

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

52

Finding combinations of four-operations with Type-2 tree structure

Tip-2 arama yöntemiyle dört işlem kombinasyonlarının bulunması

Eda ÖZKUL1 , Buğra Kaan TİRYAKİ2 , Özge TEZEL3* , Elçin AĞAYEV4 , Orhan KESEMEN5

1,2,3,4,5Department of Statistics and Computer Sciences, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey.
eda.ozkul.gs@gmail.com, bugrakaantiryaki@gmail.com, ozge_tzl@hotmail.com, agayevelcinn@gmail.com, okesemen@gmail.com

Received/Geliş Tarihi: 08.01.2020
Accepted/Kabul Tarihi: 11.06.2020

Revision/Düzeltme Tarihi: 06.06.2020 doi: 10.5505/pajes.2020.77906
Research Article/Araştırma Makalesi

Abstract Öz

Combination problems are one of the most important issues of
probability theory. The four-operations combination problem underlies
the basis of some competition programs broadcasted in many national
channels. In these competition programs, the competitors are expected
to reach the target number by using six numbers and four basic
arithmetic operators. The numbers are used at most once, the operators
can be used any desired number to reach the target number. In this
problem, all four-operations combinations include the operation blocks
consisting of two numbers and an operator. Therefore, the four-
operations combination problem is solved by developing a "Type-2 Tree
Structure" which is a new approach to accurately model the operation
blocks. The performance of the proposed method for the four-operations
combination problem is examined by a simulation study. Also, the
statistics from experimental results are given in this study.

 Kombinasyon problemleri olasılık teorisinin en önemli konularından
biridir. Dört işlem kombinasyon problemi, birçok ulusal kanalda
yayınlanan bazı yarışma programlarının temelini oluşturmaktadır. Bu
yarışma programlarında, yarışmacıların 6 adet sayı ve dört işlem
operatörlerini kullanarak, hedef sayıya ulaşması beklenmektedir.
Hedeflenen sayıya ulaşmak için sayılar en fazla bir kez kullanılırken,
dört işlem operatörleri istenilen sayıda kullanılabilir. Bu problemde,
bulunacak olası tüm dört işlem kombinasyonları iki sayı ve bir
operatörden oluşan işlem öbeklerini içermektedir. Dolayısıyla işlem
öbeklerini tam anlamıyla modelleyebilmek için yeni bir yaklaşım olan
“Tip-2 Ağaç” yapısı geliştirilerek dört işlem kombinasyon problemi
çözülmüştür. Dört işlem kombinasyon problemi için önerilen yöntemin
performansı bir simülasyon çalışması ile incelenmiştir. Ayrıca deneysel
sonuçlardan elde edilen istatistikler de bu çalışmada verilmiştir.

Keywords: Combination, Four-Operations, Type-2 tree, Operation
block.

 Anahtar kelimeler: Kombinasyon, Dört işlem, Tip-2 ağaç, İşlem
öbeği.

1 Introduction

Four-operations combination problem is first started
broadcasting as a game in 1972 on French television as "des
chiffres et des lettres". Later, it appeared on British television
with the name of "countdown" in 1982. In addition, it is called
as "bir kelime bir işlem" in Turkey. The main goal of the game
is to achieve the target number by performing four-operations
on the given number [1]. It is played with six numbers. Five of
them are randomly selected from 1 to 9, and the other is
randomly selected from the cluster {25, 50, 75, 100}. The
competitions try to reach a randomly selected target number
(from 101 to 999) by applying the basic arithmetic operations
{+, −,×,/} to six numbers. According to the rules of the game,
the selected six numbers can only be used at most once.
However, all new results produced between two numbers can
be used in the other operations. For example, let the selected
numbers are {3, 6, 1, 4, 5, 25} and the target number is 403. In
this case, the operation steps are given in Table 1.

Table 1. Example of solution of four-operations problem.

