
scheduling chemotherapy appointments while considering 
nurse workload balance. 

In the following section, literature review of chemotherapy 
scheduling studies is presented. In Section 3, the problem 
description is given first. Next, the 2SMIP model formulation 
and a model enhancement idea are discussed. In Section 4, a 
detailed computational study is provided. Finally, concluding 
remarks are presented in Section 5. 

2 Literature review 

We present a brief literature review of studies on outpatient 
chemotherapy scheduling problems. A detailed review of the 
subject can be found in Lame et al. [3]. Besides, the reader is 
referred to Gupta and Denton [4], Cayirli and Veral [5], and 
Ahmadi-Javid et al. [6] for an extensive review of articles on 
general outpatient clinics. 

We first present the articles that ignore uncertainty in activity 
durations. Turkcan et al. [7] studied both planning and 

scheduling problems by formulating an integer programming 
(IP) model. They assigned patients to days in the first step, and 
then to the chairs, nurses and time slots in the second step. They 
minimized treatment delays and overtime in their models. 
Heshmat et al. [8] first grouped patients using clustering 
algorithms. Then, they assigned a nurse to each group of 
patients and chairs, and determined treatment start times 
based on an IP model. Sevinc et al. [9] also considered a two-
phase approach. They assumed that laboratory tests are 
conducted a day before the infusion. They first used a heuristic 
to determine the number of patients scheduled for lab tests 
with the objective of controlling daily load. They then assigned 
the patients who are approved to receive treatment to chairs 
again using a heuristic. Hesaraki et al. [10] determined the time 
slots for setup of patient treatments using a binary IP 
formulation having the objective of minimizing the makespan 
and weighted flow time. They considered nurse capacity 
constraints and patient priorities in their study as well. Liang 
and Turkcan [11] developed two separate mixed-integer 
programming models to assign patients to nurses and time 
slots, where each model considers a particular type of nurse 
care delivery. These are called as functional and primary care 
delivery models, respectively. Continuity is given priority in the 
primary care delivery, as the same nurse is assigned to a patient 
at each of her chemotherapy clinic visits. On the other hand, 
flexibility and efficiency is more important in functional care 
delivery, as any one of the nurses can be assigned to a patient 
at each of her visits. The authors considered skill levels of 
nurses and acuity levels of patients while making patient-to-
nurse assignments. 

Our study is different from the above articles in the sense that 
we take uncertainty into account in our 2SMIP model. Other 
similar deterministic chemotherapy appointment scheduling 
models can be found in Santibanez et al. [12], Hahn-Goldberg et 
al. [13], and Huggins et al. [14]. We now review studies that 
consider stochastic factors relevant to chemotherapy clinics. 

Alvarado and Ntaimo [15] proposed mean-risk stochastic 
integer programming models that can be used for only one 
patient to set slot, nurse and chair assignment decisions. They 
considered uncertainty related to the patient acuity levels, 
treatment durations, and number of nurses available on a day. 
The models can be used to improve total throughput, patient 
waiting time and nurse overtime. Note that we formulate a 
model that can be used to schedule multiple patients at the 
same time. Furthermore, we do not use time slots in our 
formulation to model uncertainty in treatment durations 
realistically. 

Mandelbaum et al. [16] proposed a data-driven appointment 
scheduling approach by considering only the chairs as 
resources. The stochastic parameters in their study include 
treatment durations and punctuality of patients. Note that the 
study ignores nurse assignment decisions in contrast to our 
study. 

Castaing et al. [2] solved a simpler version of our problem. They 
also refined the existing chemotherapy schedules by resetting 
the appointment times using a 2SMIP formulation. However, 
their model was formulated by considering a single nurse in a 
clinic. On the other hand, our model makes patient-to-nurse 
assignment decisions. Furthermore, we maintain nurse 
workload balance and examine the impact of its consideration 
into the performance measures. Since there are a number of 
nurse alternatives for a patient, our model is appropriate for 
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clinics that work according to a functional care delivery model. 
However, as the nurse of a patient is fixed in Castaing et al. [2], 
their model was formulated only for the clinics that function 
based on primary care delivery model. 

