

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

513

Performance analysis of set partitioning formulations on the rule
extraction from random forests

Rastgele ormanlardan kural çıkarmada küme bölüntüleme
formülasyonlarının performans analizi

Mert EDALI1,2*

1Department of Industrial Engineering, Faculty of Mechanical Engineering, Yildiz Technical University, Istanbul, Turkey.
medali@yildiz.edu.tr

2Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 6092 Chicago, IL 60637, USA.
edali@uchicago.edu

Received/Geliş Tarihi: 01.07.2020
Accepted/Kabul Tarihi: 23.11.2020

Revision/Düzeltme Tarihi: 26.10.2020 doi: 10.5505/pajes.2020.05926
Research Article/Araştırma Makalesi

Abstract Öz

Random Forests is a widely used machine learning algorithm for
classification and regression problems from different domains.
Although they are generally accurate, their interpretability is low
compared to their building blocks: single decision trees. Using the fact
that each member of a Random Forest is a decision tree, we propose
different set partitioning formulations to extract interpretable if-then
rules from Random Forests. Our experiments on well-known
classification and regression datasets show that the original set
partitioning model formulation significantly reduces the number of
rules while keeping the accuracy at acceptable levels. We also propose
a modification to the problem's objective function, which aims to reduce
the number of extracted rules further. We observe a further reduction
in the number of extracted rules while the accuracy values stay nearly
the same. Although the set partitioning problem is
NP-hard, we obtain optimal results for most datasets within twenty
minutes.

 Rastgele Ormanlar farklı alanlardaki sınıflandırma ve regresyon
problemleri için sıklıkla kullanılan bir yapay öğrenme algoritmasıdır.
Yüksek başarım göstermelerine rağmen, yapıtaşları olan karar
ağaçlarına kıyasla yorumlanabilirlikleri oldukça düşüktür. Her bir
üyesinin bir karar ağacı olduğu gerçeğinden yola çıkarak, Rastgele
Ormanlardan yorumlanabilir eğer-ise tipinde kurallar çıkarmak için
farklı küme bölüntüleme formülasyonları öneriyoruz. Literatürde
sıklıkla kullanılan sınıflandırma ve regresyon veri setleri üzerinde
yaptığımız deneylerin sonuçları göstermektedir ki orijinal küme
bölüntüleme model formülasyonu, başarımı kabul edilebilir seviyelerde
tutarak kural sayısını önemli ölçüde düşürebilmektedir. Çıkarılan kural
sayısını daha da düşürebilmek için problemin amaç fonksiyonuna bir
değişiklik öneriyoruz. Bu değişiklikle birlikte, çıkarılan kural sayısında
daha da düşüş gözlemlerken başarımın aynı seviyelerde kaldığını
gözlemliyoruz. Küme bölüntüleme problemi
NP-zor olmasına rağmen, çoğu veri seti için yirmi dakika içinde en iyi
çözümü buluyoruz.

Keywords: Random forests, Rule extraction, Set partitioning,
Classification, Regression, Interpretability.

 Anahtar kelimeler: Rastgele ormanlar, Kural çıkarma, Küme
bölüntüleme, Sınıflandırma, Regresyon, Yorumlanabilirlik.

1 Introduction

Random Forests (RFs) have been extensively used to solve
classification and regression problems in a broad range of
domains such as bioinformatics [1], medicine [2],[3] remote
sensing [4], and time series modeling [5]. Basically, an RF is an
ensemble of many decision trees. Each tree in the forest returns
a prediction, which is a categorical value in classification and a
numerical value in regression, and the final prediction is
obtained by combining these individual predictions (i.e.,
majority voting in classification and taking the mean in
regression). The power of RFs stems from incorporating two
different training mechanisms; bagging (bootstrap
aggregation) and random feature selection during split
generation. These mechanisms allow for growing uncorrelated
trees, yielding more stable and accurate predictions compared
to individual decision trees [6].

Although growing many decision trees and combining their
predictions increase prediction accuracy significantly, the
interpretability of RFs is quite low compared to individual
decision trees. While visualization and rule extraction (in the

*Corresponding author/Yazışılan Yazar

form of if-then rules) are two possible ways of interpreting
decision trees, it is not beneficial to use these tools directly for
RF interpretation. The main reason behind this is that each
individual tree in an RF is trained on a bootstrapped version of
the training data. As a result, each tree in an RF only covers a
part of the training data, giving an idea about how inputs relate
the outputs for only those data points. In addition, an RF
potentially contains hundreds of trees and, thus, thousands of
decision rules. As a result, directly visualizing or listing excess
number of rules will not contribute to the interpretability of RF
models. Therefore, techniques extracting these rules in a more
distilled way to enhance understanding are needed. However,
extracting rules from an RF is challenging due to two main
reasons. First, as previously mentioned, an RF contains a large
number of rules, which makes the rule extraction process time-
consuming. Second, extracted rules should be as accurate as
possible and collectively give an idea about how inputs relate
to outputs for the whole domain of the problem at hand. In
other words, the union of extracted rules should cover all of the
training set instances.

