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Abstract  Öz 

Tartarus is a commonly used benchmark problem for genetic 
programming. However, it has never been fully explored for its difficulty 
tuning property. Using the data from a previous study in which we have 
executed millions of Tartarus instances, we contribute to the literature 
with an equation to estimate their difficulty. Our approach uses four 
metrics that are embedded into the equation. These metrics are related 
to the number of clusters and clusters sizes, the distances of boxes to the 
edges of the board grid, the number of boxes around the agent, and the 
minimum number of actions for the agent to reach the largest cluster. 
The coefficients of these metrics have been fit to the data using the 
general linear model and a mean residual error of ~0.1 has been 
achieved. This is the first study that can estimate the difficulty of a 
Tartarus board without modifying the problem in any way. 

 Tartarus genetik programlamada sıkça kullanılan bir kıyaslama 
problemidir. Fakat zorluk ayarı özelliği henüz tam olarak 
araştırılmamıştır. Literatüre milyonlarca Tartarus örneği 
çalıştırdığımız önceki bir çalışmanın verilerini kullanarak zorluklarını 
tahmin edebilen bir denklemle katkıda bulunuyoruz. Yaklaşımımız 
denklemin içinde yer alan dört yeni metrik kullanıyor. Bu metrikler 
küme sayıları ve büyüklüklerine, kutuların kenarlardan uzaklığına, 
yazılım etmeninin etrafındaki kutuların sayısına ve etmenin en büyük 
kümeye varması için gereken hareket sayısına bağlıdır. Metriklerin 
katsayıları veriye genel doğrusal model ile uyarlanmış ve ortalama ~0.1 
kadar bir hata başarısına ulaşılmıştır. Bu çalışma Tartarus 
probleminde bir değişiklik yapmadan problemin zorluğunu tahmin 
edebilen ilk çalışmadır. 

Keywords: Tartarus problem, Difficulty estimation, General linear 
model. 

 Anahtar Kelimeler: Tartarus problemi, Zorluk tahmini, Genel 
doğrusal model. 

1 Introduction 

The Tartarus problem has been proposed by Teller for realizing 
software agents that can handle an environment using 
temporal and spatial sensory input [1]. It has been used as a 
benchmark problem in genetic programming because of its 
desirable characteristics, such as having a means of difficulty 
tuning, being precisely defined, relevant, independent of 
representation, easy to interpret and compare [2]. The focus of 
this study is its difficulty tuning property which has been 
looked over because the problem has never been fully explored 
yet. 

In its original proposal, a Tartarus board is defined as a 6 × 6 
grid with impenetrable walls. The initial board has 6 boxes and 
a bulldozer as an agent, all randomly placed in the inner 
4 × 4 grid, as shown with the board in Figure 1(a) where white 
squares represent empty spaces, blacks represent the boxes, 
and the gray ones represent the inner 4 × 4 grid. The agent can 
only sense its 8-neighborhood and can perform an action of 
moving forward or turning left or right in place. If the agent 
chooses to move forward when there is a box in front of it, it can 
push this box only if the immediate cell in the direction of 
movement is empty. The task of the agent is to push the boxes 
from their initial positions in the inner 4 × 4 grid towards the 
impenetrable walls. The agent is given 80 actions for this task 
and it executes all of them. At the end of these actions, the board 
is scored a single point for each wall next to a box. For 6 boxes, 
the top score of 10 is gained by getting two points for the boxes 
at each corner, where they are next to two walls, and a single 
point for each remaining box that are next to a wall. Similarly, 
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the lowest score is 0, when there are no boxes next to a wall. A 
final state that is worth 10 points is shown with the board in 
Figure 1(b). All reported scores are given in the scale between 
0 and 10 throughout this text. 

 

(a) 

 

(b) 

Figure 1. A sample initial Tartarus board is shown in.  
(a): and a final board that has a score of 10 in shown in (b). 
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There are two specific configurations of initial boards that 
should be emphasized. It is possible that the initial random 
positions of the boxes can be a 2 × 2  formation where it is not 
possible for the agent to push any of these boxes. All the existing 
studies remove these configurations from the initial set of 
random boards. The other case is the Willson configuration, 
named after one of the authors in [3], which leads to an 
inevitable 2 × 2 formation. Both initial conditions are shown in 
Figure 2. 

