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Abstract  Öz 

Combination problems are one of the most important issues of 
probability theory. The four-operations combination problem underlies 
the basis of some competition programs broadcasted in many national 
channels. In these competition programs, the competitors are expected 
to reach the target number by using six numbers and four basic 
arithmetic operators. The numbers are used at most once, the operators 
can be used any desired number to reach the target number. In this 
problem, all four-operations combinations include the operation blocks 
consisting of two numbers and an operator. Therefore, the four-
operations combination problem is solved by developing a "Type-2 Tree 
Structure" which is a new approach to accurately model the operation 
blocks. The performance of the proposed method for the four-operations 
combination problem is examined by a simulation study. Also, the 
statistics from experimental results are given in this study. 

 Kombinasyon problemleri olasılık teorisinin en önemli konularından 
biridir. Dört işlem kombinasyon problemi, birçok ulusal kanalda 
yayınlanan bazı yarışma programlarının temelini oluşturmaktadır. Bu 
yarışma programlarında, yarışmacıların 6 adet sayı ve dört işlem 
operatörlerini kullanarak, hedef sayıya ulaşması beklenmektedir. 
Hedeflenen sayıya ulaşmak için sayılar en fazla bir kez kullanılırken, 
dört işlem operatörleri istenilen sayıda kullanılabilir. Bu problemde, 
bulunacak olası tüm dört işlem kombinasyonları iki sayı ve bir 
operatörden oluşan işlem öbeklerini içermektedir. Dolayısıyla işlem 
öbeklerini tam anlamıyla modelleyebilmek için yeni bir yaklaşım olan 
“Tip-2 Ağaç” yapısı geliştirilerek dört işlem kombinasyon problemi 
çözülmüştür. Dört işlem kombinasyon problemi için önerilen yöntemin 
performansı bir simülasyon çalışması ile incelenmiştir. Ayrıca deneysel 
sonuçlardan elde edilen istatistikler de bu çalışmada verilmiştir. 

Keywords: Combination, Four-Operations, Type-2 tree, Operation 
block. 

 Anahtar kelimeler: Kombinasyon, Dört işlem, Tip-2 ağaç, İşlem 
öbeği. 

1 Introduction 

Four-operations combination problem is first started 
broadcasting as a game in 1972 on French television as "des 
chiffres et des lettres". Later, it appeared on British television 
with the name of "countdown" in 1982. In addition, it is called 
as "bir kelime bir işlem" in Turkey. The main goal of the game 
is to achieve the target number by performing four-operations 
on the given number [1]. It is played with six numbers. Five of 
them are randomly selected from 1 to 9, and the other is 
randomly selected from the cluster {25, 50, 75, 100}. The 
competitions try to reach a randomly selected target number 
(from 101 to 999) by applying the basic arithmetic operations 
{+, −,×,/} to six numbers. According to the rules of the game, 
the selected six numbers can only be used at most once. 
However, all new results produced between two numbers can 
be used in the other operations. For example, let the selected 
numbers are {3, 6, 1, 4, 5, 25} and the target number is 403. In 
this case, the operation steps are given in Table 1. 

Table 1. Example of solution of four-operations problem. 

 Operations Number Pool 
Initial … {3,6,1,4,5,25} 
Step 1 6 × 5 = 30 {1,3,4,25,30} 
Step 2 30 + 1 = 31 {3,4,25,31} 
Step 3 3 × 4 = 12 {25,31,12} 
Step 4 25 − 12 = 13 {31,13} 
Step 5 13 × 31 = 403 {403} 

                                                           
*Corresponding author/Yazışılan Yazar 

In step 1, 30 obtained by multiplying 6 and 5, is added to the 
number pool and {6, 5} are excluded from the number pool. In 
each subsequent step, the used numbers are removed from the 
number pool and their results are added to the number pool. 
There may be multiple solutions to reach the target number. 
The solution that reaches the target number with minimum 
steps can be preferred. Despite the fact that games based on 
four-operations are very common, the limited number of 
scientific studies have been conducted in this regard. Defays 
[2],[3] used artificial intelligence search methods to solve these 
games. Hutton [4] developed a simple but ineffective functional 
program for solving four-operations problems. Despite 
different approaches and software for solving the game are 
exhibited on many websites, they cannot always give the 
desired results [5]. Alliot [5] has developed a new approach, 
which focuses solely on solving the problem. But it was not 
interested in other combinations. 