https://orcid.org/0000-0002-6464-2163

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021
M. Edali

514

The accuracy vs. interpretability tradeoff arising in RF models
leads to some attempts in the literature to increase the
interpretability of RFs by extracting an accurate set of
if-then rules. Mashayekhi and Gras [7] propose a hill-climbing
algorithm for rule extraction from RF classification models.
They assign a score to each rule of an RF model by considering
the number of correctly and incorrectly classified instances in
the training set. They propose another rule score formulation
which also considers rule length. Their experimental results
show that hill-climbing coupled with both rule scoring
formulations is capable of extracting rules from RF models with
fewer rules and minimal loss of accuracy. Rule scoring
formulation which incorporates rule length further reduces the
number of extracted rules. However, their algorithm does not
guarantee the coverage of all training set instances, and rules
covering the same training set instances might be selected. In
an extension to their study [8], the authors propose new
algorithms based on sparse group Lasso methods for both
regression and classification problems. They conclude that the
multiclass sparse group Lasso method achieves the least
number of extracted rules for most datasets with a lower
accuracy loss. However, they also note that this specific method
is not applicable to regression problems. It is also important to
note that the authors limit the initial number of rules to be at
most 1000 prior to the rule extraction step. Liu et al. [9]
propose a combined rule extraction and feature selection
method (CRF) based on a linear programming model utilizing a
1-norm regularization. They only focus on classification
problems for several biological datasets. Experimental results
show that CRF significantly reduces the number of rules
compared to the original RF model's rules while preserving
classification accuracy. Adnan and Islam [10] develop an
algorithm, ForEx++, which extracts rules based on their
accuracy, coverage, and length. For each class, the algorithm
first selects rules that have the accuracy and coverage values
greater than the average accuracy and coverage values
calculated by considering all the rules in the RF. In addition, for
each class, they also select rules having the length less that the
average length calculated over all of the rules. At the final step,
the intersection of the rules selected by considering these three
criteria is presented as the extracted rules. They run ForEx++
on two different medical classification problems. Although the
results are satisfactory in terms of accuracy, they conclude that
the rules extracted with ForEx++ may not cover all instances in
the training set. Besides, their algorithm may not guarantee the
diversity of rules, i.e., a set of extracted rules that might be
similar. Phung et al. [11] establish a two-step greedy algorithm,
ExtractingRuleRF, to extract rules from RFs dealing with
classification problems. In the first step, rule refinement, rules
obtained from an RF are first ranked according to some criteria
such as accuracy and coverage. Then, the rules are processed to
remove redundant conditions in a rule, duplicate rules, rules
that are covered by other rules. At the end of this step, rules
preserve their accuracy while having higher interpretability. In
the second step, rule extraction, the authors use two different
rule extraction policies, top-town or bottom-up, according to
the weights of rules calculated in the first step. While the former
extracts a rule set with high coverage but with lower accuracy,
the latter returns compact but accurate rule sets having lower
coverage. They perform experiments with a single dataset.
Meinshausen [12] proposes a quadratic programming-based
rule extraction scheme from tree ensembles. While the
objective function of the quadratic optimization model
minimizes the prediction error, constraints ensure that each

training set instance is covered by only one rule. The approach
is capable of dealing with both regression and classification
problems. In the experiments, the author keeps only 1000 rules
from RFs prior to solving the optimization problem. Friedman
and Popescu [13] develop RuleFit, which uses a linear model
with Lasso penalty to extract rules from rule-based ensembles
such as RFs. However, in the linear model, the authors use both
rules of the ensemble and original input variables in the
training set as independent variables. Although the Lasso
penalty minimizes the number of selected rules and input
variables, the resulting model can return a mixture of rules and
original model input variables. Therefore, RuleFit may not be
regarded as a direct rule extraction method. Deng [14] presents
a framework called inTrees (interpretable trees) for
interpreting tree-based ensembles. The framework
incorporates a set of tools such as rule listing, rule pruning, and
rule selection. The framework is also capable of generating a
Simplified Tree Ensemble Learner (STEL), which is obtained by
a greedy and iterative selection of rules based on their accuracy,
length, and coverage. The STEL serves as a new classifier where
the rules are distilled from an RF model. For breast cancer
diagnosis, Wang et al. [15] develop Improved Random Forest-
Based Rule Extraction (IRFRE) method which considers both
accuracy and interpretability of rules in a multi-objective
optimization scheme. The authors use a multi-objective
evolutionary algorithm to solve the optimization problem.
Although their approach shows promising results, it is assessed
only on three different datasets and tailored to classification
problems. Besides, evolutionary algorithm dictates the
selection of some parameters such as population size,
crossover probability, and mutation probability.