Demir et al. [17] also studied a stochastic chemotherapy 
appointment scheduling problem based on a 2SMIP model. 
However, they did not balance nurse workload while assigning 
patients to nurses. Furthermore, they considered patient-to-
chair and patient-to-nurse assignment decisions in the second 
stage of their formulation. On the other hand, these decisions 
are given under uncertainty at the first stage of our 2SMIP 
model. To ensure that nurses are aware that the work is fairly 
allocated among them, the work plan must be announced by the 
head nurse at the beginning of the day. This implies that the 
patient-to-nurse assignment decisions must be made before all 
patients arrive to the clinic. This enforces us to model these 
decisions at the first stage of our 2SMIP model. Hence, the 
structure of our stochastic programming model becomes 
different from that of Demir et al. [17]. They have binary and 
general integer variables at the first stage, and binary and 
continuous variables at the second stage. Our model includes 
only binary variables in the first stage and only continuous 
variables in the second stage. The resulting structure of our 
model allows us to solve the 2SMIP model without using a 
sophisticated approach such as the linearized progressive 
hedging algorithm (LPHA) proposed in Demir et al. [17]. The 
LPHA provides heuristic solutions due to the complexity 
induced by the binary variables in the second stage of their 
formulation. However, our model structure has the advantage 
of providing optimal solutions within a reasonable amount of 
time. 

3 Problem description 

We first provide background information on the chemotherapy 
clinic based on which we defined our problem. We then explain 
our model and an enhancement idea on the model 
representation. 

3.1 Background information 

We formulate our problem based on the patient flow in the 
chemotherapy clinic at the Hacettepe University Oncology 
Hospital in Ankara. Before we proceed with the definition of the 
problem, we describe the general characteristics of this clinic.  

There are 28 chairs in the clinic that are directly used for 
chemotherapy treatment. The clinic serves 60 to 85 patients, on 
average, at a particular day. The patients are served by 9 nurses 
and a head nurse. The head nurse is responsible for 
determining the patient appointment times, and the 
assignment of patients to nurses and chairs each day. The clinic 
provides service in two shifts every day. The morning shift 
includes the period between 8:00 and 12:00, and the afternoon 
shift covers the period between 13:00 and 17:00. The time 
spent after the shift finish time is considered as overtime.    

Blood test must be conducted before an approval is given for 
the treatment of a patient. The test result evaluation and 
treatment approval decision are made by an oncologist. The 
drug preparation order is sent to the pharmacy after the 
oncologist evaluation. Note that these phases are completed 
one day ahead of the treatment. We focus on the process flow 
on the day the patient arrives to the clinic for treatment. In 
particular, we consider two activities: (i) setup activity, through 
which the patient is prepared for the treatment and given pre-

medication drugs to prevent side effects; and (ii) infusion 
phase, at which the patient receives actual drugs for treatment.    

We now describe the patient flow on the day of treatment. First, 
the arriving patient at her appointment time is registered at the 
front desk and considered as available for treatment. The 
patient is taken to the infusion chair in case both a nurse and a 
chair are available. In case any of them is not idle, the patient 
needs to wait in the waiting area. A nurse checks her blood 
pressure and fever when the patient is taken to the chair. She 
also initiates the pre-medication process by opening a vascular 
access. Next, the infusion process follows pre-medication. Even 
though it is rare, some patients skip the pre-medication activity 
and only go through infusion. The patient gets discharged when 
the infusion is completed.  

Since a nurse needs to monitor patients during the infusion 
process, each nurse is assigned at most four patients in general. 
The chemotherapy clinic at Hacettepe operates according to a 
modified version of the functional care delivery model. 
Therefore, the nurse treating a patient may differ from one visit 
to another. However, the type of patient is taken into account to 
maintain fairness while the workload is allocated among 
nurses.  

In this article, we assume that the daily patient schedule for a 
chemotherapy outpatient unit is already created. We study how 
the existing schedule can be refined by resetting the patient 
appointment times and revising the nurse and chair 
assignments under uncertainty while also maintaining the 
nurse workload balance. We do not change the patient 
sequence while resetting the appointment times. We only aim 
to fine-tune the existing schedule since making significant 
amount of changes would require the permission of patients. 