 

(a) 

 

(b) 

Figure 2(a): Shows the 2 × 2 formation. (b): Shows a Willson 
configuration. 

The purpose of a benchmark is to provide a toy problem that 
can be used to compare the relative performance of existing and 
proposed algorithms. To achieve this, it needs to have several 
characteristics that have been discussed in the literature [2],[4]. 
The Tartarus problem is apparently well suited as a benchmark 
when it is evaluated with respect to these characteristics. For 
example, Tartarus is relevant to real applications since it 
emulates an agent, such as a robot or a drone, in an 
environment where sensors are used to decide on the best 
available action to maximize the usefulness. Since the 
evolutionary algorithms use a lot of instances of a problem, the 
problem should be fast in terms of running time; the agent is 
only allowed 80 actions in which it simply changes the positions 
of several boxes and these actions do not have any significant 
time or space complexity. The problem is easy to implement in 
terms of basic programming structs. The results are also 
comparable, since they are integer scores, and therefore easy to 
interpret and compare. Tartarus is representation independent 
since it does not require any specific feature of any algorithm. 
Finally, the problem is defined precisely, the rules and the 
evaluation of the board do not have any ambiguity. 

The Tartarus problem ensures all these characteristics, but so 
far it has not been studied thoroughly so that its difficulty can 
be tuned. Teller binds the size of the board and the number of 
boxes to an 𝑁 variable so that the difficulty of the problem could 
be changed [1], but several existing approaches do not focus on 
the difficulty assessment of the problem and divert their efforts 

to come up with solutions that will improve the score for the 
6 × 6 grid with 6 boxes. This hinders a wider usage of the 
problem as a benchmark for the evaluation of artificial 
intelligence algorithms. 

Currently, the survey [4] lists Tartarus under the “Path-finding 
and Planning” category of benchmarks. In this category, the 
most common benchmark is the artificial ant problem. We 
contribute to the study of the Tartarus problem by proposing a 
method that can evaluate its difficulty and therefore promote it 
as an applicable benchmark for a wider range of genetic 
programmers. With this regard, we rely on our previous study 
in which we have observed that for all the possible boards of 
size 6 × 6 that have 6 boxes, the difficulty of the problem 
changes considerably [5]. This means that the size of the grid 
and the number of boxes are not the only metrics for the 
difficulty assessment of Tartarus. Instead, we have noticed that 
the difficulty should also be assessed by evaluating the initial 
configuration of the boxes and taking the point of view of the 
agent into consideration. 

To the best of our knowledge, there are no studies so far that 
report the true scores of Tartarus solutions, as we have done in 
our previous work [5]. We also found no other approach that 
assess the difficulty of a Tartarus problem using all possible 
cases, which provide a more robust evaluation of a Tartarus 
board. We contribute to the literature by defining an equation 
with four parameters that can be used to estimate the difficulty 
of any given board. These parameters are based on the initial 
configuration of boxes, and the initial position and direction of 
the agent. The coefficients of these parameters are estimated by 
the general linear model and we have achieved a mean residual 
error of ~0.1. 

The rest of the paper is structured as follows. In the next section 
we review the existing approaches for difficulty tuning of 
Tartarus. In Section 3 we discuss the details of how we created 
the statistical information in our previous study. Section 4 is 
about the difficulty evaluation of Tartarus, along with the 
description of parameters and the general linear model to fit 
the data to the equation. Final section discusses the results and 
concludes the paper with future remarks.  