Although the literature review reveals a multitude of rule
extraction approaches from RFs and tree ensembles, most of
them also have some disadvantages. For example, most of the
studies only deal with classification problems (e.g., [7],
[9]-[11],[15]). Besides, some of them are developed for specific
problems (e.g., [11],[15]) or tested on specific datasets (e.g.,
[10]). Therefore, the extent of their generalizability to problems
from other domains is unproven. We also observe that, for the
methods utilizing Lasso penalty and evolutionary methods (e.g.,
[8],[9],[13],[15]), a parameter selection step is needed, which
emerges as a disadvantage because these parameters must be
optimized for each dataset separately. Finally, we also see that
most of the methods do not guarantee the coverage of all
training instances (e.g., [7],[8],[10]).

In this study, we propose a collection of set partitioning
formulations to extract rules from RF models. Our approach is
capable of handling both classification and regression
problems. Furthermore, the proposed approach does not
require any preprocessing step, meaning that the rules
obtained from an RF can be directly fed to the rule extraction
problem. The most beneficial characteristic of our approach is
that it is fully parameter-free. We also guarantee the coverage
of each training instance to give a comprehensive view about
the relationship between input variables (features) and
outputs. In addition, the set partitioning formulation enables us
to prevent the intersection of rules as much as possible.

The remainder of the article is organized as follows: Section 2
gives preliminary background information about RFs and the
set partitioning problem formulation. Section 3 presents the
experimental design and the results. Section 4 concludes the
study.

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021
M. Edali

515

2 Preliminaries and proposed method

In this section we provide the formal definitions of Random
Forests and set partitioning problem formulations.

2.1 Random Forests

Let 𝐷 = {(𝒙𝑖 , 𝑦𝑖): 𝑖 = 1, ⋯ , 𝑛} be a dataset used to train an RF.

Here, 𝒙𝑖 = (𝑥𝑖1, ⋯ , 𝑥𝑖𝑝) is the input (feature) vector with 𝑝

features, and 𝑦𝑖 is the corresponding output. When the output
is continuous, the problem is considered a regression problem.
In contrast, if 𝑦𝑖 is categorical, the problem is called a
classification problem. 𝑛 is the number of rows in 𝐷, and is
generally called the size of the dataset.

An RF is an ensemble of 𝑇 decision trees {𝑔𝑡, 𝑡 = 1, ⋯ , 𝑇}. Each
tree in the forest is trained on a dataset selected from 𝐷 by
using bootstrapping (random sampling with replacement). In
addition, at each split generation in the tree fitting process, only
a random subset of inputs is used. These two techniques enable
to generate a diverse set of trees. In classification, the output of
an input vector is predicted by applying the majority voting rule
over all the predictions returned from trees. In regression, the
mean of the predictions returned by each tree is assigned as the
prediction [6].

Since it is possible to express a decision tree as a set of if-then
rules, an RF can also be considered as a large set of rules. Each
tree in an RF can be converted to a rule set by tracing the path
from the root to each leaf node. Figure 1 shows a decision tree
arbitrarily selected from an RF trained on a dataset with two
input variables (i.e., 𝑥1 and 𝑥2) and two categorical outputs (i.e.,
𝐴 and 𝐵).

Figure 1. A tree of an RF (left) and the corresponding partition
in the input space (right).

Table 1 lists all the rules obtained from the tree given in
Figure 1.

Table 1. Rules listed from the tree given in Figure 1.

Rule
Number

Rule

1 IF 𝑥1 ≤ 2.125 THEN 𝑦 = 𝐵
2 IF 𝑥1 > 2.125 AND 𝑥2 ≤ 2.625 THEN 𝑦 = 𝐵
3 IF 𝑥1 > 2.125 AND 𝑥2 > 2.625 THEN 𝑦 = 𝐴

As mentioned in the Introduction, one will obtain a large
number of rules from an RF. This excess number of rules does
not improve the interpretability of an RF. Therefore, we
propose a set partitioning formulation to extract rules, whose
details are given in the following subsection.