 Operations Number Pool
Initial … {3,6,1,4,5,25}
Step 1 6 × 5 = 30 {1,3,4,25,30}
Step 2 30 + 1 = 31 {3,4,25,31}
Step 3 3 × 4 = 12 {25,31,12}
Step 4 25 − 12 = 13 {31,13}
Step 5 13 × 31 = 403 {403}

*Corresponding author/Yazışılan Yazar

In step 1, 30 obtained by multiplying 6 and 5, is added to the
number pool and {6, 5} are excluded from the number pool. In
each subsequent step, the used numbers are removed from the
number pool and their results are added to the number pool.
There may be multiple solutions to reach the target number.
The solution that reaches the target number with minimum
steps can be preferred. Despite the fact that games based on
four-operations are very common, the limited number of
scientific studies have been conducted in this regard. Defays
[2],[3] used artificial intelligence search methods to solve these
games. Hutton [4] developed a simple but ineffective functional
program for solving four-operations problems. Despite
different approaches and software for solving the game are
exhibited on many websites, they cannot always give the
desired results [5]. Alliot [5] has developed a new approach,
which focuses solely on solving the problem. But it was not
interested in other combinations.

In this paper, the four-operations problem is considered as a
combination problem and it is aimed to solve the problem by
developing the Type-2 tree structure.

2 Obtaining permutation and combination
lists

The finite sample spaces represent a set that consists of the
finite number elements. Any sample that is chosen randomly
from this set creates a subset concurrently. Regular subsets are
formed by sampling according to a certain rule or ordering the
sample space according to a rule [6],[7]. Regular subset

https://orcid.org/0000-0002-9840-8818
https://orcid.org/0000-0003-0995-7389
https://orcid.org/0000-0003-2815-686X
https://orcid.org/0000-0003-3702-5933
https://orcid.org/0000-0002-5160-1178

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

53

definitions change based on the problems. The most common
of them are permutations and combinations.

2.1 Permutation

The permutation is called an arrangement or ordering of
elements in a set [8],[9]. Each element can only be used once in
the permutation. This can be given as an example of sampling
without replacement. It is also important that which element
come in which order [10]. Figure 1 shows the demonstration of
the tree structure of {USED}-{REMAINED} approach for better
understanding of the permutation process. It shows that there
are 6 possible permutations of three elements such as {A, B, C}.

Figure 1. Tree representation of permutations with {USED}-
{REMAINED} approach.

If 𝑛 elements were given instead of 3 elements, then the number
of all possible solutions can be found using the following
equation.

𝑛 ⋅ (𝑛 − 1) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1 = 𝑛! (1)

If all elements in the given set are used, the number of
permutations is calculated as follows.

𝑃(𝑛) = 𝑛! (2)

The number of all possible permutations obtained by using 𝑘
elements instead of using all elements is calculated as follows.

𝑃(𝑛, 𝑘) =
𝑛!

(𝑛 − 𝑘)!
 (3)

Generally, the permutation problems are interested in the
number of all possible samples [11]. This study deals with a set
of all possible samples. Algorithm 1 can be used to obtain all
possible ordered samples from a set.

Algorithm 1. Finding all permutations with {USED}-
{REMAINED} approach.

function [OUTPUT] = Permutation(S, k)
// Input_
// S : The number set
// k : Number of selected elements

// Output_
// OUTPUT : The all results

// Set USED, OUTPUT and LIST to empty set

REMAINED.Push(S)
LIST.Push(pair(USED,REMAINED)
while length(LIST) > 0
 pair(USED,REMAINED) <- LIST.pop()
 N = length (REMAINED)
 if N == 0 then
 OUTPUT.append(USED)
 Continue
 end if

 for i in (N-1 to -1) do
 USED.Push(REMAINED.pop())
 LIST.Push(USED)
 end for
end while
return OUTPUT

In Algorithm 1, an integer array (S) consisting of 𝑛 elements is
added to the list. When the loop starts, each element in the
{REMAINED} is added to {USED}. The added each element is
removed from the {REMAINED} concurrently. Each element in
the {REMAINED} is added one by one to the {USED} in the next
loop. This process continues until all elements have been added
to the {USED} (Figure 1).