2 Related work 

There are several approaches for solving the Tartarus problem 
with a board size of 6 × 6 and 6 boxes, such as the studies by 
Ashlock et al., Oğuz, and Dick [3],[5],[6], however, existing work 
on the difficulty assessment of Tartarus is very limited. To the 
best of our knowledge, there is only one study that focuses on 
the evaluation of Tartarus boards that provides a method to 
tune the difficulty of an instance [2]. Before we discuss this 
study by Griffiths and Ekárt, it should be emphasized that Teller 
[1] has bound the size of the board to an 𝑁 variable, which is 
also used to define the number of boxes approximately as 
(𝑁 − 2)2/3 in the inner (𝑁 − 2) × (𝑁 − 2) grid. He calculates 
the number of moves to complete a tour of the board as 𝑁2 +
2𝑁 − 3 = 45 and sets the maximum number of moves of the 
agent to 80, a little short of two complete tours of the board for 
𝑁 = 6. However, while there are studies which mention that the 
difficulty of a Tartarus board depends on the size of the board, 
most of them use a board size of 6 × 6 with 6 boxes.  

In their concluding remarks, Ashlock and Freeman ask how the 
hardness of Tartarus would be affected if the board size 
changed and emphasized that understanding the behavior at 
different sizes would improve Tartarus as a test problem [7]. 
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Ashlock and Warner study the fitness of agents for sets of 
Tartarus geometries by using an agent-based metric between 
these boards [8]. They hypothesize that if the training boards 
are chosen from a well spaced-out collection of boards, it would 
be possible to train superior agents that are more generalized. 
However, they had to reject this hypothesis. 

Dick states that the difficulty of the problem can be adjusted by 
changing the number of allowed actions, the grid size, or the 
number of boxes [6]. He does not discuss the issue further, but 
in another paper, he calculates the number of possible boards 
for other grid sizes and number of boxes [9]. 

The study by Griffiths and Ekárt is the only study that focuses 
on the evaluation of a Tartarus board [2]. Their first proposition 
is to evaluate the state of the board at any time during its 
execution rather than evaluating it only at the end. They 
propose an evaluation method in which the agent is rewarded 
more points if it can push the boxes closer to the edges. This 
approach also provides a possibility for the genetic 
programming algorithms to evaluate the current state of the 
board before the agent runs out of moves. However, this 
modifies the original definition of the problem, because while 
the evaluation method rewards the agent for partial success, 
the final scores of the board are different from the original 
proposition. Additionally, the agent is only allowed to sense its 
8-neighborhood; providing more information about the board 
is not in the problem definition.  

Their next proposition is on the baseline values which enable 
the comparison of generated Tartarus instances. They remark 
that the difficulty increases with the board size 𝑛 and define the 
number of moves, 𝑚(𝑛), and number of blocks, 𝐵(𝑛), as 
functions of 𝑛. 

Their final proposition is to estimate the difficulty, denoted by 
D, and therefore tune it if necessary, by using these functions in 
the following equation where number of impossible-to-move 
blocks is 𝐵𝐼 and the user set number of blocks is B. 

𝐷 = 0.5 ⋅
𝑚(𝑛)

𝑚
+ 0.5 ⋅

𝐵(𝑛)

𝐵
+

𝐵𝐼

𝐵
 (1) 

The authors set the difficulty as impossible for the case where 
𝐵𝐼 = 𝐵. This equation gives the difficulty of the 6 × 6 board 
with 80 moves and 6 boxes as 1. As the number of moves is 
decreased the difficulty increases, too. However, there is no 
indication in the original definition that the 6 × 6 board 
configuration is the standard, and therefore should have a base 
difficulty of 1, and other board sizes should be evaluated 
relative to it. 

Furthermore, we have observed in our own trials that even if 
the board size, the number of boxes, and the number of moves 
are the same, the difficulty of the problem changes considerably 
when all possible boards are evaluated. The difficulty does not 
only depend on these variables but the box combinations that 
the agent faces. Among the existing approaches, none of them, 
save our previous study [5], consider the problem from the 
point of the agent. Therefore, we hypothesize that since it is the 
agent that solves a Tartarus instance, the point of view of the 
agent should also be included in difficulty estimation.  