In this paper, the four-operations problem is considered as a 
combination problem and it is aimed to solve the problem by 
developing the Type-2 tree structure. 

2 Obtaining permutation and combination 
lists 

The finite sample spaces represent a set that consists of the 
finite number elements. Any sample that is chosen randomly 
from this set creates a subset concurrently. Regular subsets are 
formed by sampling according to a certain rule or ordering the 
sample space according to a rule [6],[7]. Regular subset 
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definitions change based on the problems. The most common 
of them are permutations and combinations. 

2.1 Permutation 

The permutation is called an arrangement or ordering of 
elements in a set [8],[9]. Each element can only be used once in 
the permutation. This can be given as an example of sampling 
without replacement. It is also important that which element 
come in which order [10]. Figure 1 shows the demonstration of 
the tree structure of {USED}-{REMAINED} approach for better 
understanding of the permutation process. It shows that there 
are 6 possible permutations of three elements such as {A, B, C}. 

 

Figure 1. Tree representation of permutations with {USED}-
{REMAINED} approach. 

If 𝑛 elements were given instead of 3 elements, then the number 
of all possible solutions can be found using the following 
equation. 

𝑛 ⋅ (𝑛 − 1) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1 = 𝑛! (1) 

If all elements in the given set are used, the number of 
permutations is calculated as follows. 

𝑃(𝑛) = 𝑛! (2) 

The number of all possible permutations obtained by using 𝑘 
elements instead of using all elements is calculated as follows. 

𝑃(𝑛, 𝑘) =
𝑛!

(𝑛 − 𝑘)!
 (3) 

Generally, the permutation problems are interested in the 
number of all possible samples [11]. This study deals with a set 
of all possible samples. Algorithm 1 can be used to obtain all 
possible ordered samples from a set. 

Algorithm 1. Finding all permutations with {USED}-
{REMAINED} approach. 

function [OUTPUT] = Permutation(S, k) 
// Input_  
// S : The number set 
// k : Number of selected elements 
 
// Output_ 
// OUTPUT : The all results 
 
// Set USED, OUTPUT and LIST to empty set 
 
REMAINED.Push(S) 
LIST.Push(pair(USED,REMAINED) 
while length(LIST) > 0 
  pair(USED,REMAINED) <- LIST.pop() 
  N = length (REMAINED) 
  if N == 0 then 
    OUTPUT.append(USED) 
    Continue 
  end if 

  for i in (N-1 to -1) do 
    USED.Push(REMAINED.pop()) 
    LIST.Push(USED) 
  end for 
end while 
return OUTPUT 

In Algorithm 1, an integer array (S) consisting of 𝑛 elements is 
added to the list. When the loop starts, each element in the 
{REMAINED} is added to {USED}. The added each element is 
removed from the {REMAINED} concurrently. Each element in 
the {REMAINED} is added one by one to the {USED} in the next 
loop. This process continues until all elements have been added 
to the {USED} (Figure 1). 

2.2 Combination 

The combination is the selection of 𝑘 elements from a set with 
𝑛 elements, regardless of the order of elements [8],[12]. Since 
the order is insignificant, the selection cannot be made as in the 
permutation. This is because different orders of the same 
elements can represent a subset. The index numbers in the 
given array must be selected sequentially when obtaining the 
subset from the arranged in order elements in the set. In this 
case, the first element is the first (𝑛 − 𝑘 + 1) elements. If the 
elements next (𝑛 − 𝑘 + 1)th element are selected, there are not 
enough elements to perform the other subsets according to the 
rule. The second element must be one of the elements which 
come after the first element. 𝑘 elements can be selected with 
the same approach. The combinations of three elements 
without repetition taken from the set {A, B, C, D, E} consisting 
of five elements are shown in the tree structure in Figure 2. 