2.2 Combination

The combination is the selection of 𝑘 elements from a set with
𝑛 elements, regardless of the order of elements [8],[12]. Since
the order is insignificant, the selection cannot be made as in the
permutation. This is because different orders of the same
elements can represent a subset. The index numbers in the
given array must be selected sequentially when obtaining the
subset from the arranged in order elements in the set. In this
case, the first element is the first (𝑛 − 𝑘 + 1) elements. If the
elements next (𝑛 − 𝑘 + 1)th element are selected, there are not
enough elements to perform the other subsets according to the
rule. The second element must be one of the elements which
come after the first element. 𝑘 elements can be selected with
the same approach. The combinations of three elements
without repetition taken from the set {A, B, C, D, E} consisting
of five elements are shown in the tree structure in Figure 2.

Algorithm 2. Finding all combinations with {USED}-
{REMAINED} approach

function [OUTPUT] = Combination(S, k)
// Input_
// S : The number set
// k : Number of selected elements

// Output_
// OUTPUT : The all results

// Set USED, OUTPUT and LIST to empty set

N=length(REMAINED)
REMAINED.Push(S)
LIST.Push(USED)
while len(LIST) > 0
 USED <- LIST.pop()
 if length(USED) == k then
 OUTPUT.Append(REMAINED[index] for i in USED
 continue
 end if
 if length(USED) > 0 then
 for i in (N-1 to USED[-1]) do
 USED.Push()
 LIST.Push(USED)
 end for
 else
 for i in (N-1 to -1) do
 USED.Push()
 LIST.Push(USED)
 end for
 end if
end while
return OUTPUT

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

54

Figure 2. The tree structure of the combination with {USED}-
{REMAINED} approach.

As seen from the tree structure, in the all obtained
combinations, there is no contradiction to the order in the main
set. Based on this representation, there are 3 elements starting
with A in the combinations. There is 1 element continue with B.
Combination is calculated using the Equation 4.

𝐶(𝑛, 𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)!
 (4)

For example, three students are required from each class for a
competition among the classes. In how many different ways can
three students from a class of twelve students be selected? Note
that the order of students is insignificant. The approach to be
used in the combination is to calculate the permutations of the
set by giving a rank index to the elements in the set. In the
permutation, if the element with the bigger index is not be
placed before the element with the small index, combinations
can be selected from within the permutations. The point the
note here is that the number of subset elements must not
exceed the required 𝑘 elements. Algorithm 2 can be used to
obtain all possible samples from a given population.

In the combinations, each element in each subset is used once.
An element in a set can be selected more than one is called
combinations with repetition.

3 Four-operations combination problem

The four-operations combination problem aims to find a set of
all possible results by constructing an arithmetic expression
using 𝑛 selected numbers. The nature of the problem,
arithmetic operators can be used as often as requested, but the
selected numbers can be used at most once.

In the literature, the brute force method is a very simple and
basic problem-solving technique. It addresses all possible
situations one by one in the solution space where the problem
is defined systematically. It checks whether these situations
provide a solution to the problem. In addition, this technique is
used for various problems and can be considered as a general
approach to problem solving. On the other hand, the solution of
the problem depends on the number of possible solutions.
Therefore, as the number of possible solutions increases, the
calculation time also increases [13],[14].

In this study, the Type-2 tree that calculates all possible
solutions of the problem is proposed similar to the brute force
method. Furthermore, the entire solution space must be
searched for the complete solution of this problem.

Although mathematical expressions consist of numerical
values, textual (string) notations must be used for their storage
and representation. A mathematical expression in the tree
structure is converted to a node by using the string storage
technique. Since this node corresponds to a node in the general

tree structure, it provides convenience the use of the tree
structure into the tree [15],[16].

As an example, operations given in Table 1 can be represented
in the form of a single-line as follows.