3 Tartarus from the agent’s point of view 

In our previous study we have approached the problem from 
the agent’s point of view. It has improved the understanding of 
the number of possible boards, as well as the number of 

possible combinations an agent can come across, and it 
produced solutions that can solve the Tartarus problem 
successfully by scoring 8 or above in 88% of all possible boards 
[5]. This section is a brief summary of that study, but to 
maintain brevity we have only focused on the parts that are 
within the scope of this paper.  

An initial configuration of a Tartarus board is randomized by 
placing 6 boxes on the inner 4 × 4 grid, then, the remaining 10 
positions on this inner grid are used to determine the random 
position of the agent. Since the agent is indifferent to its 
position and direction on the board, some of the boards are the 
same from the agent’s point of view. We have showed that there 
are 1869 unique initial board configurations. Therefore, the 
number of initial possible boards is defined by 4 starting 
directions, 10 random positions, and 1869 random 
configurations of boxes which result in a total of 4 × 10 ×
 1869 = 74,760 boards. As will be discussed in the following 
sections, the initial starting position and the direction of the 
agent play an important role in the difficulty evaluation of a 
Tartarus instance. 

The number of possible combinations for the 8-neighborhood 
of the agent can be empty cells, cells with boxes, or walls, which 
means that the cell is out of the edges of the grid. The existing 
literature uses 38 = 6561 number of combinations while 
admitting that some of them are not possible, such as the agent 
being surrounded by all boxes. We have showed that there are 
only 383 possible combinations. As will be discussed shortly, 
we have performed millions of Tartarus runs from which we 
have stored statistical information about how frequently the 
agent comes across with these combinations. This data is used 
to understand how hard it is for an agent to handle a specific 
combination, or how rare it is for the agent to come across some 
combinations. 

Using these updated properties, we have come up with an 
adaptive genetic algorithm (GA) that breeds finite state 
machines (FSM) on the GPU (graphics processing unit) to solve 
the Tartarus problem. We have varied the population sizes 
from 256 to 2048 with steps of 256 which results in 8 different 
values. The number of testing boards for each individual in the 
population was set to 128 and 256, which results in 2 different 
values. The number of states has been varied from 4 to 12, 
resulting in 9 different state values. All these configurations 
have been executed 2 times for each 3 designs. This results in 
8 × 2 × 9 × 2 × 3 = 864 GA runs. Each GA run has 2000 
generations. Even for the lowest case we have at least 
256 × 128 × 2000 = 65,536,000  Tartarus runs in a single GA 
run. Having millions of Tartarus runs for each GA configuration, 
we have stored the number of occurrences each 8-
neighborhood combination, as well as the most fit solution for 
each GA run. The most fit 864 solutions are run on all possible 
74,760 boards to report the first true scores of Tartarus agents 
in the literature. Therefore, we had at our disposal a large 
number of statistics on the occurrence and fitness of each  
8-neighborhood combination, as well as 864 different solutions 
that are run on each possible Tartarus board. This data 
provides a unique opportunity to study how well the boards are 
handled with many solutions, and how the agent’s point of view 
can be used to evaluate the difficulty of a Tartarus instance.  

4 Difficulty evaluation of Tartarus 

Since there are 864 scores for each of the 74,760 boards, the 
first step to analyze these results is to check how the scores 
vary statistically for each board. The agent can score between 0 
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and 10, therefore, we consider boards with lower average 
scores to be harder than those with higher average scores. 
Figure 3 shows the hardest and easiest boards when the scores 
for all 864 runs are averaged. Only the inner 4 × 4 grid is shown 
for the remaining initial boards to preserve space and to focus 
on the initial conditions. 864 agents scored an average of 0.43 
and 9.53 for the board on in Figure 3(a), and the board in  
Figure 3(b), respectively. It should be stated that the minimum 
score of 0.43 was tied with another board that has the same 
initial configuration of boxes but with the agent facing west, not 
north. 

 

(a) 

 

(b) 

Figure 3. The board in (a): was the hardest for 864 different 
agents, getting an average score of 0.43. The board in (b): Was 

the easiest, getting an average score of 9.53. 