3.2 Model description 

We formulate the problem as two-stage stochastic mixed-
integer programming (2SMIP) model, inspired by the 
operations at the Hacettepe Chemotherapy Unit. The following 
decisions are made at the first stage, respectively: (1) 
appointment times are set for each patient; (2) each patient is 
assigned to a nurse; (3) each patient is assigned to a chair. Then, 
pre-medication and infusion durations are realized. At the 
second stage, patient waiting time and overtime values are 
determined. 

The expected weighted sum of patient waiting time and nurse 
overtime are considered as the performance measures. 
Patients may wait due to the following reasons: (1) A chair may 
not be available; (2) the nurse responsible for the treatment 
may not be available. Nurse overtime is the additional amount 
of time that a nurse works after the regular closure time of the 
chemotherapy unit.  

Assuming a finite set of scenarios that represent uncertainty in 
pre-medication and infusion times, we formulate the 2SMIP 
model as follows: 

3.2.1 Indices 

i, j : Patient index, 
k : Patient class index, 
n : Nurse index, 
c : Chair index, 
ω : Scenario index. 

3.2.2 Sets 

S : Set of all patients, 
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SPj : Set of patients that precede patient j in the 
appointment list, 

Sk : Set of patients of class k, 
N : Set of all nurses, 
C : Set of all chairs, 
K : Set of all patient classes, 
Ω : Set of scenarios. 

3.2.3 Deterministic parameters 

H : Regular closure time for the infusion center, 
L : Upper limit on nurse overtime, 

Pk : Upper limit on the number of patients of class k 
that can be assigned to a nurse, 

λ : Weight for waiting time (λ ≤ 1 and 
(1 − λ)represents weight for overtime), 

M : Large value. 

3.2.4 Random parameters 

si(ω) : Pre-medication duration for patient i under 
scenario ω, 

ti(ω) : Infusion duration for patient i under scenario 
ω. 

3.2.5 First-stage decision variables 

ai : Appointment time for patient i, 
xin : Binary variable denoting whether patient i is 

assigned to nurse n or not, 
yic  Binary variable denoting whether patient i is 

assigned to chair c or not. 

3.2.6 Second-stage decision variables 

wi(ω) : Waiting time of patient i under scenario ω, 
on(ω) : Overtime for nurse n under scenario ω. 

3.2.7 Objective function 

𝑚𝑖𝑛 𝒬(𝒙, 𝒚, 𝒂) = 𝐸𝜉[𝑄(𝒙, 𝒚, 𝒂, 𝜉(𝜔)] (1) 

3.2.8 First-stage constraints 

∑ 𝑥𝑖𝑛

𝑛∈𝑁

= 1     ∀𝑖 ∈ 𝑆 (2) 

∑ 𝑦𝑖𝑐

𝑐∈𝐶

= 1     ∀𝑖 ∈ 𝑆 (3) 

∑ 𝑥𝑖𝑛

𝑖∈𝑆𝑘

≤  𝑃𝑘      ∀𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾 (4) 

𝑥𝑖𝑛 , 𝑦𝑖𝑐 ∈ {0,1}     ∀𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶  (5) 

𝑎𝑖 ≥ 0     ∀𝑖 ∈ 𝑆 (6) 

3.2.9 Second-stage recourse function 

𝑄(𝒙, 𝒚, 𝒂, 𝜉(𝜔)) = 

𝑚𝑖𝑛  𝜆 ∑ 𝑤𝑖

𝑖∈𝑆

(𝜔) + (1 − 𝜆) ∑ 𝑜𝑛(𝜔)

𝑛∈𝑁

 
(7) 

3.2.10 Second-stage constraints 

𝑎𝑗 + 𝑤𝑗(𝜔) ≥ 

𝑎𝑖 + 𝑤𝑖(𝜔) + 𝑠𝑖(𝜔) − 𝑀(2 − 𝑥𝑖𝑛 − 𝑥𝑗𝑛)   

∀𝑗 ∈ 𝑆, 𝑖 ∈ 𝑆𝑃𝑗 , 𝑛 ∈ 𝑁 

(8) 