2.2 The set partitioning problem

The set partitioning problem has a long history in the
optimization literature. It has been extensively used to model

some problems such as crew scheduling [16] and vehicle
routing [17]. In the problem, the objective is to select a set of
columns of a binary matrix so that the row sums of the selected
columns are exactly equal to 1. Since each column is associated
with a cost value, the aim is to select those columns while
minimizing the total cost. The problem can be formally defined
as follows [18]:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1

 (1)

∑ 𝑎𝑖𝑗𝑥𝑗

𝑚

𝑗=1

= 1 𝑖 = 1, ⋯ , 𝑛 (2)

𝑥𝑗 ∈ {0,1} 𝑗 = 1, ⋯ , 𝑚 (3)

Assume that 𝐴 is an 𝑛 × 𝑚 binary matrix such that 𝑎𝑖𝑗 ∈ {0,1},

𝑖 ∈ {1, ⋯ , 𝑛} and 𝑗 ∈ {1, ⋯ , 𝑚}. In the objective function (1), 𝑐𝑗

is the cost of selecting column 𝑗 of 𝐴, and 𝑥𝑗 is the decision

variable which is equal to 1 if column 𝑗 is selected and 0
otherwise. Equation (2) shows the constraint set of the
problem, which ensures that row sums of the selected set of
columns are equal to 1. Equation (3) ensures that each decision
variable must be binary (i.e., either 0 or 1).

2.3 Proposed approach

In order to formulate the rule extraction problem as a set
partitioning problem, we first need to define the components of
Equations (1)-(3) in the context of rule extraction.

The first step in the proposed rule extraction scheme is to
generate matrix 𝐴 and cost vector 𝑐. Each column 𝑗 of 𝐴
corresponds to a rule of the RF. In addition, each row 𝑖 of 𝐴
corresponds to each instance of 𝐷. Here, we use the binary
encoding approach presented in Liu et al. [9]. The algorithm is
presented in detail in Figure 2. The inputs for the algorithm are
a random forest 𝐹 and a training set 𝐷. There are two outputs
of the algorithm, namely 𝐴 and 𝑐. In the first step, all the rules
contained in 𝐹 are transformed to a list of rules (𝑅𝐿). As
mentioned before, this can simply be achieved by tracing the
path from the root to each leaf node for all trees in 𝐹. 𝑛 is the
number of instances in 𝐷, and 𝑚 is the number of rules
contained in 𝐹 (and thus in 𝑅𝐿).

Figure 2. Algorithm for generating 𝐴 and 𝑐 for an RF 𝐹.

The algorithm generates 𝐴 column by column. At each iteration
of the outer for loop, a new column is added to 𝐴. In the inner
for loop, for each row 𝑖 of column 𝑗, we set 𝑎𝑖𝑗 = 1, if rule 𝑗

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021
M. Edali

516

covers training instance 𝑖 (i.e., 𝒙𝑖), and we set 𝑎𝑖𝑗 = 0 otherwise.

After setting column values, we also calculate the error of rule
𝑗, which corresponds to the “cost” of incorporating that rule in
the extracted rule set. In classification, 𝑒𝑟𝑟𝑜𝑟(∙) function can be
any appropriate error measure such as misclassification rate. In
regression problems, it may be one of the error measures such
as Root Mean Square Error (RMSE), Mean Square Error (MSE),
Mean Absolute Error (MAE), etc. After obtaining 𝐴 and 𝑐, one
can solve the rule extraction problem.

Figure 3 shows the rules extracted from an RF trained on the
dataset shown in Figure 1. We see that the set partitioning
formulation ensures the coverage of all training instances while
avoiding that an instance is covered by more than one rule. It is
also obvious from the figure that this may not mean that the
rules cannot intersect. We also see that the set partitioning
formulation does not guarantee that the extracted rules cover
the entire input space, especially when some subspaces of the
input space lack data instances. Therefore, the set of extracted
rules cannot be represented as a tree. For that reason, the
extracted rule set cannot be directly used as a classification or
regression model.

Figure 3. Visualization of the extracted rules from an RF
trained on the dataset presented in Figure 1.

Table 2 shows the extracted rules, which are visualized in
Figure 3.

Table 2. Extracted rules from an RF trained on the dataset
presented in Figure 1.

Rule
Number

Rule

1 IF 𝑥1 ≤ 2.125 THEN 𝑦 = 𝐵
2 IF 𝑥1 > 2 AND 𝑥2 > 2.625 THEN 𝑦 = 𝐴
3 IF 𝑥1 > 2.25 AND 𝑥2 ≤ 2.5 THEN 𝑦 = 𝐵

2.4 Different objective function formulations

As mentioned in the Introduction, we aim to propose a set of set
partitioning formulations for rule extraction from RFs. For this
purpose, we modify the objective function (1) accordingly. For
classification, we use the original objective function (Equation
(1)) and also a modified version is given below for
experimentation:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑗

𝑚

𝑗=1

+ ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1

= ∑(1 + 𝑐𝑗)𝑥𝑗

𝑚

𝑗=1

 (4)

The main difference between Equation (1) and (4) is that the
former only aims to reduce the total “cost” while the latter also
aims to reduce the number of extracted rules. For regression,
we use Equation (1) and a modified version is given below as
objective functions for experimentation:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑗

𝑚

𝑗=1

+ ∑
𝑐𝑗

max
𝑗

𝑐𝑗
𝑥𝑗

𝑚

𝑗=1

= ∑ (1 +
𝑐𝑗

max
𝑗

𝑐𝑗
) 𝑥𝑗

𝑚

𝑗=1

 (5)

As one can see, the main aim of introducing Equation (5) as the
alternative objective function is to reduce the number of
extracted rules. In addition, we normalize 𝑐 to prevent it from
dominating the first term during optimization. This
normalization is used because most of the error measures for
regression problems have the same scale as the output 𝑦.