At first observation, these two boards have a distinction and a 
similarity. Both boards have the L shape, a single box missing 
from a 2 × 2 formation. The distinction is that the hardest 
board has a single cluster of boxes; this makes the boxes very 
hard to move, since they block each other’s movement. The 
easiest board has 4 clusters, a single box in three of them, and 
three boxes in one. We wanted to investigate further and 
generated the images of all the boards that scored between 0 
and 1 inclusively. There are 27 of these boards, and they have 
either a single cluster, or two clusters that are unevenly divided, 
such as where one of the clusters have a single box, and the rest 
of the boxes are in the larger cluster. Since each board is 
different not only by the configuration of boxes, but also by the 
position and direction of the agent, we notice that several of 
these boards have the same box configuration, but different 
agent positions and directions. 

While this initial observation looked promising, we have 
decided to check the boards that scored greater than 8 and less 
than or equal to 9, as well as boards that are greater than 9 and 
less than or equal to 10 to get a broader view. Figure 4 shows 
two boards; Figure 4(a) has an average score 0.99, and  
Figure 4(b) has an average score of 8.36. This shows that most 
agents were successful in handling a large cluster of boxes, 
depending on their starting position and direction but with the 

same configuration of boxes. This observation shows that the 
agent’s initial position and direction is vital in deciding the 
difficulty of a board.  

 

(a) 

 

(b) 

Figure 4. Same distribution of boxes with different starting 
points creates two very distinct scores. The board in (a): Has 

an average score of 0.99, and (b): Has an average score of 8.36. 

A final visual clue that we have noticed is the abundance of 
boxes in the central cells of the inner 4 × 4. This agrees with the 
study of Griffiths and Ekárt [2] where instead of scoring each 
box next to a wall, they also give points to boxes that are close 
to the edges on the grounds that the agent has performed 
positive action and it should be rewarded. However, in our case, 
we include their distances to the edges as a component in 
deciding the difficulty of the initial board. 

Using these observations, we hypothesize that the difficulty 
metric of an initial Tartarus board rests on the agent’s position 
and direction, the initial clusters of boxes, and the distances of 
the boxes to edges. Cluster information and distances of boxes 
to edges depend on the initial configuration of boxes on the 
Tartarus board, and the other values depend on the agent’s 
point of view. All these variables are listed along with their 
notation in Table 1. 

Table 1. Variables that affect the difficulty evaluation. 

Parameter Description 

h The difficulty of the board 
c Cluster ratio 
d Average distance to edges 
f Quotient for the number of boxes around 

the agent 
m Minimum number of actions to largest 

cluster 

4.1 Number of clusters and cluster sizes 

We define a cluster as a collection of boxes that are connected 
by their 4-neighborhood since the agent can move and push 
boxes in these four major axes. We hypothesize that having a 
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large cluster of boxes reduces the number of ways a box can be 
pushed, and therefore increases the difficulty of the board.  

The 6 boxes on the board can be grouped in several different 
clusters. For example, the board can be made up of a single 6-
box cluster; or in two clusters where each cluster has 3 boxes. 
In another configuration, such as the one in Figure 4, two 
clusters can have an uneven distribution of boxes, such as 5 to 
1. Since two of these two cluster configurations are not the 
same, and since we want to be able to differentiate such cases, 
we define this metric as the ratio of the largest cluster size to 
the number of clusters, and we denote it with c. In this regard, 
the board in the first example where there are equal number of 

boxes in two clusters has a c value of 𝑐 =
3

2
= 1.5, whereas the 

board in the second example has a c value of 𝑐 =
5

2
= 2.5. This 

generates a greater value for the board that has an uneven 
distribution of boxes in its clusters.  

Since the number of these combinations are limited, we can say 
that the highest value we can get for c is 6, where there is only 
a single cluster with 6 boxes, and the lowest value is 0.166 
where there is a single box in each 6 clusters.  