𝑎𝑗 + 𝑤𝑗(𝜔) ≥ 

𝑎𝑖 + 𝑤𝑖(𝜔) + 𝑠𝑖(𝜔) + 𝑡𝑖(𝜔) − 𝑀(2 − 𝑦𝑖𝑐 − 𝑦𝑗𝑐)   

∀𝑗 ∈ 𝑆, 𝑖 ∈ 𝑆𝑃𝑗 , 𝑐 ∈ 𝐶 

(9) 

𝑜𝑛(𝜔) ≥  𝑎𝑖 + 𝑤𝑖(𝜔) + 𝑠𝑖(𝜔) + 𝑡𝑖(𝜔) − 𝐻 − 𝑀(1 − 𝑥𝑖𝑛) 

∀𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁 
(10) 

𝑜𝑛(𝜔) ≤ 𝐿     ∀𝑛 ∈ 𝑁 (11) 

𝑤𝑖(𝜔), 𝑜𝑛(𝜔)  ≥ 0    ∀𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁  (12) 

The objective function (1) minimizes the expected weighted 
sum of patient waiting time and nurse overtime. Note that there 
is no penalty associated with the first stage in the objective 
function. It only minimizes the expected value of the second-
stage recourse function which is shown in equation (7). 

Constraint (2) ensures that each patient is assigned to exactly 
one nurse. Constraint (3) enforces that each patient is assigned 
to exactly one chair. Constraint (4) restricts the number of 
patients assigned from each patient class to a nurse. Note that 
the upper limit, 𝑃𝑘, is calculated as shown in the equation 
below. 

Pk = ⌈
|N|

|Sk|
⌉     ∀k ∈ K (13) 

Equation (13) sets 𝑃𝑘 by dividing the number of nurses by the 
number of patients in class 𝑘, and rounding up if the resulting 
value is fractional. Note that constraints (5) and (6) represent 
the binary and non-negativity restrictions on the first-stage 
variables, respectively. 

At the second stage, constraints (8)-(12) are formulated for 
each scenario. Constraint (8) ensures that the treatment of a 
patient starts after the pre-medication is completed for the 
preceding patient assigned to the same nurse. Constraint (9) 
represents that the treatment of a patient can start after the 
treatment is completed for the preceding patient assigned to 
the same chair. Constraint (10) calculates the overtime 
incurred for each nurse. Constraint (11) places a limit on nurse 
overtime. This is to ensure that the workload for a nurse does 
not become excessive in any case. Constraint (12) defines the 
non-negativity restrictions on the second-stage variables. 

3.3 Model enhancement 

We formulate a valid inequality to improve the computational 
performance by utilizing the special structure of the model. In 
particular, we test the impact of a symmetry-breaking 
constraint into the computational time. 

We formulate a symmetry-breaking constraint that is valid only 
for the set that includes the first |𝐶| patients in the appointment 
list. As the chairs are identical, it does not matter where a 
patient is assigned to in case there are multiple chairs available 
for initiating the patient treatment. Therefore, the following 
constraint which enforces the assignment of the patient i to 
chair 𝑐 = 𝑖 is valid: 

𝑦𝑖𝑐 = 1     ∀𝑖 ∈ 𝑆, 𝑐 ∈ 𝐶: 𝑖 = 𝑐 (14) 

4 Experimental study 

We used data from the Outpatient Chemotherapy Unit at 
Hacettepe Oncology Hospital in our numerical experiments. 
The data was collected through the period from November 
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2017 to March 2018. The data set includes planned treatment 
times and actual pre-medication and infusion times for 
patients. The treatment time for a patient is equal to the 
summation of pre-medication and infusion times for the 
patient. The descriptive statistics related to our data set that 
summarizes the actual pre-medication and infusion times is 
given in Table 1. 

Table 1. Descriptive statistics summarizing actual pre-
medication and infusion time (in minutes). 