(1 + (6 × 5)) × (25 − (3 × 4)) (5)

This mathematical expression can be stored in memory in a
string structure. In this case, the extraction of the string
expressions and the determination of their values will also
require additional operations which are given below.

 Converting the string expression to the tree structure
(STRING2TREE),

 Converting the tree structure to the value
(TREE2VALUE),

 Converting the tree structure to the string expression
(TREE2STRING).

3.1 Converting the string expression to the tree
structure (STRING2TREE)

Initially, each operator must be given an order of priority to
convert a mathematical expression given as text to the tree
structure. In this study, the identified orders of priority are
given in Table 2. In mathematics, the ‘+’ and ‘−’ operators have
the same priority. But in this study, different priorities are given
to avoid complexity. Similarly, the ‘×’ and ‘/’ operators have
been given different priorities. However, if two or more
operators having the same priority are in the same expression,
the operations are performed from left to right, respectively.
Furthermore, in mathematical expression, each operator is
added to the priority value 10 after the left brace, but after the
right brace, each operator is subtracted by 10 from the priority
value.

Table 2. Priority assignments.

Operation Operator Priority
Addition + 1

Subtraction − 2
Multiplication × 3

Division / 4
Left Brace (+10

Right Brace) -10

For example, let a mathematical expression is
“5 × (3 + 2) − 8/4”. The priority array of this expression is
given in Table 3. Here, the priority values of the characters
except the operators are given as 0. Although the priority value
of the ‘+’ operator is 1, after the left brace it has been increased
by 10 to 11.

Table 3. Priority array of the example expression.

Characters 5 × (3 + 2) − 8 / 4
Priorities 0 3 0 0 11 0 0 2 0 4 0

The operator with the lowest non-zero priority in the text string
is the root node of the tree. The characters which are the left or
right side of this operator create the sub-nodes of it (Figure A1).
In the following steps, each child node is created own child
nodes. This process continues until there is no operator
remained in the sub-node. As a result, only numbers may
remain in all end-nodes. The nodes containing the operator in
the text string are extracted and if there are nodes that do not
contain an operator, the brackets are deleted, and only
numbers remain in the end-nodes.

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

55

3.2 Converting the tree structure to the value
(TREE2VALUE)

A mathematical expression which is given as a text string
cannot be directly computed on a computer. The string
expressions must be converted to the tree structure. The
created tree can be kept in data structures such as queue. In the
tree structure, the intermediate nodes contain operators and
the end-nodes contain numbers. The result is achieved starting
from the lowest depth to upwards in the mathematical
expression converted to the tree structure (Figure A2). Sub-
nodes containing numbers are operationalized with the
operator in their connected parent node. The obtained value is
written in the parent node and the used sub-nodes are deleted.
This process, which is done with the graph, is performed by
keeping the tree structure on the computer. The last two
numbers in the queue are taken and processed with the first
operator that is met from head to tail. Then, the obtained result
is written in the position where the operator is located and, it is
continued by deleting the last two numbers. The last remaining
value is equivalent to the result (Figure A2).

Every step of the process is stored in a list as in Table 4 when a
tree structure is transformed into a value as in Figure A2.

Additional information is always needed to manage operations
on the tree structure. The tree is added to a list in the queue to
eliminate this. After each node added to the list is processed and
new child nodes are added to the list without being deleted
from the list. The extracted operator is also added to the parent
node.

Table 4. Solution of the example four-operations problem.

 Operations Number Pool
Initial … {5,8,4,3,2}
Step 1 3 + 2 = 5 {5,5,8,4}
Step 2 8 /4 = 2 {2,5,5}
Step 3 5 × 5 = 25 {25,2}
Step 4 25 − 2 = 23 {23}

3.3 Converting the tree structure to the string
expression (TREE2STRING)

Combination problems can be solved with graphs via tree
structure. The tree structure is usually kept on dynamic lists.
However, saving and displaying them is a troublesome process.
For this reason, the tree structure on dynamic lists is used by
converting to the string expression (Figure A3). Starting from
the sub-node of the lowest deep, operation block which consists
of an operator connected to these nodes, is recorded as a string
to the node in which location of the operator, and the sub-nodes
are removed. In the new case, the operator node where the
location of the operation block, becomes an external node. This
process is repeated until only one node is left. In this case, it is
the string expression of whole operations (Figure A3).