3 Experimental design and results

In this section, we provide the experimental design and the
results of these experiments. We use a Windows 10 64-bit
operating system with 8 GB RAM, dual-core CPU (i7-7500U 2.70
GHz). We select five classification (Table 3) and five regression
(Table 4) datasets frequently used in machine learning studies.
All of the datasets are taken from UCI Machine Learning
Repository [19], except for boston [20] and mammography [21]
datasets.

Table 3. Characteristics of the datasets for classification.

Dataset
Number of
Features

Number of
Classes

Number of
Instances

iris 4 3 150
mammography 6 2 11183

glass 10 6 214
WDBC 30 2 569
liver 6 2 345

Table 4. Characteristics of the datasets for regression.

Dataset
Number of
Features

Number of
Instances

boston 13 506
wine_white 11 4898
auto_mpg 7 392

airfoil 5 1503
concrete 8 1030

For RF training, we use randomForest package (version
4.6-12) [22] in R (version 3.5.1) [23]. We use 10 × 5 nested and
stratified cross-validation design for hyperparameter
optimization. We consider the following subsets of the
hyperparameters: 𝑛𝑡𝑟𝑒𝑒 ∈ {50, 100, 150} and 𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑠 ∈
{10, 25, 50}. Here, 𝑛𝑡𝑟𝑒𝑒 is the number of trees in the forest, and
𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑠 is the maximum number of terminal (leaf) nodes for
each tree in the forest [22]. Although it is known that RFs
perform well under default hyperparameter settings, we
perform hyperparameter tuning over both ntree and maxnodes
since both of them directly affect the complexity of the rule
extraction problem by determining the number of columns of
A. Besides, these two hyperparameters also affect the structure
of the rules: (i) the higher ntree is, the higher the chance of
generating a diverse set of rules is, (ii) the higher maxnodes is,
the more confined the rules in the forest are. To calculate vector
𝑐 (i.e., cost coefficients in Equation (1)), we use
misclassification error for classification and RMSE for
regression.

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021
M. Edali

517

To solve each set partitioning problem, we use the R
implementation of Gurobi solver [24]. Since the set partitioning
problem is an integer programming problem (see Equation
(3)), Gurobi uses branch-and-bound algorithm. However, we
also note that the set partitioning problem is
NP-hard, implying that the problem is not solvable in
polynomial time for large instances [25],[26]. Therefore, we set
a limit of 1200 seconds (i.e., 20 minutes). If the optimal solution
is not found within this time limit, Gurobi solver returns the
incumbent solution (i.e., the best known feasible solution
during the execution of the branch-and-bound algorithm).

While presenting the results, we also provide the
accuracy/error of the rules when they are used as a
classification or regression model. Since both mammography
and glass datasets are imbalanced, we report macro-F1 values
for all classification datasets. Macro-F1 is calculated by taking
the averages of F1 values obtained for each class. For regression
datasets, we report RMSE values. While assessing the accuracy
of rule sets, we use the following approach: If a test instance is
covered by more than one rule, we perform majority voting
over the classes of those rules for classification, and we take the
mean of the outputs of those rules for regression. If no rules
cover a test instance, we consider the fraction of the conditions
satisfied in each rule for that test instance. Then, we follow the
same procedure that we have followed for the case where a test
instance is covered by more than one rule. We also report the
fraction of the missed points for each dataset. These reported
values provide evidence about the input space coverage
capability of the extracted rules. As mentioned before, although
the set partitioning model ensures the coverage of all training
instances, there still might be some subspaces of the input
space which are left uncovered due to the lack of training
instances in those subspaces (see Figure 3). If the fraction of the
missed points is low, there is a high probability that there will
be one or more rule covering each test instance. However, if it
is high, the rule set does not cover the input space well, leaving
some test instances uncovered. In the latter case, extracted
rules may perform poorly when they are used as a classification
or regression model. In addition, one may miss the information
about how inputs relate to outputs when the fraction of missed
points is high.