Algorithm 2. Finding all combinations with {USED}-
{REMAINED} approach 

function [OUTPUT] = Combination(S, k) 
// Input_  
// S : The number set 
// k : Number of selected elements 
 
// Output_ 
// OUTPUT : The all results 
 
// Set USED, OUTPUT and LIST to empty set 
 
N=length(REMAINED) 
REMAINED.Push(S) 
LIST.Push(USED) 
while len(LIST) > 0 
  USED <- LIST.pop() 
  if length(USED) == k then 
    OUTPUT.Append(REMAINED[index] for i in USED 
    continue 
  end if 
  if length(USED) > 0 then 
    for i in (N-1 to USED[-1]) do 
      USED.Push() 
      LIST.Push(USED) 
    end for 
  else 
    for i in (N-1 to -1) do 
      USED.Push() 
      LIST.Push(USED) 
    end for 
  end if      
end while 
return OUTPUT 
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Figure 2. The tree structure of the combination with {USED}-
{REMAINED} approach. 

As seen from the tree structure, in the all obtained 
combinations, there is no contradiction to the order in the main 
set. Based on this representation, there are 3 elements starting 
with A in the combinations. There is 1 element continue with B. 
Combination is calculated using the Equation 4. 

𝐶(𝑛, 𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)!
 (4) 

For example, three students are required from each class for a 
competition among the classes. In how many different ways can 
three students from a class of twelve students be selected? Note 
that the order of students is insignificant. The approach to be 
used in the combination is to calculate the permutations of the 
set by giving a rank index to the elements in the set. In the 
permutation, if the element with the bigger index is not be 
placed before the element with the small index, combinations 
can be selected from within the permutations. The point the 
note here is that the number of subset elements must not 
exceed the required 𝑘 elements. Algorithm 2 can be used to 
obtain all possible samples from a given population. 

In the combinations, each element in each subset is used once. 
An element in a set can be selected more than one is called 
combinations with repetition. 

3 Four-operations combination problem 

The four-operations combination problem aims to find a set of 
all possible results by constructing an arithmetic expression 
using 𝑛 selected numbers. The nature of the problem, 
arithmetic operators can be used as often as requested, but the 
selected numbers can be used at most once. 

In the literature, the brute force method is a very simple and 
basic problem-solving technique. It addresses all possible 
situations one by one in the solution space where the problem 
is defined systematically. It checks whether these situations 
provide a solution to the problem. In addition, this technique is 
used for various problems and can be considered as a general 
approach to problem solving. On the other hand, the solution of 
the problem depends on the number of possible solutions. 
Therefore, as the number of possible solutions increases, the 
calculation time also increases [13],[14]. 

In this study, the Type-2 tree that calculates all possible 
solutions of the problem is proposed similar to the brute force 
method. Furthermore, the entire solution space must be 
searched for the complete solution of this problem. 

Although mathematical expressions consist of numerical 
values, textual (string) notations must be used for their storage 
and representation. A mathematical expression in the tree 
structure is converted to a node by using the string storage 
technique. Since this node corresponds to a node in the general 

tree structure, it provides convenience the use of the tree 
structure into the tree [15],[16]. 

As an example, operations given in Table 1 can be represented 
in the form of a single-line as follows. 

(1 + (6 × 5)) × (25 − (3 × 4)) (5) 

This mathematical expression can be stored in memory in a 
string structure. In this case, the extraction of the string 
expressions and the determination of their values will also 
require additional operations which are given below. 

 Converting the string expression to the tree structure 
(STRING2TREE), 

 Converting the tree structure to the value 
(TREE2VALUE), 

 Converting the tree structure to the string expression 
(TREE2STRING). 

3.1 Converting the string expression to the tree 
structure (STRING2TREE) 

Initially, each operator must be given an order of priority to 
convert a mathematical expression given as text to the tree 
structure. In this study, the identified orders of priority are 
given in Table 2. In mathematics, the ‘+’ and ‘−’ operators have 
the same priority. But in this study, different priorities are given 
to avoid complexity. Similarly, the ‘×’ and ‘/’ operators have 
been given different priorities. However, if two or more 
operators having the same priority are in the same expression, 
the operations are performed from left to right, respectively. 
Furthermore, in mathematical expression, each operator is 
added to the priority value 10 after the left brace, but after the 
right brace, each operator is subtracted by 10 from the priority 
value. 

Table 2. Priority assignments. 

Operation Operator Priority 
Addition + 1 

Subtraction − 2 
Multiplication × 3 

Division / 4 
Left Brace ( +10 

Right Brace ) -10 

For example, let a mathematical expression is  
“5 × (3 + 2) − 8/4”. The priority array of this expression is 
given in Table 3. Here, the priority values of the characters 
except the operators are given as 0. Although the priority value 
of the ‘+’ operator is 1, after the left brace it has been increased 
by 10 to 11. 