4 Solving four-operations combination
problem

The four-operations combination problem is quite similar to
the permutation-combination problems. However, while
subsets are constructed according to a certain rule in the case
of the permutation-combination problems, they are
constructed in triple intersection with two sets which are
numbers {A, B, C} and operators {+, −,×,/} in four-operations
combination problems (Figure 3).

Figure 3. The operation block constructed with triple
intersection of two sets.

The operation blocks can be consisted of using the binary
permutations of the number set and the single permutations of
the operator set. But, when the binary permutations of the
number set are combined with the single permutation of the
operator set, the combined operation blocks results can be
same as (B + C) and (C + B). It causes to consist of the
repetitive subset. Therefore, permutation pairs for operators
“−” and “/”, and combination pairs for operators “+” and “×”
are used to solve it (Table 5). Also, this preference is made by
courtesy of the commutative property of the addition and
multiplication.

Table 5. All operation blocks that can be consisted of a three-
element set.

+ A B C × A B C
A … A + B A + C A … A × B A × C
B … … B + C B … … B × C
C … … … C … … …

(a)

(b)

− A B C / A B C
A … A − B A − C A … A/B A/C
B B − A … B − C B B/A … B/C
C C − A C − B … C C/A C/B …

(c)

(d)

All the binary operations consisting of a set of elements
{A, B, C} are given in Table 5. The binary operation blocks which
are combinations with repetition represented by "..." can be
added to the list according to the problem. In this study, the
combinations with repetition are ruled out.

Each operation block can be a part of another operation block.
Each single or multi operation block creates a tree. Different
sequences of operation blocks cause different combinations. If
each of them is represented by a tree, it is necessary that tree
must create its own tree for the calculation of all combinations.
In other words, tree of each operation block represents a node
of the combination tree (Figure 4a). The combinations of the
multi operation blocks can be kept by the Type-2 tree while a
multi operation block is solved with the Type-1 tree. That is to
say, the combined tree structure formed by keeping an
operation block tree at each node of the combination tree can
be defined as a Type-2 tree.

4.1 Solution of the problem with the type-2 tree
structure

The subtree which aims to solve the four-operations
combination problems in a simpler way using the Type-2 tree,

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

56

is listed as a string, and the expansion of the tree (branching)
can be resumed (Figure 4b). The numerical value of the string
expression obtained from the operation result can be found.

(a)

(b)

Figure 4. The solution tree of the four-operations combination
problem. (a): Schematic representation of the Type-2 tree.

(b): String expression of the Type-2 tree.

If the operation result is used instead of the string expression,
each generated operation block result is added to the
{REMAINED}, and used numbers are removed from the
{REMAINED}. In this way, a number set is created in each node,
and the value of the current operation block is added to the list
towards to the sub-depth. In addition, the numbers used in the
operation blocks are removed from the {REMAINED}
(Algorithm 3).

Algorithm 3. Type-2 tree structure to solve four-operations
combination problem

function [OUTPUT] = FourOperator(REMAINED):
// Input_
// REMAINED : The number set

// Output_
// OUTPUT : The all results

// Set OUTPUT and LIST to empty set

LIST.Push(REMAINED)
while length(LIST) > 0
 b = LIST.pop()
 if length(b) is equal to 1 then
 continue while loop
 end if
 for i in (1 to length(b)) do
 for j in (1 to length(b)) do
 if i ≠ j then
 REMAINED <- set to zeros(n-1)
 index = 1
 for k in (1 to length(b)) do
 if(k ≠ i and k ≠ j) then
 REMAINED[index] = b[k]
 index += 1
 end if
 end for k
 if j > i then
 REMAINED[index] = b[i] + b[j]
 LIST.Push(REMAINED)
 OUTPUT.append(REMAINED[index])
 REMAINED[index] = b[i] * b[j]