4.2 Average of distances of boxes to edges 

Another metric is the distances of boxes to the edges, regarding 
the number of moves required to push them. Having most of the 
boxes in the central location would make a board more difficult. 
We have defined this as the arithmetic average of each box to 
the nearest edge, and denote it with d. This can be simply 
computed by their coordinates on the board. 

As an example, the two boards in Figure 4 have the same d 
values, 1, since all the boxes are 1 cell away from the edges. It 
should be noted once again that the figure only shows the inner 
4 × 4 grid, and the boxes are 1 cell away from the edges of the 
board. 

4.3 Number of boxes around the agent 

It is important that both metrics c and d depend on the 
configuration of boxes and would be the same for both boards 
in Figure 4, because the position and direction of the agent is 
not taken into consideration. The agent can be in one of the 10 
remaining cells in the inner 4 × 4 grid, and it can be facing any 
of the four directions. This results in 40 different cases for the 
same box configuration, but with the same values for metrics c 
and d. Since the difference in these boards are related to the 
agent, and since we can only take the initial position into 
consideration for evaluating the difficulty of a board, we define 
another metric which is related to the number of boxes around 
the agent in its initial position.  

As mentioned earlier, in our previous study we have executed 
several millions of Tartarus boards in a GA run and for each 
Tartarus board we have stored the information about how 
many times the agent comes across a specific combination of 
boxes in its 8-neighborhood. Since the total number of runs are 
in the billions, we believe that these frequencies are as close to 
real probabilities as possible. In this study, we make use of this 
information from another perspective and find out how 
frequently a combination occurs in Tartarus runs. To do so, we 
have summed all the number of occurrences for each 
combination for all these runs.  

Among 383 different combinations only 247 of them are 
possible on an initial board because the boxes and the agent are 
placed in the inner 4 × 4 grid. Therefore, we have filtered the 

occurrence frequencies to these 247 combinations. However, 
having 247 different values is not practical when calculating the 
difficulty of a Tartarus board. We have further processed the 
data and grouped the combinations by the number of boxes and 
normalized them with respect to the most frequent one. This 
yielded a vector of size 7, for each number of boxes from 0 to 6, 
using the values in Table 2. 

Table 2. Normalized frequencies of the number of boxes in the 
8-neighborhood of an agent. 

Number of boxes Normalized Frequency 

0 0.0741 
1 0.4849 
2 1.0 
3 0.7616 
4 0.2710 
5 0.0488 
6 0.0032 

Table 2 shows that the most frequent number of boxes is the 
ones with 2 boxes, whereas 6 boxes are very rare. Instead of 
using the number of boxes, we have used these values as the 
metric f to represent how frequently an agent can come across 
any number of boxes. We hypothesize coming across a 
combination more frequently makes it easier for the agent to 
handle it, therefore makes the board easier. Once again, for the 
boards in Figure 4, the one in 4(a) has an f value of 1, and the 
one in 4(b) has an f value of 0.0741. 

4.4 Minimum number of actions to the largest cluster 

The final metric depends on the position and the direction of 
the agent. We define this distance metric based on the 
Manhattan distance of the agent to the largest cluster, and we 
denote it by m. 

The Manhattan distance is simply the absolute differences in 
the x and y coordinates of two points. In our case, we are looking 
for the minimum number of actions, therefore we also have to 
take turning left and right actions into consideration. So, we 
also must find out the positions of the clusters relative to the 
position of the agent. 

We have applied the following approach which is 
straightforward to implement. While the number of clusters 
and the cluster sizes are being calculated for the first metric, we 
have kept information on a separate list of tuples regarding the 
clusters and their sizes. At this step, we refer to this information 
to check the cluster a box belongs to and updated the minimum 
distance only if the cluster size is greater than or equal to the 
current minimum distance. For cases where there are equal 
number of cluster sizes, such as two 3-box clusters, or three 2-
box clusters, there will be more than one largest cluster. For 
each position we find the Manhattan distance to every box and 
add to this distance value the number of turn actions required. 
The turns are calculated by considering the position of the 
agent and the target box. For each direction, the differences in 
x and y coordinates between the positions of the agent and the 
box are evaluated to decide the number of turns.  