 Pre-medication 
time 

Infusion time 

Average 15.3 112.5 
Minimum 0 16 
Maximum 36 217 

95% CI [14.61,16.09] [104.56, 120.35] 

The confidence intervals (CI) provided in the table illustrates 
the variability in the treatment durations. Figure 1 shows the 
variability in treatment durations for the appointments 
planned for 150 minutes. The figure provides the percentage 
frequency of treatment durations actually observed for the 
patients for whom 150 minutes of slots were reserved. The 
scope of the variability signifies the need for considering 
uncertainty while modelling chemotherapy scheduling 
decisions. 
 

 

Figure 1. Percentage frequency of actual duration values  
(in minutes) for treatments planned for 150 min. 

The patients in the data set are grouped into four patient classes 
according to the planned treatment time values. The planned 
treatment time intervals considered to create patient classes 
are as follows: [20, 45] for class 1, (45, 100] for class 2, (100, 
150] for class 3, and (150, 240] for class 4. 26.96% of the 
patients in the data set falls into the first class, 7.84% into the 
second, 33.34% into the third, while 31.86% falls into the 
fourth class according to their planned treatment time values. 
We also present the actual pre-medication and infusion times 
observed for the patients in each class on Table 2.  

Table 2. Intervals of the actual pre-medication and infusion 
times (in minutes) associated with each patient class. 

Patient class Pre-medication time Infusion time 

1 [0, 14] [16, 44] 
2 [6, 35] [29, 80] 
3 [8, 26] [74, 132] 
4 [6, 27] [125, 217] 

The following summarizes the approach we used to sample pre-
medication and infusion times for our model parameters: We 
first generated a random number between 0 and 1. The value is 
used to determine the class of a patient by considering the 

relative frequencies of the classes. Then, the pre-medication 
and infusion times for the patient are set by randomly selecting 
from the actual values for the patients in the associated class. 
The model was solved through Microsoft Visual C++ using 
CPLEX 12.9 Concert Technology. The experiments were 
conducted on a server with dual Intel Xeon Silver 4114 10 core 
processors running at 2.4 GHz and 128 GB of memory under 
OpenSuse Linux. 

We performed each experiment on an instance set that consists 
of 10 instances created randomly. The number of scenarios in 
each instance is set to 100. For each instance, we solved the 
2SMIP model by formulating the second-stage constraints for 
all 100 scenarios. The objective function (1) value is provided 
by the solver, which evaluates the expected value function 
based on those 100 scenarios. 12 patients are scheduled in all 
of the instances. Furthermore, the clinic is open for 8 hours. The 
number of chairs and nurses, and the weights for waiting time 
and overtime are varied over different experiments. 

4.1 Impact of adding the symmetry-breaking constraint 

We first measure the amount of computational time saved by 
adding the symmetry-breaking constraint. In these 
experiments, we set the number of chairs and nurses as 3 and 
2, respectively. We set the value of 𝜆 as 0.3, as the overtime per 
minute is given higher priority over the waiting time per 
minute in the chemotherapy unit we studied. 

We first solve the model (1)-(12) by CPLEX using ten instances, 
and report the run time for each of them. We then add 
constraint (14) to the model and solve the resulting model by 
CPLEX using the same instances. As the results in Table 3 show, 
adding the symmetry breaking constraint improves the 
computational time by 48.18% on average. The constraint 
reduced the solution time significantly in nine out of ten 
instances. Therefore, we add constraint (14) to the model, and 
use the resulting model in the rest of the experiments.    

Table 3. Impact of the symmetry-breaking constraint into the 
computational time (in seconds). 

Instance No Without Constraint With Constraint 

1 440.98 251.15 
2 424.73 285.84 
3 424.74 291.89 
4 470.94 286.24 
5 312.02 490.61 
6 648.7 256.64 
7 334.42 127.35 
8 1040.56 216.82 
9 549.4 238.51 

10 328.23 132.65 
Average 497.47 257.77 

4.2 Characterization of the optimal solution 

Based on the first instance of the instance set referenced in the 
previous section, we present the optimal schedule (i.e. first-
stage solution of the 2SMIP) as an example solution on Table 4. 
The table illustrates the class, optimal appointment time, 
assigned chair and nurse for each patient, respectively. The 
solution shows that the schedule is balanced in terms of the 
workload among two nurses thanks to the even allocation of 
patients of the same class. Note that the second-stage solution 
associated with the optimal schedule for this instance provided 
an average overtime value of 67.85 minutes, and average 
patient waiting time value of 4.14 min. 
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Table 4. An example optimal solution. C and N stand for chair 
and nurse, respectively, while App. Time represents 

appointment time in minutes. 