Table 3. Priority array of the example expression. 

Characters 5 × ( 3 + 2 ) − 8 / 4 
Priorities 0 3 0 0 11 0 0 2 0 4 0 

The operator with the lowest non-zero priority in the text string 
is the root node of the tree. The characters which are the left or 
right side of this operator create the sub-nodes of it (Figure A1). 
In the following steps, each child node is created own child 
nodes. This process continues until there is no operator 
remained in the sub-node. As a result, only numbers may 
remain in all end-nodes. The nodes containing the operator in 
the text string are extracted and if there are nodes that do not 
contain an operator, the brackets are deleted, and only 
numbers remain in the end-nodes. 
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3.2 Converting the tree structure to the value 
(TREE2VALUE) 

A mathematical expression which is given as a text string 
cannot be directly computed on a computer. The string 
expressions must be converted to the tree structure. The 
created tree can be kept in data structures such as queue. In the 
tree structure, the intermediate nodes contain operators and 
the end-nodes contain numbers. The result is achieved starting 
from the lowest depth to upwards in the mathematical 
expression converted to the tree structure (Figure A2). Sub-
nodes containing numbers are operationalized with the 
operator in their connected parent node. The obtained value is 
written in the parent node and the used sub-nodes are deleted. 
This process, which is done with the graph, is performed by 
keeping the tree structure on the computer. The last two 
numbers in the queue are taken and processed with the first 
operator that is met from head to tail. Then, the obtained result 
is written in the position where the operator is located and, it is 
continued by deleting the last two numbers. The last remaining 
value is equivalent to the result (Figure A2). 

Every step of the process is stored in a list as in Table 4 when a 
tree structure is transformed into a value as in Figure A2. 

Additional information is always needed to manage operations 
on the tree structure. The tree is added to a list in the queue to 
eliminate this. After each node added to the list is processed and 
new child nodes are added to the list without being deleted 
from the list. The extracted operator is also added to the parent 
node. 

Table 4. Solution of the example four-operations problem. 

 Operations Number Pool 
Initial … {5,8,4,3,2} 
Step 1 3 + 2 = 5 {5,5,8,4} 
Step 2 8 /4 = 2 {2,5,5} 
Step 3 5 × 5 = 25 {25,2} 
Step 4 25 − 2 = 23 {23} 

3.3 Converting the tree structure to the string 
expression (TREE2STRING) 

Combination problems can be solved with graphs via tree 
structure. The tree structure is usually kept on dynamic lists. 
However, saving and displaying them is a troublesome process. 
For this reason, the tree structure on dynamic lists is used by 
converting to the string expression (Figure A3). Starting from 
the sub-node of the lowest deep, operation block which consists 
of an operator connected to these nodes, is recorded as a string 
to the node in which location of the operator, and the sub-nodes 
are removed. In the new case, the operator node where the 
location of the operation block, becomes an external node. This 
process is repeated until only one node is left. In this case, it is 
the string expression of whole operations (Figure A3). 

4 Solving four-operations combination 
problem 

The four-operations combination problem is quite similar to 
the permutation-combination problems. However, while 
subsets are constructed according to a certain rule in the case 
of the permutation-combination problems, they are 
constructed in triple intersection with two sets which are 
numbers {A, B, C} and operators {+, −,×,/} in four-operations 
combination problems (Figure 3). 

 

Figure 3. The operation block constructed with triple 
intersection of two sets. 

The operation blocks can be consisted of using the binary 
permutations of the number set and the single permutations of 
the operator set. But, when the binary permutations of the 
number set are combined with the single permutation of the 
operator set, the combined operation blocks results can be 
same as (B + C) and (C + B). It causes to consist of the 
repetitive subset. Therefore, permutation pairs for operators 
“−” and “/”, and combination pairs for operators “+” and “×” 
are used to solve it (Table 5). Also, this preference is made by 
courtesy of the commutative property of the addition and 
multiplication. 

Table 5. All operation blocks that can be consisted of a three-
element set. 