3.1 Results for classification problems

We first experiment with the original set partitioning problem
formulation (Equations (1)-(3)) for classification problems.
The results are presented in Table 5. All the reported results are
averages over 10 folds, and the numbers in parenthesis are
standard deviations. We see that RF performs well on the iris,
mammography, and WDBC datasets. However, the number of
rules contained in RFs is very high for each dataset, which
significantly degrades the interpretability. We observe that the
proposed set partitioning formulation dramatically reduces the
number of rules while keeping the macro-F1 values at
acceptable levels for most datasets. One critical issue with the
approach is that the macro-F1 value of the extracted rules is
highly dependent on the macro-F1 value of the corresponding
RF. For example, the macro-F1 value significantly deteriorates
for glass and liver datasets, where the initial RF models do not
perform well. However, this result is not surprising because the
fraction of the test points missed by the extracted rules is also
higher for these datasets. In addition, we know that the glass
and mammography datasets are imbalanced in terms of class
distribution. Therefore, the class imbalance problem should be

handled carefully before the RF training and rule extraction
processes.

We also observe that the average runtime of the
branch-and-bound algorithm for all datasets is quite low. The
highest runtime is observed for the mammography dataset,
which has 11183 instances. However, the average runtime is
less than six minutes. We also note that all the instances are
solved to optimality within the time limit.

We then run experiments with the modified objective function
(Equations (4), (2), and (3)). As mentioned before, this new
objective function is introduced to reduce the number of
extracted rules further. The results are summarized in Table 6.
The first and most critical observation is that the number of
extracted rules is significantly reduced with the modified
objective function (i.e., Equation (4)). In contrast, the same level
of macro-F1 value of the extracted rules is maintained
compared to the previous formulation (i.e., Equation (1)). We
also see an improvement in terms of coverage of the test
instances (see the sixth column in Table 6). However, we notice
an increase in the runtimes of the branch-and-bound algorithm.
Some instances for mammography and liver datasets cannot be
solved within the time limit. In addition, we observe high
standard deviations in runtimes for these datasets. When we
scrutinize these cases, we see that, for some replications, the
number of rules in RFs is high, which results in a high number
of columns of A, and thus, the high number of decision variables.
Since the set partitioning problem is NP-hard, any increase in
the dimension of the problem exponentially increases the
runtime of the solution procedure.

3.2 Results for regression problems

We run the second set of experiments for regression datasets.
We first use the original set partitioning problem formulation
(Equations (1)-(3)). The numerical results are given in Table 7.
We note that the scale of the error values depends on the scale
of the outputs of each dataset. Therefore, these numbers are
specific for each dataset. We first observe that RFs tend to
generate large number of rules compared to classification
datasets. We also see that the original set partitioning
formulation helps us to reduce the number of rules while
allowing a slight increase in error values. However, for boston,
auto_mpg, and concrete datasets, we still have large number of
extracted rules, which results in reduced interpretability.
Except for wine_white dataset, all of the instances are solved to
optimality. Another important result is that the coverage of the
extracted rules is satisfactory (see the sixth column in Table 7).

Table 8 shows the results when we use the set partitioning
model with the modified objective function (i.e., Equations (5),
(2), and (3)). We observe a significant reduction in the number
of extracted rules compared to the case where we use the
original set partitioning formulation. While reducing the
number of rules, we also see a slight reduction in the error
values. However, the reduction in the number of rules comes at
a cost; we observe high runtimes for all datasets. For boston¸
wine_white, and concrete datasets, we detect some instances
which cannot be solved to optimality within the given time
limit. However, incumbent solutions still provide accurate
results for those datasets.

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021
M. Edali

518

Table 5. Results of the experiments for classification problems with Equations (1)-(3).

Dataset
Random Forest Extracted Rules

Macro-F1 Number of Rules Macro-F1 Number of Rules
Fraction of

Missed Points
Runtime (sec)

iris 0.95 (0.05) 442.20 (136.14) 0.93 (0.07) 16.50 (3.41) 0.04 (0.03) 0.02 (0.02)
mammography 0.81 (0.04) 5250.00 (2486.07) 0.77 (0.04) 80.10 (16.31) 0.00 (0.00) 346.88 (393.78)

glass 0.70 (0.19) 3951.50 (1672.59) 0.44 (0.24) 110.20 (27.03) 0.21 (0.07) 0.08 (0.03)
WDBC 0.96 (0.04) 1547.56 (753.17) 0.90 (0.02) 48.11 (11.14) 0.06 (0.04) 0.26 (0.21)
liver 0.72 (0.10) 4978.36 (2596.59) 0.56 (0.16) 179.73 (94.86) 0.20 (0.12) 4.41 (12.00)

Table 6. Results of the experiments for classification problems with Equations (4), (2), and (3).