 LIST.Push(REMAINED)
 OUTPUT.append(REMAINED[index])
 end if
 REMAINED[index] = b[i] - b[j]
 LIST.Push(REMAINED)
 OUTPUT.append(REMAINED[index])
 REMAINED[index] = b[i] / b[j]
 LIST.Push(REMAINED)
 OUTPUT.append(REMAINED[index])
 end if
 end for j
 end for i
end while
return OUTPUT

Consider a set of elements {A, B, C} for a simple implementation
of the problem. In the first step, the binary permutations of the
elements are shown as in Table 6.

Table 6. Binary operation blocks of the set with two elements.

Binary
Permutation

{(A + C), B} {B, (A + C)}

{REMAINED} {} {}

Addition {(A + C) + B} …

Subtraction {(A + C) − B} {B − (A + C)}

Multiplication {(A + C) × B} …

Division {(A + C)/B} {B/(A + C)}

There are operation blocks having the same results in a row
that contain addition and multiplication operators in Table 6.
Thus, only one of them is considered. However, all results of
subtraction and division in a row have been selected. All the
elements in the rows that contain subtraction and division
operations are taken. Thus, 18 new sets are obtained as a result
of the binary four-operations combination of a set with three
elements. Table 7 shows the four-operations combinations of
the set {(A + C), B} which is one of the new sets with two
elements. Here, the expression (A + C) is defined as a number.

The number of the binary operation blocks of three elements is
18. The number of triple operation blocks gives 6 results for
each. As a result, the number of triple operations of three
elements is 6 × 18 = 108. In addition, the number of all four-
operations combination of a set with three elements is
calculated as 18 + 108 = 126, when the binary operations
results are included.

4.2 Determination of the number of the four-operations
combinations

The total number of operation blocks obtained according to the
numbers and the operators. The number of new operation
blocks obtained from them is calculated using permutation. In
this case, the number of the binary operation blocks obtained
from a set with 𝑛 elements is calculated as in Equation (6).

𝐷(𝑛, 2) = 3. 𝑃(𝑛, 2) (6)

In Equation (6), while all permutations of the subtraction and
division operators are considered, the half of the permutations
of the addition and multiplication operators are considered.

Thus, the number of permutations is reduced 3 times. In the
same way, the number of triple operation blocks of a set with 𝑛
elements is determined as in Equation (7).

𝐷(𝑛, 3) = 32. 𝑃(𝑛, 2). 𝑃(𝑛 − 1,2) (7)

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

57

Table 7. Binary operation blocks of a set with three-element.

Binary permutations {A, B} {A, C} {B, A} {B, C} {C, A} {C, B}

{REMAINED} {C} {B} {C} {A} {B} {A}

Addition {(A + B), C} {(A + C), B} {} {(B + C), A} {} {}

Subtraction {(A − B), C} {(A − C), B} {(B − A), C} {(B − C), A} {(C − A), B} {(C − B), A}

Multiplication {(A × B), C} {(A × C), B} {} {(B × C), A} {} {}

Division {(A/B), C} {(A/C), B} {(B/A), C} {(B/C), A} {(C/A), B} {(C/B), A}

Hence, Equation (8) calculates the number of the 𝑛-operation
blocks of a set with 𝑛 elements.

𝐷(𝑛, 𝑛) = 3𝑛−1. 𝑃(𝑛, 2) … . 𝑃(4,2). 𝑃(3,2). 𝑃(2,2) (8)

If it is generalized, Equation (9) is obtained and, thus, the
number of the 𝑘-operation blocks is calculated.

𝐷(𝑛, 𝑘) = 3𝑘−1 ∏ 𝑃(𝑡, 2)

𝑛

𝑡=𝑛−𝑘+2

 (9)

The number of all operation blocks of a set with 𝑛 elements are
figured out using Equation (10).