+ A B C × A B C 
A … A + B A + C A … A × B A × C 
B … … B + C B … … B × C 
C … … … C … … … 
  

(a) 
   

(b) 
 

      
− A B C / A B C 
A … A − B A − C A … A/B A/C 
B B − A … B − C B B/A … B/C 
C C − A C − B … C C/A C/B … 
  

(c) 
   

(d) 
 

      

All the binary operations consisting of a set of elements  
{A, B, C} are given in Table 5. The binary operation blocks which 
are combinations with repetition represented by "..." can be 
added to the list according to the problem. In this study, the 
combinations with repetition are ruled out. 

Each operation block can be a part of another operation block. 
Each single or multi operation block creates a tree. Different 
sequences of operation blocks cause different combinations. If 
each of them is represented by a tree, it is necessary that tree 
must create its own tree for the calculation of all combinations. 
In other words, tree of each operation block represents a node 
of the combination tree (Figure 4a). The combinations of the 
multi operation blocks can be kept by the Type-2 tree while a 
multi operation block is solved with the Type-1 tree. That is to 
say, the combined tree structure formed by keeping an 
operation block tree at each node of the combination tree can 
be defined as a Type-2 tree. 

4.1 Solution of the problem with the type-2 tree 
structure 

The subtree which aims to solve the four-operations 
combination problems in a simpler way using the Type-2 tree, 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 27(1), 52-59, 2021 
E. Özkul, B.K. Tiryaki, Ö. Tezel, E. Ağayev, O. Kesemen 

 

56 
 

is listed as a string, and the expansion of the tree (branching) 
can be resumed (Figure 4b). The numerical value of the string 
expression obtained from the operation result can be found. 

 

(a) 

 

(b) 

Figure 4. The solution tree of the four-operations combination 
problem. (a): Schematic representation of the Type-2 tree. 

(b): String expression of the Type-2 tree. 

If the operation result is used instead of the string expression, 
each generated operation block result is added to the 
{REMAINED}, and used numbers are removed from the 
{REMAINED}. In this way, a number set is created in each node, 
and the value of the current operation block is added to the list 
towards to the sub-depth. In addition, the numbers used in the 
operation blocks are removed from the {REMAINED} 
(Algorithm 3). 

Algorithm 3. Type-2 tree structure to solve four-operations 
combination problem 

function [OUTPUT] = FourOperator(REMAINED): 
// Input_  
// REMAINED : The number set 
 
// Output_ 
// OUTPUT : The all results 
 
// Set OUTPUT and LIST to empty set 
 
LIST.Push(REMAINED) 
while length(LIST) > 0 
   b = LIST.pop()     
   if length(b) is equal to 1 then 
      continue while loop 
   end if 
   for i in (1 to length(b)) do 
      for j in (1 to length(b)) do 
         if i ≠ j then 
            REMAINED <- set to zeros(n-1) 
            index = 1 
            for k in (1 to length(b)) do 
               if(k ≠ i and k ≠ j) then 
                  REMAINED[index] = b[k] 
                  index += 1 
               end if 
            end for k 
            if j > i then 
               REMAINED[index] = b[i] + b[j] 
               LIST.Push(REMAINED) 
               OUTPUT.append(REMAINED[index]) 
               REMAINED[index] = b[i] * b[j] 

               LIST.Push(REMAINED) 
               OUTPUT.append(REMAINED[index]) 
            end if 
            REMAINED[index] = b[i] - b[j] 
            LIST.Push(REMAINED) 
            OUTPUT.append(REMAINED[index]) 
            REMAINED[index] = b[i] / b[j] 
            LIST.Push(REMAINED) 
            OUTPUT.append(REMAINED[index]) 
         end if 
      end for j 
   end for i 
end while 
return OUTPUT 

Consider a set of elements {A, B, C} for a simple implementation 
of the problem. In the first step, the binary permutations of the 
elements are shown as in Table 6. 

Table 6. Binary operation blocks of the set with two elements. 

Binary 
Permutation 

{(A + C), B} {B, (A + C)} 

{REMAINED} {} {} 

Addition {(A + C) + B} … 

Subtraction {(A + C) − B} {B − (A + C)} 

Multiplication {(A + C) × B} … 

Division {(A + C)/B} {B/(A + C)} 

There are operation blocks having the same results in a row 
that contain addition and multiplication operators in Table 6. 
Thus, only one of them is considered. However, all results of 
subtraction and division in a row have been selected. All the 
elements in the rows that contain subtraction and division 
operations are taken. Thus, 18 new sets are obtained as a result 
of the binary four-operations combination of a set with three 
elements. Table 7 shows the four-operations combinations of 
the set {(A + C), B} which is one of the new sets with two 
elements. Here, the expression (A + C) is defined as a number. 