Dataset
Random Forest Extracted Rules

Macro-F1 Number of Rules Macro-F1 Number of Rules
Fraction of

Missed Points
Runtime (sec)

iris 0.95 (0.05) 498.20 (270.98) 0.93 (0.06) 3.30 (0.48) 0.00 (0.00) 0.02 (0.01)
mammography 0.82 (0.04) 6000.00 (1748.01) 0.78 (0.07) 36.40 (5.08) 0.00 (0.00) 798.10 (463.41)

glass 0.71 (0.12) 3877.20 (1466.59) 0.50 (0.23) 15.80 (2.49) 0.07 (0.08) 4.62 (4.32)
WDBC 0.96 (0.04) 2185.00 (756.90) 0.94 (0.04) 12.20 (1.23) 0.02 (0.02) 18.87 (13.30)
liver 0.70 (0.08) 5124.70 (2389.96) 0.58 (0.10) 35.60 (11.25) 0.10 (0.07) 989.64 (448.47)

Table 7. Results of the experiments for regression problems with Equations (1)-(3).

Dataset
Random Forest Extracted Rules

Error Number of Rules Error Number of Rules
Fraction of

Missed Points
Runtime (sec)

boston 3.27 (0.74) 6000.00 (2108.19) 5.12 (1.41) 121.70 (26.97) 0.12 (0.04) 3.87 (2.77)
wine_white 0.71 (0.03) 5750.00 (2058.18) 0.78 (0.04) 56.50 (12.00) 0.00 (0.00) 798.07 (512.02)
auto_mpg 2.77 (0.36) 5500.00 (2297.34) 3.74 (0.81) 89.80 (25.61) 0.10 (0.08) 0.15 (0.06)

airfoil 4.16 (0.20) 5744.50 (2367.92) 6.68 (0.35) 7.60 (4.93) 0.00 (0.00) 0.72 (0.25)
concrete 7.23 (0.56) 6250.00 (1767.77) 9.69 (1.24) 62.30 (14.37) 0.02 (0.01) 25.29 (23.72)

Table 8. Results of the experiments for regression problems with Equations (5), (2), and (3).

Dataset
Random Forest Extracted Rules

Error Number of Rules Error Number of Rules
Fraction of

Missed Points
Runtime (sec)

boston 3.27 (0.74) 6000.00 (2108.19) 4.73 (0.76) 24.90 (2.51) 0.04 (0.03) 943.00 (461.52)
wine_white 0.71 (0.03) 5750.00 (2058.18) 0.77 (0.03) 37.80 (3.97) 0.00 (0.00) 841.27 (472.28)
auto_mpg 2.77 (0.36) 5500.00 (2297.34) 3.69 (0.65) 18.40 (3.69) 0.03 (0.03) 40.10 (50.51)

airfoil 4.16 (0.19) 4747.50 (2185.50) 6.67 (0.37) 8.90 (3.78) 0.00 (0.00) 1.22 (2.13)
concrete 7.24 (0.66) 5500.00 (1972.03) 9.67 (0.58) 26.80 (3.74) 0.01 (0.01) 758.26 (572.62)

4 Conclusion

In this study, we propose a collection of different set
partitioning formulations to extract rules from Random Forest
classification and regression models. The proposed approach
does not require a preprocessing step and is parameter-free. In
addition, it aims to extract accurate rules whose union covers
the input space of the problem as much as possible while
keeping the intersections at a minimum.

First, we use the original set partitioning formulation for
experimentation. Although the problem is NP-hard, we obtain
optimal solutions for most of the datasets within the given time
limit. We observe a significant reduction in the number of rules
with acceptable deterioration in macro-F1 values. However, for
imbalanced classification problems, we see that the macro-F1
value of the extracted rules is reduced when the initial Random
Forest models does not perform well. Therefore, one might
need to incorporate some mechanisms to handle class
imbalance to obtain an accurate set of extracted rules. We also
observe that the accuracy of the extracted rules is low if the
fraction of the missed test instances is high.

We also obtain very promising results when we modify the
objective function to reduce the number of extracted rules
further. The modified formulation not only reduces the number
of rules but also increases the coverage of test instances
without loss of accuracy. Therefore, we can conclude that the
modified objective functions yield better accuracy, number of
rules, and coverage. However, these improvements come at a
cost; we observe increased runtimes when we use the modified
objective functions within the set partitioning problem. We
note that the runtimes are still at acceptable levels, and
incumbent solutions can still provide satisfactory solutions.

We also provide example R programs for classification and
regression to enable researchers to implement the approach
proposed in this paper [27].

5 Author contribution statements

In the scope of this study, Mert EDALİ contributed to the
formation of the idea, the literature review, the design and
analysis of computer experiments, and the writing of the
manuscript.

Pamukkale Univ Muh Bilim Derg, 27(4), 513-519, 2021
M. Edali

519

6 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared.

There is no conflict of interest with any person / institution in
the article prepared.

7 References
[1] Boulesteix AL, Janitza S, Kruppa J, König IR. “Overview of

random forest methodology and practical guidance with
emphasis on computational biology and bioinformatics”.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(6), 493-507, 2012.

[2] Masetic Z, Subasi A. “Congestive heart failure detection
using random forest classifier”. Computer Methods and
Programs in Biomedicine, 130, 54-64, 2016.