Patient 
Index 

Patient 
Class 

App. 
Time 

C 1 C 2 C 3 N 1 N 2 

1 3 0   x  x 

2 2 0  x  x  

3 4 17 x    x 

4 3 92  x   x 

5 4 218 x   x  

6 4 153   x  x 

7 2 249  x   x 

8 1 346   x  x 

9 3 360  x  x  

10 3 404   x x  

11 4 422 x   x  

12 1 529  x  x  

4.3 Sensitivity to the weights of performance measures 

We analyze the sensitivity of the optimal solution to the weights 
of performance measures by varying the values of 𝜆. We start 
with 0 and increase the value by 0.1 at each experiment until it 
becomes 1. We observe how the average waiting time per 
patient and average overtime per nurse changes due to the 
increases in 𝜆. The number of chairs and nurses in all 
experiments are again set to 3 and 2, respectively. 

Table 5 shows that the average patient waiting time decreases 
while the average nurse overtime increases as 𝜆 is incremented. 
The average waiting time drops sharp at the beginning, but the 
rate of change decreases as 𝜆 becomes greater. On the other 
hand, the rate of increase in average overtime gets larger with 
greater values of 𝜆. 

Table 5. Sensitivity of the average patient waiting time and 
nurse overtime (both in minutes) to 𝜆 values. 

𝜆 Patient Waiting Time Nurse Overtime 
0 56.01 52.81 

0.1 10.11 56.64 
0.2 6.43 60.42 
0.3 4.36 64.47 
0.4 3.11 68.51 
0.5 2.12 73.38 
0.6 1.48 78.09 
0.7 0.98 83.67 
0.8 0.51 92.32 
0.9 0.24 101.72 
1 0.05 300 

When 𝜆 is equal to 0, the model considers only the nurse 
overtime in the objective function. Therefore, all patients may 
be asked to arrive at the beginning of the day to ensure that the 
nurses and chairs would be utilized to the greatest extent. This 
is why the average patient waiting time for this case is quite 
large. On the other hand, the model minimizes only the average 
patient waiting time in case 𝜆 is set to 1. For this purpose, the 
nurse overtime is set to the maximum possible value that it can 
take. Since we allow maximum of five hours in the model, the 
overtime is found as 300 minutes in all scenarios, which is not 
realistic in practice. However, even when we slightly give 
importance to nurse overtime by setting 𝜆 as 0.9, the average 
overtime becomes 102 minutes. Note that the extreme cases 
where 𝜆 is 0 or 1 are not realistic weights for the outpatient 
chemotherapy units. However, we test them to see the 

boundary values of performance measures. The values in  
Table 5 are also plotted in Figure 2 to better illustrate the trade-
off between average patient waiting time and nurse overtime. 

 

Figure 2. Trade-off between average nurse overtime and 
patient waiting time (both in minutes) due to changes in 𝜆 

The 𝜆 value of 0.3 better represents the perspectives of the 
outpatient chemotherapy unit managers. The average patient 
waiting time is less than five minutes, while the average nurse 
overtime turns out to be at manageable levels in this case. 
Therefore, we consider 0.3 as the baseline value for 𝜆. 

4.4 Impact of the numbers of chairs and nurses 

We examine the impact of varying the number of chairs and 
nurses into the performance measures. The tested values of |𝐶| 
ranges between 1 and 4. While designing the experiments, we 
ensured that the number of nurses never exceeds the number 
of chairs. Therefore, the values of |𝑁| range between 1 and |𝐶|. 
We provide the average waiting time and nurse overtime values 
for different combinations of |𝐶| and |𝑁| in Tables 6 and 7, 
respectively. Note that the contents of Tables 6 and 7 are also 
represented by Figures 3 and 4, respectively. Note that we 
repeat our experiments for each value of 𝜆, changing between 
0.1 and 0.9. Table 6 illustrates that the average waiting time 
decreases as the number of chairs increases while the number 
of nurses is kept constant for any value of 𝜆, as expected. 
However, this improvement cannot be always observed when 
the number of nurses increases while the number of chairs 
stays constant. This may seem unexpected, but it occurs due to 
constraint (4), which balances nurse workloads. As 𝑃𝑘 in 
constraint (4) is set according to the formula shown in equation 
(13), an increase in the number of nurses decreases the number 
of patients that each nurse can take care of. Therefore, this does 
not guarantee a decrease in patient waiting time. 