The number of the binary operation blocks of three elements is 
18. The number of triple operation blocks gives 6 results for 
each. As a result, the number of triple operations of three 
elements is 6 × 18 =  108. In addition, the number of all four-
operations combination of a set with three elements is 
calculated as 18 + 108 =  126, when the binary operations 
results are included. 

4.2 Determination of the number of the four-operations 
combinations 

The total number of operation blocks obtained according to the 
numbers and the operators. The number of new operation 
blocks obtained from them is calculated using permutation. In 
this case, the number of the binary operation blocks obtained 
from a set with 𝑛 elements is calculated as in Equation (6). 

𝐷(𝑛, 2) = 3. 𝑃(𝑛, 2) (6) 

In Equation (6), while all permutations of the subtraction and 
division operators are considered, the half of the permutations 
of the addition and multiplication operators are considered. 

Thus, the number of permutations is reduced 3 times. In the 
same way, the number of triple operation blocks of a set with 𝑛 
elements is determined as in Equation (7). 

𝐷(𝑛, 3) = 32. 𝑃(𝑛, 2). 𝑃(𝑛 − 1,2) (7) 
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Table 7. Binary operation blocks of a set with three-element. 

Binary permutations {A, B} {A, C} {B, A} {B, C} {C, A} {C, B} 

{REMAINED} {C} {B} {C} {A} {B} {A} 

Addition {(A + B), C} {(A + C), B} {} {(B + C), A} {} {} 

Subtraction {(A − B), C} {(A − C), B} {(B − A), C} {(B − C), A} {(C − A), B} {(C − B), A} 

Multiplication {(A × B), C} {(A × C), B} {} {(B × C), A} {} {} 

Division {(A/B), C} {(A/C), B} {(B/A), C} {(B/C), A} {(C/A), B} {(C/B), A} 
 

Hence, Equation (8) calculates the number of the 𝑛-operation 
blocks of a set with 𝑛 elements. 

𝐷(𝑛, 𝑛) = 3𝑛−1. 𝑃(𝑛, 2) … . 𝑃(4,2). 𝑃(3,2). 𝑃(2,2) (8) 

If it is generalized, Equation (9) is obtained and, thus, the 
number of the 𝑘-operation blocks is calculated. 

𝐷(𝑛, 𝑘) = 3𝑘−1 ∏ 𝑃(𝑡, 2)

𝑛

𝑡=𝑛−𝑘+2

 (9) 

The number of all operation blocks of a set with 𝑛 elements are 
figured out using Equation (10). 

𝐷(𝑛) = ∑ (3𝑘−1 ∏ 𝑃(𝑡, 2)

𝑛

𝑡=𝑛−𝑘+2

)

𝑛

𝑘=2

 (10) 

Table 8 shows the results for 𝑛 = 2,3,4,5,6. 

Table 8. The number of the four-operations combinations. 

𝐷(2,2) 6 

𝐷(2) = ∑ 𝐷(2, 𝑘)2
𝑘=2   6 

𝐷(3,2) 18 

𝐷(3,3) 108 

𝐷(3) = ∑ 𝐷(3, 𝑘)3
𝑘=2   126 

𝐷(4,2) 36 

𝐷(4,3) 648 

𝐷(4,4) 3888 

𝐷(4) = ∑ 𝐷(4, 𝑘)4
𝑘=2   4572 

𝐷(5,2) 60 

𝐷(5,3) 2160 

𝐷(5,4) 38880 

𝐷(5,5) 233280 

𝐷(5) = ∑ 𝐷(5, 𝑘)5
𝑘=2   274380 

𝐷(6,2) 90 

𝐷(6,3) 5400 

𝐷(6,4) 194400 

𝐷(6,5) 3499200 

𝐷(6,6) 20995200 

𝐷(6) = ∑ 𝐷(6, 𝑘)6
𝑘=2   24694290 

5 Experimental results 

This section investigates the performance of the proposed 
method for the four-operations combination problem. For the 
simulation study, a 64-bit computer with an Intel® Core ™ i7-
3630QM CPU @ 2.40GHz processor and 8 Gb Ram was used, 

and 𝐶# was used for the applications. Random integers 
between 1 and 9 are selected as the simulation parameters and 
the results are recorded. This process is run 100 times with the 
same 𝑛 value and the average computation time according to 
the count of the selected numbers is shown in Table 9. 