Being closer to a larger cluster increases the chances of having 
more boxes around the agent. Therefore, we hypothesize that 
the further away the agent is, the easier the board for it to 
handle.  

The m values for boards in Figure 4 are 1 and 5, respectively.  
For the board in Figure 4(a), only a single forward action is 
enough to reach the largest cluster. For the board in Figure 4(b), 
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the agent should turn right (action 1), move forward (action 2), 
turn right again so that it faces south (action 3), then perform 
two more forward actions (actions 4 and 5) to reach the largest 
cluster. Naturally, it is possible that there would be more than 
one way to reach the largest cluster, but the parameter requires 
the minimum value.  

4.5 Difficulty Estimation 

The values for these parameters have been calculated for all 
74760 boards and stored in a matrix of size 74760 × 4. The 
mean scores of 864 GA runs on each of these 74760 boards are 
also stored in a matrix of size 74760 × 1. We define the 
difficulty of a board, denoted by h, to be the mean value of these 
GA runs: the higher the value, the easier the board. We 
hypothesize that the difficulty has a linear relationship with 
these parameters and therefore should comply with the 
following equation 

ℎ = 𝛽1 ⋅ 𝑐 + 𝛽2 ⋅ 𝑑 +  𝛽3 ⋅ 𝑓 +  𝛽4 ⋅ 𝑚 + 𝜀 (2) 

where the 𝛽 values represent the coefficients that must be 
estimated to fit the data, and 𝜀 represents the residual error. 
This is a multivariate normal regression problem, and the 
coefficients can be estimated with the general linear model 
(GLM) [10] because we can safely assume that the errors in the 
residual will follow a normal distribution.  

GLM is a commonly used tool and is implemented in several 
mathematical software packages, such as R, SPSS, and MATLAB. 
The MATLAB implementation uses the maximum likelihood 
estimation and returns the estimated regression coefficients, 
estimated variance-covariance matrix, and the residuals.  

Using these metrics and the mean values for each board, we 
have obtained a vector of coefficients which can be used to 
compute the difficulty of a random Tartarus board. The mean 
value for the residuals is 0.0923; that is, there will be around a 
~0.1 error on average when the difficulty of a board is 
evaluated. 

For further analysis, we have plotted the residual histogram, as 
shown in Figure 5, to check how well the data has been fit. The 
figure shows that there are instances where the error is very 
large in some cases, but a majority of the boards are identified 
within an error range of (-2, 2). The total number of boards in 
bins -2 to 2 are 69,394, which is the 92.82% of all boards. The 
histogram shows that the equation can estimate the difficulty 
within a tolerable error for a large percentage of all available 
boards.  

 

Figure 5. Residual error histogram shows that a large number 
of instances are accumulated around 0 error. 

When 𝛽 variables are replaced with their values, the equation 
for h becomes: 

ℎ = (−0.4261) ⋅ 𝑐 +  5.7447 ⋅ 𝑑 +  0.9230 ⋅ 𝑓 + 
 0.2242 ⋅ 𝑚 

(3) 

We have made observations on how the parameters would be 
affecting the board difficulty as they were being introduced in 
previous sections. The ratio of the largest cluster size to the 
number of clusters have a negative effect on the difficulty; that 
is, it makes the h value to be lower, which increases the 
difficulty. The largest value parameter c can have is 6, as 
previously mentioned in Section 4.1. This would decrease the 
estimated difficulty of the board by 6 × (−0.4261) = −2.5566, 
hence making it more difficult. 

The estimated coefficient for parameter d is the largest 
compared to other coefficients. Although we have hypothesized 
that having boxes closer to the edges would make a board 
easier, it appears that the value of the coefficient does not 
support this. Therefore, we have analyzed the values for this 
parameter further by observing the correlation between the 
values of d and the difficulty of the boards. Interestingly, there 
is a negative correlation, a specific value of -0.2028, meaning 
that as the value for d increases, the score of the board 
decreases, which means the board becomes more difficult, as 
we have hypothesized. Having a large value for the coefficient 
of parameter d could be explained by the dependencies of the 
parameters on each other; the boxes in the large cluster in 
Figure 4(a) and 4(b) have a short distance, but the boxes form 
a large cluster which makes them difficult to move. The general 
linear model has come up with a coefficient for parameter d 
which also contributes partially to other parameters. 