Table 7 shows that the average nurse overtime decreases 
significantly when the number of chairs increases as the 
number of nurses stays constant for any value of 𝜆. A significant 
improvement in average nurse overtime is observed also when 
the number of nurses is increased while the number of chairs is 
kept at the same value. The results in Tables 6 and 7 help us 
identify appropriate values for the number of chairs and nurses. 
The average nurse overtime may exceed one hour when |𝐶| ≤
3 for any value of |𝑁| depending on the preferred value of 𝜆. 
Therefore |𝐶| = 4 may be a better choice to obtain reasonable 
nurse overtime values. The average nurse overtime drops 
below one hour when |𝑁| ≤  2 for the case|𝐶| = 4. The average 
overtime value does not even exceed 30 minutes when |𝑁| = 2 
in that case. Furthermore, the combination of |𝑁| = 2 and |𝐶| =
4 results in less than 4 minutes of patient waiting time. 
Therefore, we suggest using two nurses for four chairs in a 
chemotherapy unit. 
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Figure 3. Change in average waiting time (in minutes) 
depending on the number of chairs and nurses for each 

value of 𝜆. 

 Figure 4. Change in average overtime (in minutes in 
logarithmic scale) depending on the number of chairs and 

nurses for each value of 𝜆. 
 

Table 6. Impact of the numbers of chairs and nurses on average patient waiting time (in minutes) for different values of 𝜆. 

 𝜆 

(|C|,|N|) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
(1,1) 34.23 20.75 13.81 9.71 6.77 4.77 3.19 1.74 0.69 
(2,1) 16.29 9.54 6.57 4.58 3.14 2.17 1.41 0.72 0.27 
(2,2) 18.28 11.74 8.13 5.77 4.24 2.92 1.91 1.06 0.39 
(3,1) 10.69 6.37 4.26 2.92 2.03 1.41 0.93 0.46 0.20 
(3,2) 10.11 6.43 4.36 3.09 2.12 1.48 0.98 0.50 0.21 
(3,3) 10.56 7.20 5.14 3.56 2.58 1.73 1.15 0.59 0.24 
(4,1) 6.19 4.02 2.85 2.13 1.52 1.05 0.67 0.35 0.15 
(4,2) 3.72 2.49 1.85 1.46 1.06 0.78 0.53 0.29 0.11 
(4,3) 3.32 2.25 1.69 1.28 1.01 0.75 0.51 0.29 0.11 
(4,4) 2.93 2.07 1.56 1.26 1.01 0.67 0.49 0.27 0.11 

Table 7. Impact of the numbers of chairs and nurses on average nurse overtime (in minutes) for different values of 𝜆. 

 λ 
(|C|,|N|) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(1,1) 1041.08 1068.85 1095.85 1122.35 1151.30 1180.67 1216.33 1270.15 1344.52 
(2,1) 348.25 362.02 373.64 386.25 400.23 414.50 431.40 456.22 488.04 
(2,2) 203.71 210.48 217.64 225.20 232.79 242.57 253.70 268.92 292.17 
(3,1) 118.03 126.96 135.21 143.82 152.66 161.81 172.44 189.56 207.67 
(3,2) 56.63 60.42 64.46 68.55 73.36 78.08 83.67 92.39 102.84 
(3,3) 38.39 40.70 43.45 46.84 50.03 54.17 58.55 65.22 73.47 
(4,1) 29.07 33.42 38.02 42.64 48.66 55.52 64.21 75.60 90.05 
(4,2) 8.05 9.31 10.61 11.86 13.86 15.93 18.75 22.99 29.63 
(4,3) 4.41 5.13 5.89 6.79 7.65 8.90 10.76 13.38 17.57 
(4,4) 3.03 3.46 3.97 4.47 5.08 6.32 7.35 9.38 12.31 