𝐷(𝑛) = ∑ (3𝑘−1 ∏ 𝑃(𝑡, 2)

𝑛

𝑡=𝑛−𝑘+2

)

𝑛

𝑘=2

 (10)

Table 8 shows the results for 𝑛 = 2,3,4,5,6.

Table 8. The number of the four-operations combinations.

𝐷(2,2) 6

𝐷(2) = ∑ 𝐷(2, 𝑘)2
𝑘=2 6

𝐷(3,2) 18

𝐷(3,3) 108

𝐷(3) = ∑ 𝐷(3, 𝑘)3
𝑘=2 126

𝐷(4,2) 36

𝐷(4,3) 648

𝐷(4,4) 3888

𝐷(4) = ∑ 𝐷(4, 𝑘)4
𝑘=2 4572

𝐷(5,2) 60

𝐷(5,3) 2160

𝐷(5,4) 38880

𝐷(5,5) 233280

𝐷(5) = ∑ 𝐷(5, 𝑘)5
𝑘=2 274380

𝐷(6,2) 90

𝐷(6,3) 5400

𝐷(6,4) 194400

𝐷(6,5) 3499200

𝐷(6,6) 20995200

𝐷(6) = ∑ 𝐷(6, 𝑘)6
𝑘=2 24694290

5 Experimental results

This section investigates the performance of the proposed
method for the four-operations combination problem. For the
simulation study, a 64-bit computer with an Intel® Core ™ i7-
3630QM CPU @ 2.40GHz processor and 8 Gb Ram was used,

and 𝐶# was used for the applications. Random integers
between 1 and 9 are selected as the simulation parameters and
the results are recorded. This process is run 100 times with the
same 𝑛 value and the average computation time according to
the count of the selected numbers is shown in Table 9.

Table 9. The average computation time of the proposed
method in 100 trials.

The count of the
used numbers

The number of the
generated results

The average
computation time

(sec.)
2 6 0.00000209
3 126 0.00000704
4 4572 0.00023027
5 274380 0.01541066
6 24694290 1.94922640

The results obtained by the random integers between 1 and 9
were generated as many as the number used in Table 9, and the
computation time was computed according to the results.
According to Table 9, the number of results and the
computation time increase, when the number of elements of the
number set increases. Also, the complexity of the algorithm is
calculated as 𝑂(𝑛! (𝑛 − 1)!). On the other hand, the statistics
such as the count of used number (𝑛), the number of generated
results for each experiment (𝑁), the minimum result (𝑌𝑚𝑖𝑛), the
maximum result (𝑌𝑚𝑎𝑥), the number of the infinite results (𝑁𝑖),
the number of the undefined results (𝑁𝑛) and percentage of the
number falling between 100-1000 (f%) obtained from
experimental results are given in Table 10. According to
Table 10, it is seen that as the count of used number (𝑛)
increases, the minimum result (𝑌𝑚𝑖𝑛) decreases and the
maximum result (𝑌𝑚𝑎𝑥) increases. On the other hand, the
expressions like a/∞, 0/0, 0×∞ which equal to infinity are
expected. So, the number of the infinite results (𝑁𝑖) and the
number of the undefined results (𝑁𝑛) increase, when the count
of used number increases. The percentages of the number
falling between 100-1000 are also given.

6 Conclusion

This study improved the Type-2 tree to solve the four-
operations combination problems. A simulation study was
performed to test the performance of the proposed method.
The random integers used in the simulation study were
selected in the range of [1,9], and the average computation time
was obtained according to the count of the selected numbers.
The computational complexity was found theoretically
according to the parameter 𝑛 and compared with the
computation time. As the number of elements in the number set
increases, the number of the generated results and the
computation time increase. The four-operations combination
problems are performed via integers given in a certain number.
They can be expanded to both real and complex numbers. In
addition, the heuristic approaches can be improved to find the
shortest solutions that reach the target number.

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

58

Table 10. The statistics obtained from experimental results.