For parameter f, we expected to have an easier board when the 
number of boxes around the agent are more common. The value 
of the parameter is in accordance with our initial observation. 

Finally, for parameter m, we have hypothesized that being far 
away from the largest cluster would make the board easier. 
Having a larger m value increases the value for h, which means 
it becomes an easier board. This is also in accordance with our 
initial observation. We have tested the equation on some 
boards and compared them to the mean scores of 864 GA runs. 
Two of them are demonstrated using Figure 6. 

For the board in Figure 6(a) the value for c parameter is 1, 
because the largest cluster has 3 boxes, and there are 3 clusters 
in total. The value for d is 1.1667, because five of the boxes have 
distances of 1 to the edges, only one box is 2 cells away. Since 
there are 5 boxes around the agent, Table 2 says that f 
parameter should be set to 0.0488. Finally, the largest cluster is 
just behind the agent, but it must perform two turn actions, and 
a single move forward to reach it, therefore m parameter has a 
value of 3. When these values are used in the equation for h, we 
get an estimate of 6.9941, and the mean scores of GA runs is 
6.3495. 

The board in Figure 6(b) has six clusters with a single box in 
each. Its c parameter has a value of 0.166. One of these boxes 
has a distance of 2 to the edges, so the d parameter has a value 
of 1.1667. The agent has two boxes around it, when referred to 
Table 2 we get a value of 1 for the f parameter. Finally, each of 
these clusters are the largest, so the m parameter has a value of 
2, since the agent either must turn left or right and move 
forward to reach one of the single box clusters. When these 
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values are used in the equation, we get a value of 8.0028, and 
the mean scores are 8.7593.  

 

(a) 

 

(b) 

Figure 6. Two boards selected randomly out of 74,760 
possible ones.  

4.6 Implementation details 

The data generated in our previous study uses C programming 
language with CUDA version 10.1 libraries to execute the GA 
runs on the GPU. We have processed these files and generated 
the input and output matrices using NumPy on Python version 
3.7. The general linear model has been fit by MATLAB version 
2018a using the mvregress function. The board images are 
generated by the Pillow library on the same Python version. 

5 Discussion and conclusion 

In this study we have used the data that has been generated in 
a previous study where billions of Tartarus runs have been 
executed to evolve software agents that can handle a Tartarus 
board. This data provided us an opportunity to come up with an 
equation that can estimate the difficulty of a board using the 
configuration of boxes and the position and direction of the 
agent.  

Instead of providing the statistical information about the mean 
scores of 74,760 boards, or the occurrence frequency of 247 
combinations of boxes in the agent’s 8-neighborhood, we 
believe that this equation is a much straightforward and 
compact way to calculate the difficulty of a board. It also shows 
that the difficulty indeed changes with the configuration of 
boxes and the position of the agent. 

In contrast to the only existing study [2], we evaluate the 
difficulty of the Tartarus board in its initial configuration when 
the size of the board and the number of boxes are fixed, rather 
than how the difficulty varies when they are modified. Our 
contribution is vital because we do not modify the original 

Tartarus problem.  Using the original definition of the problem 
enables several researchers use the same problem and 
compare their results. 

As discussed earlier, a benchmark should have a good means to 
tune the difficulty of the problem. We believe that this study is 
an important first step for improving the understanding of the 
Tartarus problem and how its difficulty varies not only with the 
size of the board and the number of boxes but also with the 
configuration of boxes and the position and direction of the 
agent. 

Although we have come up with an equation that can estimate 
the difficulty, we have used the values for a specific board size 
and number of boxes. In future work, we are planning to look 
for ways to generalize it to other sizes. 
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