 

4.5 Value of stochastic solution 

We assess the value of stochastic solution (VSS) by comparing 
the objective function (1) values calculated for each of the 
2SMIP model solution and mean value problem solution. The 
VSS value serves as the indicator of the benefit of considering 
uncertainty while scheduling chemotherapy appointments. The 
mean value problem is a variant of our problem, where the 
random parameters representing pre-medication and infusion 
durations are replaced by their expected values. Let 
𝑧𝑆𝑀𝐼𝑃represent the optimal objective value of our 2SMIP model 
solution, and 𝑧𝑀𝑉  be the optimal objective function (1) value 
calculated by fixing the values of the first-stage decision 
variables based on the mean value problem solution, then VSS= 
𝑧𝑀𝑉- 𝑧𝑆𝑀𝐼𝑃 . 

In Table 8, we report the relative VSS, which is the VSS given as 
a percentage of 𝑧𝑀𝑉 . The relative VSS is calculated for each 

value of 𝜆 in the table. The average of relative VSS values is 
found as 86%, which indicates a great benefit for considering 
uncertainty in the model. Note that the VSS values are even 
more than 90% for large values of 𝜆. 

Table 8. Relative VSS for different values of 𝜆 

λ zSMIP zMV Relative VSS% 

0 105.62 296.64 64.39 
0.1 114.11 442.76 74.23 
0.2 112.11 467.38 76.01 
0.3 105.95 531.26 80.06 
0.4 97.11 720.43 86.52 
0.5 86.11 814.62 89.43 
0.6 73.09 930.82 92.15 
0.7 58.43 808.41 92.77 
0.8 41.76 1048.68 96.02 
0.9 22.92 857.52 97.33 
1 0.52 287.34 99.82 
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5 Conclusion 

In this article, we develop a two-stage stochastic mixed-integer 
programming model for setting patient appointment times for 
outpatient chemotherapy patients, and assigning patients to 
nurses and chairs while balancing the nurse workloads. The 
uncertainty exists due to both pre-medication and infusion 
durations. The trade-off between patient waiting time and 
nurse overtime is considered in the objective function. To the 
best of our knowledge, this is the first stochastic chemotherapy 
appointment scheduling study that proposes a model 
considering the nurse workload balance. 

The stochastic mixed-integer programming model includes 
integer variables in the first stage and continuous variables in 
the second stage. Leaving only continuous variables in the 
second stage makes the realistic model instances solvable in a 
reasonable amount of time. The model was solved by CPLEX 
based on data collected from the Hacettepe Outpatient 
Chemotherapy Clinic. By incorporating symmetry-breaking 
constraints into the model, we further improved the 
computational performance of the solver. 

We investigated the trade-off between two conflicting 
performance measures: patient waiting time and nurse 
overtime. Using our model, the manager can examine the trade-
off by only changing the weight of waiting time. We found that 
when the ratio of the weight for waiting time to the ratio of 
nurse overtime is 3: 7, reasonable schedules would be obtained 
for the clinic manager. We also examined the impact of the 
number of chairs and nurses into the performances measures. 
We showed that when the number of chairs increases, the 
average overtime and waiting time also decreases. The 
overtime can also be improved by increasing the number of 
nurses. However, when the number of nurses increases, the 
average patient waiting time may not decrease because of the 
nurse workload balance constraint. This finding shows the 
importance of explicit consideration of this constraint. Note 
that we suggest 1: 2 as the nurse-to-chair ratio for the managers 
to provide service with high-level of patient satisfaction and 
reasonable amount of nurse overtime. Finally, we also 
illustrated that the solutions obtained by considering 
uncertainty in pre-medication and infusion durations improve 
the objective value significantly with respect to the case where 
the uncertainty in parameters is ignored. 

We plan to extend our model by including patient sequencing 
decisions in a future study. The resulting model may not be 
solved directly by a commercial solver in such a case. We intend 
to develop a sophisticated scenario-wise or stage-wise 
decomposition algorithm to solve the resulting formulation. 
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