Table 9. The average computation time of the proposed 
method in 100 trials. 

The count of the 
used numbers 

The number of the 
generated results 

The average 
computation time 

(sec.) 
2 6 0.00000209 
3 126 0.00000704 
4 4572 0.00023027 
5 274380 0.01541066 
6 24694290 1.94922640 

The results obtained by the random integers between 1 and 9 
were generated as many as the number used in Table 9, and the 
computation time was computed according to the results.  
According to Table 9, the number of results and the 
computation time increase, when the number of elements of the 
number set increases. Also, the complexity of the algorithm is 
calculated as 𝑂(𝑛! (𝑛 − 1)!). On the other hand, the statistics 
such as  the count of used number (𝑛), the number of generated 
results for each experiment (𝑁), the minimum result (𝑌𝑚𝑖𝑛), the 
maximum result (𝑌𝑚𝑎𝑥), the number of the infinite results (𝑁𝑖),  
the number of the undefined results (𝑁𝑛 ) and percentage of the 
number falling between 100-1000 (f%) obtained from 
experimental results are given in Table 10. According to  
Table 10, it is seen that as the count of used number (𝑛) 
increases, the minimum result (𝑌𝑚𝑖𝑛) decreases and the 
maximum result (𝑌𝑚𝑎𝑥) increases. On the other hand, the 
expressions like a/∞, 0/0, 0×∞ which equal to infinity are 
expected. So, the number of the infinite results (𝑁𝑖) and the 
number of the undefined results (𝑁𝑛) increase, when the count 
of used number increases. The percentages of the number 
falling between 100-1000 are also given. 

6 Conclusion 

This study improved the Type-2 tree to solve the four-
operations combination problems. A simulation study was 
performed to test the performance of the proposed method. 
The random integers used in the simulation study were 
selected in the range of [1,9], and the average computation time 
was obtained according to the count of the selected numbers. 
The computational complexity was found theoretically 
according to the parameter 𝑛 and compared with the 
computation time. As the number of elements in the number set 
increases, the number of the generated results and the 
computation time increase. The four-operations combination 
problems are performed via integers given in a certain number. 
They can be expanded to both real and complex numbers. In 
addition, the heuristic approaches can be improved to find the 
shortest solutions that reach the target number. 
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Table 10. The statistics obtained from experimental results. 

𝑛 𝑁 𝑌𝑚𝑖𝑛  𝑌𝑚𝑎𝑥 𝑁𝑖 𝑁𝑛 𝑓% 
2 6 -2.99 25.16 0 0 0 
3 126 -34.37 128.24 0.72 0 1.23015873 
4 4572 -176.58 514.52 42.46 1.12 1.610673666 
5 274380 -1155.27 3208.38 3536.82 58.4 2.438435746 
6 24694290 -2.37828E+16 2.37828E+16 396003.94 9475.52 2.853373148 

𝒏: the count of used number; 𝑵: the number of generated results for each experiment; 𝒀𝒎𝒊𝒏: the minimum result; 𝒀𝒎𝒂𝒙: the maximum result; 𝑵𝒊: the number of the infinite 
results; 𝑵𝒏: the number of the undefined results; 𝒇%: Percentage of the number falling between 100-1000. 
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Appendix A 
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(e) (f) 

 

 

(g) (h) 

 

 

(i) (j) 

Figure A1. Steps for converting string expression to tree 
structure. The left column shows the tree structure, and the 

right column is the memory model adapted for the queue data 
structure. 
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

 

 

(g) (h) 

  

(i) (j) 

Figure A2. Steps for converting tree structure to value. The left 
column shows the tree structure, and the right column is the 

memory model adapted for the queue data structure. 

 

 

 

 

 

(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

 

 

(g) (h) 

  

(i) (j) 

Figure A3. Steps for converting tree structure to string 
expression. The left column shows the tree structure, and the 
right column is the memory model adapted for the queue data 

structure. 

 

 

 