[3] Jog A, Carass A, Roy S, Pham DL, Prince JL. “Random forest
regression for magnetic resonance image synthesis”.
Medical Image Analysis, 35, 475-488, 2017.

[4] Belgiu M, Drăguţ L. “Random forest in remote sensing: A
review of applications and future directions”.
ISPRS Journal of Photogrammetry and Remote Sensing,
114, 24-31, 2016.

[5] Baydogan MG, Runger G, Tuv E. “A bag-of-features
framework to classify time series”. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
35(11), 2796-2802, 2013.

[6] Breiman L. “Random forests”. Machine Learning,
45(1), 5-32, 2001.

[7] Mashayekhi M, Gras R. “Rule extraction from random
forest: the RF + HC methods”. Canadian Conference on
Artificial Intelligence, Halifax, NS, Canada, 2-5 June 2015.

[8] Mashayekhi M, Gras R. “Rule extraction from decision
trees ensembles: new algorithms based on heuristic
search and sparse group lasso methods”. International
Journal of Information Technology & Decision Making,
16(6), 1707-1727, 2017.

[9] Liu S, Patel RY, Daga PR, Liu H, Fu G, Doerksen RJ, Chen Y,
Wilkins DE. “Combined rule extraction and feature
elimination in supervised classification”.
IEEE Transactions on Nanobioscience, 11(3), 228-236,
2012.

[10] Adnan MN, Islam MZ. “Forex++: A new framework for
knowledge discovery from decision forests”. Australasian
Journal of Information Systems, 2017.
https://doi.org/10.3127/ajis.v21i0.1539

[11] Phung LTK, Chau VTN, Phung NH. “Extracting rule RF in
educational data classification: from a random forest to
interpretable refined rules”. 2015 International
Conference on Advanced Computing and Applications
(ACOMP), Ho Chi Minh City, Vietnam, 23-25 November
2015.

[12] Meinshausen N. “Node harvest”. The Annals of Applied
Statistics, 4(4), 2049-2072, 2010.

[13] Friedman JH, Popescu BE. “Predictive learning via rule
ensembles”. The Annals of Applied Statistics, 2(3), 916-954,
2008.

[14] Deng H. “Interpreting tree ensembles with inTrees”.
International Journal of Data Science and Analytics,
7(4), 277-287, 2019.

[15] Wang S, Wang Y, Wang D, Yin Y, Wang Y, Jin Y. “An
improved random forest-based rule extraction method for
breast cancer diagnosis”. Applied Soft Computing,
86, 105941, 1-18, 2020.

[16] Marsten RE, Shepardson F. “Exact solution of crew
scheduling problems using the set partitioning model:
Recent successful applications”. Networks,
11(2), 165-177, 1981.

[17] Baldacci R, Christofides N, Mingozzi A. “An exact algorithm
for the vehicle routing problem based on the set
partitioning formulation with additional cuts”.
Mathematical Programming, 115(2), 351-385, 2008.

[18] Garfinkel RS, Nemhauser GL. “The set-partitioning
problem: Set covering with equality constraints”.
Operations Research, 17(5), 848-856, 1969.

[19] Dua D, Graff C. “UCI Machine Learning Repository”.
http://archive.ics.uci.edu/ml (08.07.2020).

[20] Carnegie Mellon University. “StatLib-Datasets Archive”.
http://lib.stat.cmu.edu/datasets/boston (08.07.2020).

[21] Woods KS, Doss CС, Bowyer KW, Solka JL, Priebe CE,
Kegelmeyer Jr WP. “Comparative evaluation of pattern
recognition techniques for detection of microcalcifications
in mammography”. International Journal of Pattern
Recognition and Artificial Intelligence, 7(6), 1417-1436,
1993.

[22] Liaw A, Wiener M. “Classification and Regression by
randomForest”. R News, 2(3), 18-22, 2002.

[23] R Foundation for Statistical Computing. “R: A language and
environment for statistical computing”. https://www.R-
project.org/ (08.07.2020).

[24] Gurobi Optimization LLC. “Gurobi Optimizer Reference
Manual”. http://www.gurobi.com (08.07.2020).

[25] Lewis M, Kochenberger G, Alidaee B. “A new modeling and
solution approach for the set-partitioning problem”.
Computers & Operations Research, 35(3), 807-813, 2008.

[26] Rasmussen MS. Optimisation-Based Solution Methods for
Set Partitioning Models. PhD Thesis, Technical University
of Denmark, Kgs. Lyngby, Denmark, 2011.

[27] RuleExtractionfromRFs. “Example Scripts for the
Manuscript”. https://github.com/mertedali/
RuleExtractionfromRFs (25.10.2020).

https://github.com/mertedali/RuleExtractionfromRFs
https://github.com/mertedali/RuleExtractionfromRFs