𝑛 𝑁 𝑌𝑚𝑖𝑛 𝑌𝑚𝑎𝑥 𝑁𝑖 𝑁𝑛 𝑓%
2 6 -2.99 25.16 0 0 0
3 126 -34.37 128.24 0.72 0 1.23015873
4 4572 -176.58 514.52 42.46 1.12 1.610673666
5 274380 -1155.27 3208.38 3536.82 58.4 2.438435746
6 24694290 -2.37828E+16 2.37828E+16 396003.94 9475.52 2.853373148

𝒏: the count of used number; 𝑵: the number of generated results for each experiment; 𝒀𝒎𝒊𝒏: the minimum result; 𝒀𝒎𝒂𝒙: the maximum result; 𝑵𝒊: the number of the infinite
results; 𝑵𝒏: the number of the undefined results; 𝒇%: Percentage of the number falling between 100-1000.

7 References

[1] Colton S. “Countdown numbers game: solved, analysed,
extended”. Proceedings of the AISB Symposium on AI and
Games, Canterbury, London, 1 April 2014.

[2] Defays D. L'esprit en Friche: les Foisonnements de
l'intelligence Artificielle. Liege, Belgium, Pierre Mardaga,
1988.

[3] Defays D. Numbo: A Study in Cognition and Recognition.
Editor: Hofstadter D. Fluid Concepts and Creative
Analogies, 131-154, Basic Books Inc, 1995.

[4] Hutton G. “The countdown problem”. Journal of Functional
Programming, 12(06), 609-616, 2002.

[5] Alliot JM. “The (Final) Countdown”.
https://arxiv.org/abs/1502.05450 (03.06.2020).

[6] Fischler MA, Bolles RC. “Random sample consensus: a
paradigm for model fitting with applications to image
analysis and automated cartography”. Communications of
the ACM, 24(6), 381-395, 1981.

[7] Montgomery DC, Runger GC. Applied Statistics and
Probability for Engineers. 5th ed. Jefferson City, USA, John
Wiley & Sons, 2011.

[8] Hines WW, Montgomery DC, Goldsman DM, Borror CM.
Probability and Statistics in Engineering. Danvers,
Massachusetts, USA, John Wiley & Sons, 2008.

[9] Code D. Probability: Mastering Permutations and
Combinations. 2nd ed. California, USA, CreateSpace
Independent Publishing Platform, 2017.

[10] Crawshaw J, Chambers J. A Concise Course in Advanced
Level Statistics: With Worked Examples. 6th ed. London, UK,
Oxford University Press, 2015.

[11] Tier R. Probability with Permutations and Combinations: A
Deeper and More Thorough Look at the Fundamental
Equations. California, USA, CreateSpace Independent
Publishing Platform, 2017.

[12] Nicolaides A. Pure Mathematics Series: 10. Combinations,
Permutations, Probabilities. London, UK, PASS
Publications, 1994.

[13] Puntambekar A. Analysis and design of algorithms. 1st ed.
Pune, India, Technical Publications, 2008.

[14] Mueller J, Massaron L. Algorithms for Dummies. Hoboken,
USA, John Wiley & Sons, 2017.

[15] Goodrich MT, Tamassia R, Goldwasser, MH. Data
Structures and Algorithms in Java. 6th ed. Hoboken, USA,
John Wiley & Sons, 2014.

[16] Saha S, Shukla S. Advanced Data Structures: Theory and
Applications. Boca Raton, USA, CRC Press: Taylor &
Francis, 2019.

Appendix A

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure A1. Steps for converting string expression to tree
structure. The left column shows the tree structure, and the

right column is the memory model adapted for the queue data
structure.

https://arxiv.org/abs/1502.05450

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen

59

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure A2. Steps for converting tree structure to value. The left
column shows the tree structure, and the right column is the

memory model adapted for the queue data structure.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure A3. Steps for converting tree structure to string
expression. The left column shows the tree structure, and the
right column is the memory model adapted for the queue data

structure.

